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Abstract. Wi-Fi networks are widely used for modern connectivity but
remain vulnerable to impairments such as bandwidth fluctuations, in-
terference, packet loss and latency spikes. These challenges make it dif-
ficult to support latency-sensitive applications like Cloud Virtual Real-
ity (Cloud VR), which offloads intensive computation to remote servers
to reduce local hardware requirements but demands high throughput
and ultra-low latency. Consequently, Wi-Fi network degradations can
severely impact the Quality of Experience (QoE) of such applications.
Traditional Root Cause Diagnosis (RCD) approaches rely on expert-
defined rules or supervised ML (Machine Learning) models that require
extensive labeled datasets. This dependence on manual labeling makes
them costly, time-consuming, and impractical for real-world Wi-Fi diag-
nostics.
To overcome these limitations, we introduce RAID (Root cause Anomaly
Identification and Diagnosis), a two-stage ML framework that diagnoses
Wi-Fi performance issues using time series KPIs collected directly from
the Wi-Fi access point, with Cloud VR serving as a use case. RAID com-
bines contrastive learning-based anomaly detection with a lightweight
classifier to categorize network impairments. We evaluate RAID, with
a real-world Cloud VR use case, in a testbed using NVIDIA CloudXR
and a Meta Quest 2, collecting Wi-Fi performance metrics on the ac-
cess point, under controlled conditions. Results demonstrate that RAID
outperforms existing RCD methods, achieving high accuracy even with
minimal labeled data. Compared to conventional supervised and self-
supervised time series models, RAID offers a scalable, real-time solution
with a good trade-off between training efficiency and inference speed,
making it well-suited for practical deployment in dynamic Wi-Fi net-
work environments.

Keywords: Wi-Fi Networks · Root Cause Diagnosis · Cloud VR · Anomaly
Detection · Contrastive Learning · Time Series Classification.
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1 Introduction

Wi-Fi has become the dominant access technology for modern networks, of-
fering flexibility and convenience. However, unlike wired connections, Wi-Fi is
inherently unreliable due to environmental factors, interference from coexisting
devices, bandwidth fluctuations, latency spikes, and packet loss. These impair-
ments make it challenging to support the new generation of latency-sensitive
applications, which demand both high throughput and ultra-low latency to main-
tain seamless performance. These emerging applications such as cloud gaming,
telemedicine, cloud robotics, and Cloud Virtual Reality (Cloud VR) particularly
suffer from these Wi-Fi limitations. Cloud VR, for instance, offloads intensive
computation to remote servers, allowing for lightweight and cost-effective VR
headsets. However, delivering high-resolution (4K-8K) immersive experiences
requires substantial bandwidth (≥ 80 Mbps) and ultra-low latency (≤ 20 ms),
making reliable performance over Wi-Fi networks a critical challenge. Network
degradations in this context lead to lag, visual artifacts, and even cybersickness,
ultimately disrupting immersive VR interactions.

Root Cause Diagnosis (RCD) plays a crucial role in identifying, predict-
ing, and mitigating Wi-Fi-related network issues. Traditional RCD approaches
rely on expert-defined heuristics to analyze Key Performance Indicators (KPIs).
While useful in simple scenarios, these methods are manual, time-consuming,
and struggle to scale in modern dynamic wireless environments. Recent ad-
vancements in Machine Learning (ML) and Time Series Classification (TSC)
have enabled automated analysis of KPIs data, capturing temporal dependen-
cies for improved anomaly detection. However, supervised TSC methods require
large labeled datasets, which are costly and time-intensive to annotate, limiting
their real-world applicability. As a result, there is a growing need for data-driven
RCD approaches that reduce dependency on labeled data while maintaining high
accuracy.

To address these challenges, we propose Root cause Anomaly Identification
and Diagnosis (RAID), a two-stage ML framework for diagnosing Wi-Fi perfor-
mance degradation, with Cloud VR used as a representative use case. In Stage
one, a contrastive learning-based anomaly detection model differentiates nor-
mal from anomalous KPI patterns without requiring labeled samples. In Stage
two, once anomalies are detected, a lightweight supervised classifier categorizes
them into specific Wi-Fi impairments. We evaluate RAID using time series KPIs
collected from a real-world Cloud VR testbed that emulates realistic network
degradations under controlled conditions, using off-the-shelf devices and equip-
ment, with user traffic generated by the Cloud VR game Beat Saber. This setup
ensures that all collected data are real and representative of operational de-
ployments. Although our experiments focus on Cloud VR, the RAID framework
itself is domain-agnostic and can be readily applied to other root cause diagno-
sis scenarios by adapting the input KPIs. Our results demonstrate that RAID
outperforms existing methods, even with limited labeled data, offering a scal-
able, efficient, and real-time root-cause diagnosis solution for Wi-Fi networks
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supporting latency-sensitive applications. Specifically, the key contributions of
this paper are as follows:

– We set up a controlled Wi-Fi testbed that faithfully replicates an operational
network setup using the same commercial hardware. This environment can
replicate real-world network impairments, enabling reproducible and realistic
evaluation of Cloud VR performance under degraded conditions.

– We introduce a novel two-stage framework that combines contrastive learning-
based anomaly detection with supervised classification to effectively detect
and diagnose Wi-Fi impairments.

– We perform extensive empirical evaluations using time series KPI datasets
collected from our testbed, comparing our proposed solution with state-of-
the-art time series classification models.

– Our solution demonstrates strong performance even in low-label scenarios,
highlighting its ability to generalize with minimal supervision. Additionally,
it offers a balanced trade-off between moderate training time and low in-
ference latency, making it well-suited for real-time deployment in practical
Wi-Fi diagnostic applications.

2 Related work

ML-based Network Root Cause Diagnosis: Root Cause Diagnosis aims
to identify the sources of network anomalies such as degraded performance or
failures. The rise of ML has led to supervised and unsupervised approaches for
network diagnosis. Supervised methods [10,21,11] have been used to troubleshoot
Wi-Fi impairments [21] and classify home network issues using transformers [11].
Unsupervised approaches such as the two-stage VAE-MLP framework by Fida
et al. [13] detect bottlenecks in cloudified 5G networks. Our work extends these
efforts by incorporating contrastive learning for anomaly detection, reducing
reliance on labeled data while enhancing root cause classification for low-latency
Wi-Fi environments.

Time Series Classification: Time Series Classification (TSC) plays a key
role in network diagnostics. Traditional approaches include distance-based [2],
interval-based [9], shapelet-based [4], and ensemble-based [3] methods. More re-
cently, deep learning architectures [31,30] have improved classification perfor-
mance but require extensive labeled data. Self-Supervised Learning (SSL) has
emerged as a scalable alternative, with frameworks like T-Loss [14], TNC [22],
TS-TCC [12], TF-C [29] or TS2Vec [28] to further improve feature extraction
by learning meaningful representations from unlabeled data. Our method lever-
ages a two-stage TSC approach, where anomaly detection precedes classification,
ensuring more accurate impairment diagnosis.

Anomaly Detection Techniques: Anomaly Detection (AD) methods span
statistical models and deep learning approaches. Statistical methods include
parametric (ARIMA [26], Gaussian-based [18]) and non-parametric (KDE [5]).
Distance-based [6] and spectral-based [19] methods analyze distributional pat-
terns, while isolation-based models [17] identify anomalies based on recursive
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partitioning. Deep learning-based AD captures complex temporal dependencies
using autoencoders (AEs, VAEs) [25], gaussian models [32], RNN-based methods
[20], and transformer-based solutions [23]. Contrastive learning further enhances
AD, with models like COCA [24], ContrastAD [16], and CARLA [8] improving
representation learning, while DCdetector [27] refines spatial-temporal feature
extraction. Our approach integrates contrastive learning in a two-stage RCD
framework, effectively detecting and classifying impairments for real-time Cloud
VR over Wi-Fi.

3 Proposed Method

We propose RAID, a two-stage root cause diagnosis framework for Cloud VR
over Wi-Fi, formulated as a time series classification problem. Given a dataset
Dtrain = {(w1, y1), . . . , (wT , yT )} of multivariate time series KPIs, RAID consists
of 1) an Anomaly Detection stage: that identifies deviations from normal
network behavior using contrastive learning and 2) a Root Cause Classifica-
tion stage that classifies detected anomalies into specific impairment types.

Fig. 1. RAID framework

3.1 Anomaly Detection Stage

The first stage identifies whether a time series is anomalous using a self-supervised
anomaly detection approach based on contrastive learning. This approach elim-
inates the need for labeled data by leveraging only normal data collected during
Cloud VR sessions without Wi-Fi impairments. Our anomaly detection module
builds upon CATS (Contrastive learning for Anomaly detection in Time Series),
a framework introduced in our previous work [15] that has demonstrated superior
performance in time series anomaly detection. CATS enhances anomaly detec-
tion through synthetic anomaly generation and contrastive loss formulations,
leveraging temporal dependencies to improve representation learning. Specif-
ically, the anomaly detection model is trained using a combined global and
temporal contrastive loss L = 1

2 (LTCL + LGCL), ensuring robust detection of
anomalous patterns.
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We briefly summarize the components of the anomaly detector below, and re-
fer the reader to [15] for a detailed analysis of its design choices and experimental
validation.

– Data augmentation: From an input window wi, it generates a set of time
series views through positive data augmentations such as jittering and scal-
ing {w+

i , w
+
i+N}, and introduces synthetic anomalies via masking or trend

perturbations w−
i .

– Encoder: Maps the augmented time series into a low-dimensional latent
space hi = fθ(wi). The encoder architecture is model-agnostic, supporting
convolutional, recurrent, or transformer-based models.

– Projection head: A non-linear MLP that refines the latent representations
for contrastive learning zi = gθ(hi).

– Temporal contrastive loss: Utilizes a differentiable variant of DTW (Soft-
DTW) to learn temporal similarities in representations using a triplet of
views.

LTCL =
1

N

N∑
i=1

max
(
Dγ(h+

i − h+
i+N )−Dγ(h+

i − h−
i ) +m, 0

)
(1)

where Dγ(.) is the Soft-DTW divergence measure, and m is the margin
parameter (the minimum distance between positive and negative samples).

– Global contrastive loss: Uses a Normalized Temperature-Scaled Cross-
Entropy Loss (NT-Xent) to learn global feature similarities with an extended
set of negative pairs.

LGCL =
1

2N

∑
i∈B+

log
exp(sim(zi, zi+N )/τ)∑

j∈B,j ̸=i exp(sim(zi, zj)/τ)
(2)

where B is the set of all views, N is the batch size, τ is the temperature
hyperparameter, and sim(.) is the cosine similarity.

– Anomaly scoring: After training, anomalies are detected by calculating
the distance between the latent representation of an unseen time series and
the centroid of normal representations. If the score exceeds a predefined
threshold, the instance is classified as anomalous.

s(w̃t) = D(fθ(w̃t), zcent) = D(z̃t,
1

Ntrain

Ntrain∑
i=1

zi) (3)

where D is the Euclidean distance.

3.2 Root cause classification

Once an anomaly is detected, the next step is to determine its underlying root
cause. This stage is framed as a supervised classification problem, where the
objective is to map each detected anomaly to a predefined class of root causes
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{cause1, cause2, . . . , causeK−1}. To ensure efficiency and simplicity, we use a
shallow classifier such as logistic Regression or SVM despite the various tech-
niques for supervised TSC that were proposed in the literature. This approach,
as shown in the following sections, achieves high accuracy with minimal compu-
tational overhead, making it suitable for real-time deployment.

4 Testbed

In this section, we introduce our testbed, designed for controlled experiments
to assess Cloud VR performance over Wi-Fi while systematically injecting real-
world network impairments.

4.1 Wi-Fi Testbed for Controlled Experiments

To systematically evaluate Wi-Fi’s impact on Cloud VR performance, we devel-
oped a controlled Wi-Fi testbed (Fig. 2), designed to replicate real-world net-
work impairments while maintaining precise experimental control. The testbed
consists of two primary layers:

– Infrastructure layer: The infrastructure layer provides the core hardware
setup for Cloud VR streaming and controlled Wi-Fi experimentation thanks
to four Faraday cages used to isolate equipment from external electromag-
netic interference. It comprises a Cloud VR system based on a CloudXR
streaming setup, where a high-performance server (equipped with Intel Xeon
W2235 CPU @ 3.8GHz, 32GB RAM, and NVIDIA RTX 3090 Ti) renders
OpenVR applications using GPU acceleration and streams VR content wire-
lessly to a Meta Quest 2 headset (in cage 1). It also includes a Wi-Fi network
environment that consists of two Wi-Fi APs: AP1 (in cage 2) that serves as
the primary network for Cloud VR streaming and is used for both nor-
mal and coverage experiments and AP2 (in cage 4) that introduces network
interference thanks to a traffic generator generating competing UDP to a
station (in cage 3). The Faraday cages are interconnected using coaxial ca-
bles to transmit Wi-Fi signals, and Radio Frequency (RF) attenuators are
employed to simulate variations in signal strength during experiments.

– Control and Automation layer: This layer ensures reproducibility and fa-
cilitates real-time monitoring, automation, and data collection. It includes a
VR PC controller connected to the VR headset via USB, responsible for man-
aging headset settings and collecting performance metrics, such as KPIs from
OVR Metrics tools5 or quality-of-service (QoS) statistics from CloudXR. The
controller also automates game sessions using the Meta Quest Autodriver6.
Additionally, this layer features an attenuator controller that configures and
manages RF attenuators via APIs, enabling automated signal attenuation
adjustments through FastAPI. Furthermore, the Livebox controller manages

5 https://developers.meta.com/horizon/downloads/package/ovr-metrics-tool/
6 https://developers.meta.com/horizon/documentation/unity/ts-autodriver

https://developers.meta.com/horizon/downloads/package/ovr-metrics-tool/
https://developers.meta.com/horizon/documentation/unity/ts-autodriver
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the Livebox via Telnet to collect Wi-Fi KPIs every 3 seconds. A local ELK
Stack database aggregates data from all controllers for post-experiment anal-
ysis.

Fig. 2. Wi-Fi testbed for Cloud VR scenarios

4.2 Experimental Scenarios

Cloud VR experiments were conducted using the Beat Saber VR game as a
benchmark across 2.4 GHz and 5 GHz Wi-Fi bands. Three experimental scenar-
ios were evaluated:

– Normal: VR sessions under optimal conditions (RSSI: -45 dB (2.4 GHz),
-65 dB (5 GHz), txops = 100%), with 5x 300s sessions per band;

– Coverage: Signal attenuation simulated via RF attenuators at different
RSSI levels (-55 to -65 dB for 2.4 GHz and -80 to -90 dB for 5 GHz). Further
degradation was limited by system constraints: VR disconnects below -65
dB for 2.4 GHz, and -65 dB was the highest achievable for 5 GHz.;

– Interference: Interference was introduced by the station connected to AP2,
occupying 9% to 15% of the transmission opportunities (txops) available on
AP1 once the game started.

4.3 Data Collection

With this testbed, three types of data can be collected: i) Application-Level
Metrics that are extracted from the OVR Metrics Tool and CloudXR stack; ii)
Livebox-Level Metrics: collected from the Wi-Fi AP, including RSSI, noise
levels, airtime, MCS index, retry rates, and bitrate statistics; and iii) Raw
Traffic Captures.
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While the network impairments in our testbed are emulated in a controlled
setting, the data used in this study is entirely real, collected directly from com-
mercial hardware (Livebox, CloudXR stack, and Meta Quest 2) during repre-
sentative Cloud VR sessions. The impairment scenarios are carefully designed
to reproduce typical real-world conditions such as signal degradation, and in-
terference. This setup enables reproducible experimentation while preserving
the complexity and variability inherent to practical Wi-Fi deployments, thanks
to the use of physical RF manipulation, real-time VR streaming, and traffic dy-
namics generated by actual application workloads, including interference created
through competing traffic injected via a neighboring access point.

5 Evaluation setup

5.1 Dataset Description

To evaluate our proposed solution, we utilize the time series datasets collected
from the experimental testbed. Although our setup gathers KPIs from both the
VR headset and the CloudXR stack, which provide insights into QoS and QoE
during VR sessions, this study focuses exclusively on data retrieved from the
Livebox. This choice is motivated by the practical accessibility of these metrics
for network operators, who own and manage the Livebox. Leveraging these met-
rics for RCD allows for the development of smarter APs and more intelligent
network management solutions, aligning closely with the operational needs of
network operators.

The dataset consists of 112 time series features extracted from the Livebox.
These features include signal strength indicators (e.g., RSRP, RSSI), transmis-
sion performance metrics (e.g., txops), channel utilization measures (e.g., air
time), among others, offering a comprehensive view of Wi-Fi performance in
various conditions. Monitoring was performed at a frequency of one sample ev-
ery three seconds. To facilitate analysis, the data is structured into overlapping
time series windows, each spanning 10 time steps (30 seconds per window). In
total, the dataset (presented in Table 1) contains 13,657 time series windows,
which are partitioned into training and testing subsets using a 70:30 split ratio
categorized into three classes, corresponding to distinct experimental scenarios
during data collection.

Table 1. Dataset Summary

Class Train Test Features Time Steps

Normal 4718 1924 112 10
Coverage 2984 1270 112 10
Interference 1822 939 112 10

Total 9524 4133 112 10
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5.2 Competing Solutions

To demonstrate the effectiveness of RAID, we compare it against several baseline
including one-stage and two-stage TSC models.

One-Stage Models

– 1-NN-DTW: A nearest-neighbor classifier with Dynamic Time Warping
(DTW), a strong baseline for time series classification [2].

We also include SSL time series representation learning methods that undergo
pretraining before classification with an SVM classifier with an RBF kernel fol-
lowing the protocol outlined in [14].

– T-Loss [14]: A SSL approach that uses triplet loss with time-based negative
sampling for generalizable representations.

– TS-TCC [12]: A SSL framework that combines weak/strong augmentations
with temporal/contextual contrastive learning.

– TS2Vec [28]: A framework that learns both instance-wise and temporal-
wise representations via a hierarchical contrastive objective.

Two-Stage Models For the two-stage models, we replace RAID’s anomaly
detector with alternative unsupervised AD methods which are:

– iForest [17]: An isolation-based model that recursively partitions feature
space to isolate anomalies.

– USAD [1]: Uses dual autoencoders in a min-max game with the first learns
to reconstruct data and the second attempts to differentiate between true
data and reconstructions.

– SimCLR [7]: A contrastive learning framework adapted for time series that
learn representations from augmented views of data and can be used for AD.

5.3 Evaluation Metrics

We evaluate the performance of our root-cause diagnosis models using well-
known multi-class classification metrics, including weighted Precision (P), weighted
Recall (R), weighted F1-score (F1), Accuracy (Acc), and Normalized Accuracy
(N-Acc). These metrics are defined as follows:

– Precision: The macro-weighted precision is the weighted average of preci-
sion values computed for each class, wi being the proportion of class i:

P =

K∑
i=1

wi × Pi, Pi =
TPi

TPi + FPi
(4)
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– Recall: The macro-weighted recall is the weighted average of recall values
computed for each class, wi being the proportion of class i:

R =

K∑
i=1

wi ×Ri, Ri =
TPi

TPi + FNi
(5)

– F1-Score: The macro-weighted F1-score is the harmonic mean of macro-
weighted Precision and Recall. This metric coupled P and R are suitable for
imbalanced datasets.

F1 = 2× P ×R

P +R
(6)

– Accuracy: The fraction of correctly classified samples over the total number
of samples. This metric is widely used and easy to interpret.

– Normalized Accuracy (N-Acc): This metric adjusts the balanced accu-
racy (bac = 1

K

∑K
i=1 wi × Ri) which is the weighted average of the recall of

each class with respect to the accuracy of random guessing (bacRG), ensuring
that random predictions score 0 while perfect predictions score 1. It is more
interpretable and suitable for imbalanced datasets.

N-Acc =
bac− bacRG

1− bacRG
(7)

5.4 Implementation Details

All datasets are normalized and split into training and testing sets. The ar-
chitecture and hyperparameters of the anomaly detection stage in RAID are
directly inherited from our prior work on CATS [15]. Specifically, we employ
a dilated CNN with 10 residual blocks as encoder and a three-layer MLP with
ReLU activations as projection head. As the anomaly detection module is reused
without modification, we do not repeat the extensive evaluation conducted on
CATS, which includes ablation studies on the loss components and augmenta-
tion strategies. This paper focuses instead on the integration of the detection
module into a complete root cause diagnosis pipeline and its evaluation in a
realistic Wi-Fi testbed setting. The model is trained for 100 epochs using the
Adam optimizer with a learning rate of 10−3 and a batch size of 512. Com-
peting models are trained using their official implementations with consistent
optimization settings. The classification stage is performed via an SVM with an
RBF kernel, with hyperparameters tuned via grid search.

All experiments were conducted on an Ubuntu 22.04 with an AMD Ryzen 9
5900X CPU and an NVIDIA RTX 3090 Ti GPU (24GB), using PyTorch 2.2.0
and CUDA 12.1. The code and datasets to reproduce all experiments are publicly
available.7

7 https://github.com/joelromanky/raid

https://github.com/joelromanky/raid
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Table 2. Performance comparison on the datasets. Mean and standard deviation com-
puted over five runs for Cloud VR datasets. Bold values indicate best results and
underlined values the second best.

Models Metrics Accuracy N-Accuracy Precison Recall F1-score

O
n
e-

st
ag

e 1-NN-DTW 51.54(±0.11) 26.36(±0.17) 56.74(±0.09) 51.54(±0.11) 52.96(±0.10)

T-Loss 79.47(±4.39) 75.22(±5.58) 83.98(±4.74) 79.47(±4.39) 79.60(±4.53)

TS2Vec 70.12(±5.28) 55.71(±6.53) 75.42(±3.22) 70.12(±5.28) 70.49(±4.88)

TS-TCC 73.78(±6.38) 66.17(±8.12) 79.29(±6.07) 73.78(±6.38) 73.86(±6.68)

T
w

o-
st

ag
e iForest 72.48(±2.69) 62.22(±4.69) 72.26(±3.14) 72.48(±2.69) 72.24(±2.99)

USAD 72.22(±0.80) 63.39(±1.36) 72.72(±0.97) 72.22(±0.80) 72.38(±0.84)

SimCLR 57.76(±3.25) 37.59(±4.84) 61.01(±2.60) 57.76(±3.25) 58.65(±3.06)

RAID 81.83(±2.96) 74.80(±4.19) 81.85(±3.02) 81.83(±2.96) 81.60(±3.05)

6 Results

6.1 Performance Evaluation

Table 2 summarizes the evaluation results of our solution compared to competing
TSC methods using various performance metrics, including accuracy, normalized
accuracy, precision, recall, and F1-score. The results highlight the superiority of
our approach over both one-stage and two-stage methods.

Evaluation of One-Stage Models One-stage models, including 1-NN-DTW,
T-Loss, TS2Vec, and TS-TCC, directly perform root cause classification without
a preliminary anomaly detection step. Among these models, 1-NN-DTW exhibits
the lowest overall performance, with an accuracy of 51.54% and an F1-score of
52.96%. Despite being a strong baseline for TSC, it struggles to handle the
complex time series data encountered in CloudVR scenarios.

Contrastive learning-based SSL models outperform 1-NN-DTW. Among them,
T-Loss emerges as the most effective technique, achieving the highest normal-
ized accuracy (75.22%) and precision (83.98%) within this category. This demon-
strates its capability to learn meaningful representations for RCD tasks. TS-TCC
follows with an accuracy of 73.78% and an F1-score of 73.86%, while TS2Vec
achieves an accuracy of 70.12% and an F1-score of 70.49%.

Evaluation of Two-Stage Models Two-stage models incorporate a prelimi-
nary anomaly detection step, enabling better focus on relevant patterns before
root cause classification. iForest and USAD achieve comparable performance,
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with accuracy scores of 72.48% and 72.22%, respectively. Both models demon-
strate strong F1-scores around 72%, yet they fall short of advanced one-stage
approaches like T-Loss. Meanwhile, SimCLR performs suboptimally with an ac-
curacy of 57.76% and an F1-score of 58.65%.

Our custom solution significantly outperforms all competing methods across
most metrics. It achieves the highest accuracy (81.83%), recall (81.83%), and F1-
score (81.60%), demonstrating robustness and effectiveness for CloudVR RCD.
While T-Loss marginally outperforms in normalized accuracy and precision, our
custom model achieves the best balance across all metrics, establishing it as the
most reliable approach in this evaluation.

The superior performance of our solution can be attributed to the efficiency of
its anomaly detection stage. As shown in Fig. 3, our solution outperforms other
two-stage techniques in detecting anomalies across various well-known metrics.
RAID achieves the best overall anomaly detection performance, which directly
contributes to its effectiveness in RCD tasks.

Fig. 3. Results of anomaly detectors of two-stage models.

Per-Class Performance Analysis Figures 4 and 5 provide a detailed com-
parison of the per-class performance metrics for T-Loss and our custom solution.
Our approach demonstrates a significant advantage in efficiently distinguishing
normal scenarios from both coverage and interference scenarios.

For normal scenarios, our solution achieves a notably lower misclassification
rate compared to T-Loss, with 1,761 correctly classified normal samples versus
1,350 for T-Loss. This represents a substantial improvement in detecting normal
behavior. Additionally, our solution attains perfect classification for interference
scenarios, with a recall of 100%, highlighting its robustness in detecting distinct
anomaly patterns such as interference.

However, Fig. 5 also reveals the limitations of our solution. It struggles to
discriminate coverage scenarios, with a considerable number of coverage win-
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(a) RAID (b) T-Loss

Fig. 4. Confusion matrix

(a) RAID (b) T-Loss

Fig. 5. Per-class precision, recall and F1-score.

dows misclassified as normal. This indicates challenges in capturing the subtle
variations and transitional patterns between normal and coverage states. In con-
trast, T-Loss, while less accurate overall, shows a more balanced performance in
handling coverage scenarios.

This trade-off underscores the strengths and weaknesses of our model: it is
highly effective in detecting clear-cut anomalies but requires further refinement
to enhance its sensitivity to nuanced variations between normal and coverage
states. Future work could focus on addressing this limitation by incorporating
advanced feature extraction techniques or domain-specific data augmentation
strategies.

6.2 Efficiency with Few Labels

Fig. 6 illustrates the evolution of model performance as the percentage of labeled
data increases. The left subplot depicts the accuracy scores across various label
ratios, while the right subplot presents the corresponding F1-scores.

At the lowest label ratios (1%-5%), most models exhibit limited performance,
reflecting the inherent difficulty of accurate RCD with minimal supervision. How-
ever, T-Loss and RAID stand out by achieving relatively higher accuracy and



14 J.R. Ky et al.

F1 scores, showcasing their ability to generalize effectively even with sparse la-
beled data. T-Loss benefits significantly from its triplet-based pretraining strat-
egy, which efficiently captures meaningful representations from the unlabeled
dataset, thereby enhancing fine-tuning performance. Similarly, the pretraining
stage of RAID contributes to its robustness in low-label scenarios by effectively
leveraging the anomaly detection process to prioritize relevant patterns.

As the label ratio increases, all models demonstrate steady improvement
in performance, highlighting the benefits of additional labeled data. Notably,
RAID and T-Loss consistently lead in performance, with our solution exhibit-
ing a steady performance boost. This consistency underscores the robustness
of RAID across varying levels of supervision. While T-Loss initially competes
closely, its performance shows a slight decline between the 5% and 20% label
ratios, coupled with increased variability, indicating potential sensitivity to the
quality or distribution of labeled data in these ranges.

The findings from Fig. 6 highlight the efficiency of RAID in leveraging limited
labeled data, making it an ideal solution for real-world scenarios where label-
ing is both expensive and time-consuming. Its performance with sparse labels,
along with its stable scalability as more labeled data becomes available, firmly
establishes RAID as the most suitable model in this evaluation.

Fig. 6. Performance variation regarding the labels ratio.

6.3 Time complexity

Fig. 7 presents the training time (in seconds) and inference time per time se-
ries (in milliseconds) for each of the RCD models. The model with the longest
training time is Triplet, which takes approximately 300 seconds, while the fastest
training model is 1-NN-DTW, completing training in 500 milliseconds. In terms
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of inference time, 1-NN-DTW significantly outpaces other models, with the high-
est inference time of 1800 milliseconds. In contrast, models such as Triplet or
TS-TCC, achieve inference times as low as 0.5 milliseconds.

Our proposed solution, RAID, demonstrates a moderate training time of 200
seconds and an inference time of 3.5 milliseconds. While this inference time is
the second highest among the models compared, it is still well-suited for real-
time deployment, especially in our testbed where data is collected at frequent
intervals (e.g., every 3 seconds). This makes RAID an excellent choice for RCD,
as it balances moderate training overhead with sufficiently low inference latency,
allowing for continuous monitoring and fast anomaly detection. Additionally,
being a two-stage model, RAID offers a key advantage: when new causes or
anomalies are detected, only the supervised classifier requires retraining. Most
of the training time originates from the initial anomaly detection phase, un-
like one-stage models that require complete retraining, including the pretraining
phase. This makes RAID more efficient for scenarios requiring periodic updates
or retraining, reducing overall downtime and resource consumption.

In summary, RAID strikes a practical balance between training efficiency
and inference speed, making it highly effective for real-time RCD in dynamic
and large-scale network environments.

Fig. 7. Time complexity of each model.

7 Conclusion and Future work

This paper presents a root cause diagnosis approach for identifying network
issues in Cloud VR sessions over Wi-Fi networks, utilizing time series KPIs col-
lected from access points. By employing a two-stage ML framework, we demon-
strated the effectiveness of our approach compared to traditional time series
classification methods. Our proposed architecture, which integrates contrastive
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learning into the anomaly detection process, has shown significant improvements
in both identifying anomalies and diagnosing the root causes of Cloud VR per-
formance issues. This provides a good foundation for future research in real-time
diagnostics for cloud-based VR applications. One key strength of our approach
is its ability to balance training time and inference speed, making it ideal for
real-time diagnostics in dynamic network environments. Moreover, its two-stage
design enhances efficiency by restricting retraining to the impairment classifier,
thus avoiding full model retraining when new causes are introduced. Although
our experimental evaluation focused on Cloud VR over Wi-Fi, the RAID frame-
work is application-agnostic and can be seamlessly adapted to other root cause
diagnosis scenarios. By replacing the time series inputs, RAID can be retrained
without architectural changes.

Despite the promising results, there are several areas that warrant further
exploration and improvement. First, while our model performs well in detect-
ing clear anomaly patterns such as interference, its sensitivity to more nuanced
variations—particularly in signal attenuation scenarios—needs to be enhanced.
Future work will focus on improving the model’s ability to detect subtle tran-
sitions between normal and degraded states. Second, scaling the solution to
larger and more complex datasets is a priority. Our current framework has been
tested in a controlled Cloud VR testbed with only two types of impairments.
To improve its robustness, future research should include additional Wi-Fi im-
pairments such as network congestion, hidden terminal issues, and non-Wi-Fi
interference. Expanding the test environment to include more diverse real-world
conditions, such as home networks where multiple sources of impairments may
coexist, will also offer valuable insights. Finally, extending this two-stage model
to a multi-modal diagnostic approach could provide a more comprehensive view
of the root cause diagnosis process. By incorporating additional data sources,
such as application-level performance metrics or raw network PCAP data, the
system could offer even more accurate and proactive detection of network impair-
ments. These enhancements will be crucial for addressing the growing demands
of next-generation low-latency applications like Cloud VR.
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