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Abstract. Methane emissions from livestock pose a significant challenge
globally, particularly in countries with a strong farming industry domi-
nated by sheep farming, such as Aotearoa, New Zealand (NZ). Chemical
inhibitors such as feed additives or vaccines help to decrease methane
emissions. However, their successful development has been hindered by
a limited understanding of the complex interactions among the microor-
ganisms in the rumen (forestomach). This study serves as a proof-of-
concept to explore the potential of using metatranscriptome data to un-
derstand the genetic basis of microbial interactions in the rumen and
identify potential inhibitor targets. We analyzed a small but carefully
curated dataset of 10 sheep emitting different levels of methane. We em-
ployed various statistical and machine learning techniques to uncover new
contigs (continuous sequences of DNA) linked to high levels of methane
output. Despite the limited sample size, our findings revealed new in-
sights into microbial mechanisms, validated by domain experts. These
preliminary results suggest that expanding the dataset and integrating
machine learning can enhance our understanding of the complex micro-
bial interactions in the rumen, ultimately contributing to the develop-
ment of effective strategies to reduce methane emissions in livestock.

Keywords: Livestock Methane Emission · Chemical Inhibitors · Micro-
bial Interactions · Applied Machine Learning.

1 Introduction

Methane emissions from farmed animals pose a significant environmental chal-
lenge, contributing to global warming [23]. In Aotearoa New Zealand (NZ), these
emissions are particularly pronounced, with livestock methane accounting for
∼ 35% of the country’s greenhouse gas output [13].

To reduce the methane output in livestock, researchers have tested targeted
breeding, leading to successfully lowered emissions; however, the genetic long-
term impacts are uncertain [13]. An alternative is the administration of chemical
inhibitors – substances that slow down or completely stop chemical reactions or
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biological processes – via feed additives [21] or vaccines [1] that specifically target
the growth of methanogens. Methanogens are the main organisms responsible
for producing methane in ruminants, but they rely on other microorganisms in
the rumen for their survival. Therefore, understanding their interactions with
other microorganisms in the rumen will help develop new ways to target them.

Developing an effective vaccine or feed additive is now a key goal for scientists,
industry, and the government in NZ, but it has proven challenging due to limited
knowledge of the complex interactions of the methanogens with the other mi-
crobial population in the rumen. Machine learning could help in dissecting these
complex interactions and identify the specific genes of methanogens responsible
for their interactions with other microbes in the rumen. The understanding of
these complex genetic interactions can lead to the development of novel avenues
to target methane production in ruminants.

As a proof-of-concept, we use a sheep rumen metatranscriptome dataset [26]
gathered in NZ (10 sheep x 2 sampling days, yielding a total of 20 samples)
to enhance our understanding of rumen microbial interactions and to identify
promising contigs, continuous sequences of DNA, for further investigation. Al-
though small for machine learning tasks, the sample size is considered large in
the field, and it is sufficient as the involved sheep have been hand-selected for
this task – the dataset contains sheep with low, intermediate and high methane
output, which enables us to investigate the differences in interactions between
contigs. This is the first study using metatranscriptome data in a sheep ru-
men context, but it has shown great potential for the human microbiome [28].
To the best of our knowledge, it is also the first study to apply advanced ma-
chine learning approaches to analyze metatranscriptome data from the rumen
of low/intermediate/high methane-yielding sheep in general. Particularly, this is
also the first study to analyze our dataset. Upon success, this study may lead
to a substantially larger sample collection, yielding the foundation for inhibitor
development.

Particularly, we seek to answer the following questions:

1. Hypothesis and data validation: Is there a connection between contig counts
and methane output in sheep? Is it manifested in our sample?

2. Narrowing down the search: Which contigs play a role in methane production
beyond methanogens?

3. Understanding patterns: Are there groups of contigs that act together?
4. Identifying causal relationships in the rumen: Are some of the identified

relationships causal?

To address these questions, we employ various statistical and machine learn-
ing techniques to uncover potential drivers responsible for low or high methane
production in the same breed of sheep. Despite challenges due to the small sam-
ple size, our analysis managed to provide interesting and promising insights.
Due to intellectual property (IP) restrictions, only anonymized contigs without
annotations can be made publicly available alongside the paper. However, we
acknowledge the need for additional data and research to validate these findings
and to obtain more robust results.
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Section 3 describes our dataset, Section 2 reviews related approaches in the
literature, and Section 4 uses both to answer the above questions. Section 5
concludes the paper.

2 Related Research

A large body of research has been dedicated to understanding genetic interac-
tions and revealing genetic functions in different organisms in complex commu-
nities. We provide a brief, non-exhaustive overview of approaches related to this
project.

Analyzing metatranscriptome data: Metatranscriptome data is obtained via
RNA sequencing and captures gene expression profiles of organisms within a
complex microbial community. It is typically analyzed by mapping to reference
genomes [24,20] or assembly [12], which provide, among other benefits, a natural
grouping, an on-gene distance metric, or insights into some specific functionalities
[28,25]. However, we are only provided with contig counts but no contig meta-
information, such as genetic annotations, making such a mapping infeasible for
our dataset.

Finding genetic interactions: To investigate contig-contig interactions, we
use concepts from gene interaction or co-expression networks in which nodes
are typically defined as genes, and edges are the interaction strength between
adjacent nodes. This interaction strength can be defined via correlation [22],
assembly graph similarities [16], or structural similarities [7]. Given our dataset,
correlation is the only option as it does not require auxiliary contig information,
and we include it in our analysis. Cui et al. [6] detect genetic interactions by
capturing them in a neural network using Shapley Taylor interaction indices.
We include an adapted version in our analysis.

Investigating the rumen microbiome in livestock: Söllinger et al. [27] used
quantitative metatranscriptomics with gas and volatile fatty acid profiling to
investigate methanogen interactions and effects within the rumen of Holstein
cows. Rather than observing natural differences between animals, the authors
designed a targeted experiment allowing them to observe abundance fluctuations
over time that can be linked to a specific feeding pattern. Their work follows a
different path to identifying active methanogens and is not applicable to our
dataset. Li et al. [18] investigate the breed effect on the rumen microbiome in
beef cattle using metagenomics and metatranscriptomics. The authors compare
observed abundancies with statistical analysis using t-tests and link these dif-
ferences to feed efficiency. Our analysis extends beyond this approach using a
machine learning perspective.

3 Dataset Description

The dataset used in this study consists of metatranscriptome data, which rep-
resents the collection of RNA sequences from the microbial community in the
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Fig. 1: Basic dataset statistics: contig counts per 1M contigs per sample, summed
up per methane output category (left) and methane output distribution per
sample (right)

sheep rumen. This data helps us understand which genes are active and what
functions the microbes are performing in relation to methane production.

To obtain this data, 10 sheep with varying methane outputs were sampled on
two distinct days. Specifically, RNA was extracted from the rumen of low (4),
high (4), and intermediate (2) methane-yielding sheep, sampled on two dates
with a 14-day gap in New Zealand. This RNA is then sequenced, producing
“reads,” short fragments of RNA sequences that serve as snapshots of the gene
expression activity within the microbial community at the time of sampling.

The raw sequencing reads often contain errors or low-quality segments, which
are first trimmed4. After cleaning, the reads are assembled into longer, contigu-
ous sequences (“contigs”)5. Contigs provide a clearer picture of which genes are
being expressed and can then be used to explore how microbial activity in the
rumen contributes to methane production, offering insights that could inform
predictive models or strategies to reduce methane emissions in livestock. As Fig-
ure 1 (left) highlights, some contigs are found in the samples with high frequency,
while others are rarely found. Overall, there are differences in the abundance of
specific contigs for sheep with different methane output levels.

To assign equal weight to all samples in subsequent tasks, we normalize the
raw contig counts per sample and express them as “counts per million”. Contigs
with counts per million less than one for all samples were subsequently removed,
leaving 686, 456 contigs.

The contigs could further be annotated with corresponding genes, biological
roles and functions, or (groups of) organisms from which the contig originated by

4 Reads are trimmed with Trimmomatic version 0.39
5 Trimmed reads are assembled into contigs using MEGAHIT version 1.2.9 with de-

fault parameters. The alignment of trimmed reads from each metatranscriptome
sample to the MEGAHIT assembly was performed using the bwa aligner version
0.7.17-r1188. Aligned reads with a mapping quality of 30, indicating a 1 in 1000
chance of misalignment, were extracted using Samtools version 1.17.
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Table 1: Overview of datasets used in this project after preprocessing
Table “Methane Output” Columns (20× 5-dimensional)
SampleID Unique identifier per sample that matches the SampleID

in other tables
Sheep# Unique identifier per sheep used for training/test splits
CH4 Average daily methane emission (in g)
CH4 / DMI Average daily methane emission (in g) per Dry Matter

Intake (in kg)
(feed consumed per day on a moisture-free basis; in kg)

Methane Class Categorization based on methane output (low/interme-
diate/high)

Table “Contigs” Columns (686, 456× 21-dimensional)
ContigID Unique identifier per contig
Counts SampleID1 Contig counts for sample with ID1

Counts . . . . . .
Counts SampleID20 Contig counts for sample with ID20

comparing the sequences to known databases. However, due to IP restrictions, we
cannot disclose the annotated contigs but use unique identifiers instead. Using
these ContigIDs, we are able to make this dataset, as well as the code for our
analysis, publicly available alongside the paper in our repository6.

In addition to the RNA samples, we measure the sheep’s methane output,
CH4, by placing them in separate sealed chambers (respiration chambers) where
their breath is monitored over a day. Multiple measurements (two to three days)
per sheep were taken to mitigate measurement errors, and we averaged these
results. Standard deviations were found to be very low, justifying the choice of
averaging. Since the methane output is highly correlated with the sheep’s food
intake, we also monitor the Dry Matter Intake (DMI) of the sheep during their
stay in the respiration chambers. Subsequently, we use the raw methane output
in grams per kilogram DMI for our analysis, i.e., CH4 g / kg DMI, and refer to
it as methane output. This entire sampling procedure was repeated for the same
sheep two weeks later to rule out anomalies, leading to a total of 20 samples (10
sheep × 2 measurement rounds). Figure 1 (right) illustrates the distribution of
methane output per sample.

The two measurement rounds per sheep are generally considered separate
training instances in this analysis due to the small dataset size. When splitting
the data into training and test sets for evaluation, however, we make sure to
randomly select sheep, not the individual measurements. After filtering the rel-
evant columns, we obtain the datasets described in Table 1 that can be joined
on a shared ID.

The number of contigs counted per sample varies, reflecting differences in the
sizes of the rumen samples. This variation may introduce bias when analyzing the

6 Our repository: https://github.com/KatDost/Sheep_Methane_Paper

https://github.com/KatDost/Sheep_Methane_Paper
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data. To address this issue, we employ counts per million (CPM) normalization,
which normalizes the counts per sample, mitigating the imbalance between sam-
ples. Furthermore, as is common in the field, the counts are then rounded to the
nearest integer, suppressing measurement noise. This normalization technique
ensures that each sample’s contribution to the overall analysis is proportional to
the contigs’ share, not their absolute count, facilitating fair comparisons across
samples.

4 Methods and Results

After preprocessing our dataset, we address the questions listed in the introduc-
tion, drawing inspiration and incorporating approaches from the related research
projects discussed above.

4.1 Hypothesis and Data Validation

As a first step, we validate the existence of a connection between contig counts
and methane output and the presence of meaningful signals within our dataset.
We use various regression models to predict the methane output from the contig
counts and evaluate their performance.

To identify suitable hyperparameters for each model while guarding against
overfitting, we employ a rough hyperparameter grid search methodology using
HalvingGridSearchCV [14,19]. Based on the grid search results, we decided to
include the following regressors in the test: Linear Regression, Lasso Regression
with α = 9339.46, Support Vector Regression (SVR) with the nonlinear RBF
kernel, γ = 0.01 and C = 1000, Decision Tree (DT) with different maximum
depths (3 and 4), Random Forest (RF) with varying maximum depths (3 and 4)
and 20 trees, and XGBoost [4] with 20 trees and learning rate = 0.1.

Employing 5-fold cross-validation, we assess the predictive capability of these
models on our dataset based on Mean Absolute Error (MAE) for the sake of
its interpretability. Mean Absolute Percentage Error (MAPE) showed similar
patterns and is hence excluded. These metrics were computed for both training
and test sets to gauge model performance and are presented in Figure 2 (left).

We observe that despite our efforts in hyperparameter tuning, all models
overfit the training data. This overfitting can be attributed to the stark disparity
between the small sample size and the vast number of features. The limited
number of samples relative to the high dimensionality of the feature space poses
a significant challenge for the models to generalize effectively.

The machine learning models generally demonstrate MAE values below the
baseline model, always predicting the average methane output, with the excep-
tion of SVR. However, it is worth noting that there is a significant standard
deviation among folds, indicating variability in model performance that can be
traced back to the small test set sizes in each fold. Linear regression performs
better than the tree-based methods, leading us to suspect an adverse effect due
to many highly correlated features (see our repository for Pearson correlations).
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Fig. 2: MAE for multiple regressors predicting methane output trained on all
features/contigs (left) and a selection of the 20 most important features based
on a pre-trained RF (right) for training and test set individually. The dashed
black line serves as a baseline (always predict the average methane output).

To disentangle the high correlation among contigs, we train a RF on each
fold’s training set and use its feature importance to select the most important
features. This approach chooses a set of features (in our case, contigs) that is
highly informative for the model, which mitigates high correlations by design as
they would carry duplicate information. We observe a natural drop in feature
importance after the 20 most important features for each fold and drop the
rest before repeating the above experiment. Figure 2 (right) shows the results.
While the feature selection harms the regression methods, the tree-based ones
benefit largely, which may be attributed to the tree-based feature importance. We
further observe that the feature selection decreases the test error substantially
more than the training error, which confirms that the size of the input space is
significantly contributing to the overfitting, in addition to the small dataset size.
Although the models still overfit, they demonstrate a performance well below
baseline, indicating that there is indeed a relationship between contig counts and
methane output, validating our hypothesis.

In conclusion, while our analysis suggests the presence of a signal in the
data, the small sample size, in contrast to the large number of contigs, imposes
limitations on our machine learning approach to analyzing the dataset.

4.2 Identifying Essential Contigs

We can expect our dataset to contain a large number of contigs with auxiliary
functions that do not play a role in methane production and are, therefore,
irrelevant to this study. However, there may be non-methanogen contigs that do
contribute to methane production by interacting with the methanogens in the
rumen. These are the contigs we aim to identify as they provide new insights.

As evident from the previous section, predicting the raw methane output as
a regression task is challenging. This can be attributed to the small sample size:
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Fig. 3: Hierarchical clustering (Ward linkage) of samples based on their methane
output

Variations in methane output can either be due to (i) measurement noise (sheep
are not particularly compliant with our scientific endeavors) and the sample size
is insufficient to obtain a fair estimate of the underlying distribution, or (ii) the
variations are true signals, and the sample size is too small to capture these
signals accurately. We choose to simplify the prediction task by converting it to
a binary problem to alleviate the impact of the above issues.

To obtain binary labels, we cluster the samples hierarchically based on their
methane output and observe two clearly defined groups as illustrated in Figure
3: high and low methane output samples. Note that these groups do not match
the “Methane Class” categorization the dataset was originally annotated with
(see Table 1 – “Methane Output”). Our hierarchical clustering reveals that there
is no natural third group with “medium” methane output.

Upon training an initial decision tree classifier, we uncover decision stumps
that can perfectly distinguish between low and high methane output. One exam-
ple is shown in Figure 4 (left), where a single contig suffices to discern between
the two output categories, a surprising discovery. We adopt an iterative approach
to tally the number of contigs with this distinguishing property, sequentially re-
moving the contig used for the stump and retraining a new stump. This method
identifies 348 contigs capable of perfectly differentiating between low and high
methane output.

Motivated by these findings, we scrutinize whether these contigs represent
statistically significant discoveries or mere chance occurrences. To this end, we
conduct pairwise t-tests for each contig, comparing the corresponding contig
counts between samples with high and low methane output. Figure 4 (right)
showcases the number of contigs exhibiting significantly different values for low
and high methane output samples under specified p-values. We denote these
contigs as “supercontigs” for brevity. Subsequently, we typically limit our analysis
to supercontigs.

In conclusion, we have identified a set of contigs that play a substantial role
in the sheeps’ methane production. These findings are statistically significant
under specified significance levels. Interestingly, our set of supercontigs contains
methanogens as well as non-methanogens.
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Fig. 4: Left: Decision Tree to predict high (10) and low (10) methane output
using all contigs. There are 348 contigs, such as k141_2968003, that can distin-
guish perfectly between both classes. Right: Zoom-in on p-values for pairwise
t-tests on contig counts for the cohorts high/low methane output: Displayed is
the number of contigs for which the p-value lies below a specific threshold.

4.3 Understanding Patterns

In the previous sections, we narrowed down the set of contigs that are involved
in the methanogen cycle in sheep, but we have also observed high correlations
among contigs. Naturally, we seek to investigate which of the relevant contigs act
together, and which ones drive different mechanisms. We explore three different
approaches to find groups of contig interactions, i.e., community search in a
correlation network, non-negative matrix factorization, and neural networks with
Shapley Taylor interaction index [6,9] values. These approaches are not to be
seen as competing but as different perspectives on the same question. The groups
identified by different approaches will likely be different but can all be of interest
to a domain expert and collectively help the understanding of rumen methanogen
mechanisms.

Community Search in a Contig Network We construct a contig-contig in-
teraction network as follows: Each contig is a node. Each pair of contigs is con-
nected by an edge indicating the p-value of a pairwise t-test between the counts
of the contigs represented by the adjacent nodes. Using the Louvain method [2],
we detect communities of highly interacting contigs within the network. Figure
5 shows an example. Although the displayed interactions are statistically signif-
icant, we observe an unwelcome chain effect: If C1 ↔ C2 and C2 ↔ C3 are sig-
nificant interactions, we frequently observe a community containing C1, C2, C3,
although C1 ̸↔ C3 is not necessarily a significant interaction.

Matrix Factorization We employ non-negative matrix factorization (NMF)
[17] to uncover latent structures and patterns within high-dimensional data,
facilitating the identification of groups of similarly acting contigs and aiding in
the interpretation of complex relationships between contig counts and methane
output levels.



10 K. Dost et al.

p-Value-Based Interaction Communities (p-value > 0.9)

Fig. 5: Louvain-communities (colors) in a pairwise t-test-based contig interaction
network. Edges with p-values < 0.9 as well as isolated nodes have been removed.
Annotations are omitted to enhance readability.

Group 0 – high Group 1 – high Group 2 – high Group 3 – high Group 4 – high Group 5 – high Group 6 – high

Group 0 – low Group 1 – low Group 2 – low Group 3 – low Group 4 – low Group 5 – low Group 6 – low

Fig. 6: NMF has been applied separately for samples with high and low methane
output. Each point corresponds to a contig in MDS space. We included only su-
percontigs with p < 10−4. Group members are colored; darker colors correspond
to stronger group membership.

Given a matrix X, matrix factorization aims to find two matrices of lower
dimensionality whose product approximates X as closely as possible. We use
NMF to find mechanisms of contig behavior, i.e., groups of contigs that operate
together and exhibit similar patterns by factorizing the Sample x Contig Count
matrix into A (of dimension #samples×l) and B (of dimension l× #contigs).
The number of groups, l, is often referred to as the latent dimension and is a
parameter that needs to be tuned.

Since both factors typically have a smaller dimension, the input matrix usu-
ally cannot be reconstructed perfectly, and the factors necessarily have to focus
on the most important information and neglect minor variations, suppressing
noise. Following the definition of matrix multiplication, the factors group rows
with similar patterns since they trigger the same columns in the corresponding
factor and vice versa. These groups can overlap (which distinguishes matrix fac-
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Fig. 7: Neural Network using contig groups. Left: Training and validation loss
show poor learning performance – the results of this neural network cannot
be trusted! Right: Nodes are groups of contigs. Edges indicate interactions be-
tween connected groups. Edge thickness displays the strength of the interaction.

torization from standard clustering and our network community search). NMF
offers nonnegative numbers expressing the strength of group memberships.

We restrict our analysis to contigs that exhibit significant differences for
high and low methane outputs at a significance level of 1e-05, acknowledging the
adjustability of this parameter for future experiments. Each sample is rescaled
independently such that its L2 norm equals one. This normalization step is
crucial to ensure each sample is considered equally.

Next, we tune the latent dimension l by maximizing the cophenetic corre-
lation coefficient – a measure of how faithfully a dendrogram preserves pair-
wise distances in the original data—and select l = 7. We construct separate
sample×contig count matrices for high and low-methane-outputting sheep and
perform matrix factorization on both.

To visually represent the identified contig groups, we train a 2-dimensional
embedding space using multi-dimensional scaling (MDS) [8,3]. An embedding
space is a low-dimensional representation of high-dimensional data that preserves
its inherent structure and relationships. We use MDS to position the contigs in
a plot using their pairwise correlation as a similarity measure (1− |correlation|
as a distance). That means close contigs are highly correlated (positively or
negatively), whereas distant contigs have a low correlation.

The identified contig groups are illustrated in Figure 6, where distinct inter-
actions are observed for low and high methane-outputting sheep. We can observe
changes in group memberships in high and low methane producing sheep and
that these identified groups often stretch beyond clusters of highly correlated
contigs, which has the potential to reveal interesting insights. Domain experts
investigated annotated versions of these plots (that we have to omit due to IP
restrictions) and confirmed this.
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Neural Networks with Shapley Taylor Interaction Index To find differ-
ent contig groups and uncover interactions between these groups, we adapt the
methodology proposed by Cui et al. [6]. The authors proposed a framework for
detecting genetic interactions by considering all single nucleotide polymorphisms
(SNPs) within selected genes and their complex relationships. They developed a
deep learning architecture that captures these interactions using Shapley scores
between hidden nodes representing genes. Their approach successfully identified
significant interactions in real-world datasets and hence offers a promising av-
enue for us. However, since the authors use an existing mapping from SNPs to
genes, the approach cannot directly be transferred to this study.

Instead, we allow the model to learn the contig grouping instead of initializing
it with prior knowledge, as we lack predefined mappings. Our model architecture
consists of a sparse layer, a linear layer with softplus activation, and a linear out-
put layer. The sparse layer creates a bottleneck to group contigs, akin to mapping
single nucleotide polymorphisms (SNPs) to genes in the original framework.

We present the training and validation loss per epoch in Figure 7 (left).
We observe that the network does not train properly, as can be seen from the
validation loss. We attribute this to the small sample size but include the results
regardless since the approach is promising and can be reused in larger datasets.

We emphasize that results derived from this trained model cannot be consid-
ered reliable! However, for the sake of demonstration, we search for interactions
between contig groups post-training using the Shapley Taylor Interaction Index
[9]. Attribution or feature importance for neural networks generally measures the
contribution of individual features to a prediction. The Shapley value measures
the change in model prediction when a specific feature is included or omitted.
The Shapley Taylor index identifies to what extent a set of features exert in-
fluence in conjunction as opposed to independently. Thereby, we obtain strong
interactions between pairs (or higher-order groups) of features. Figure 7 (right)
shows the identified interactions between groups. We have to omit the annotated
version of the plot due to IP limitations.

We conclude that this network is too complex given our small sample size, and
decide to drop the sparse layer. This way, we will find contig-contig interactions
instead of group interactions. Although not a grouping per se, these interactions
also provide us with information on contigs acting together. This network is
training well – Training and validation loss are converging conjointly on all leave-
one-sheep-out runs (see our repository for details). We can, therefore, expect
more reliable results than previously.

As before, we carry out a post-training interaction search using the Shap-
ley Taylor interaction index. The identified interaction network is presented in
Figure 8. We suggest filtering interactions involving specific contigs of interest
when analyzing this result. We observe a densely interacting group of contigs.
The surrounding ones, however, interact with only a few contigs.
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Shapley Taylor Interactions Zoom-In

Fig. 8: Interactions between contigs identified using the Shapley Taylor interac-
tion index with interaction strength > 0.5. The right image shows a zoom-in on
a part of the left figure to reveal more detailed interactions. We included only
supercontigs with p < 10−4.

4.4 Identifying Causal Relationships in the Rumen

Lastly, we seek to find stronger relationships than interactions – we are search-
ing for causal relationships between contigs as well as between contigs and the
methane output. Contigs causing an increase or decrease in methane produc-
tion can be the key to designing injections that mitigate methane production in
ruminants.

Initially, we normalize the data such that each sample’s contig counts add up
to 1. We then establish a graph skeleton using the Graphical LASSO (GLASSO)
[10] technique. This skeleton serves as a scaffold for subsequent causal inference
and reduces the computational burden.

To find causal relationships within the constructed skeleton, we employ a
number of algorithms from the Causal Discovery Toolbox [15] (see the pack-
age documentation for details on the methods and the original references):
Greedy Equivalence Search, Peter-Clark (PC) Algorithm [5], Greedy Interven-
tional Equivalence Search, Linear Non-Gaussian Acyclic model, and Structural
Agnostic Model. None of these methods identified any causal relationships within
our dataset, except for the PC algorithm. PC is a score-based approach for causal
discovery based on conditional tests on variables and sets of variables that is
quite popular [11] and allows us to set the significance level α for the individual
conditional independence tests and make up for the small sample size.

As depicted in Figure 9, PC identified a number of causal relationships be-
tween contigs (left), but also between contigs and the methane output (right),
revealing potential drivers of methane production in the rumen microbiome.
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Fig. 9: Causal relationships between contigs (left) as well as between contigs and
the methane output (right) using the Peter-Clark Algorithm. We included only
supercontigs with p < 10−4.

4.5 Validation

Our project is of exploratory nature, aiming to provide new insights to domain
experts. Many of our results are backed up by what is already common knowledge
in the fields. In addition, we revealed a number of previously unknown mecha-
nisms that will be subject to further experimental and theoretical investigation
by domain experts on the path to developing new chemical inhibitors.

5 Conclusion

As a proof-of-concept on the way to developing new chemical inhibitors for live-
stock to reduce their methane emissions, in this project, we aimed to explore and
understand the genetic basis of the complex interplay between rumen microbes
and methane production in livestock using machine learning.

Our findings are based on a small rumen metatranscriptome dataset gath-
ered in-house from 10 sheep on two sampling days by domain experts, yielding 20
samples. Although small, the sample size is sufficient to indicate whether there is
a signal in the data or not. We approached this project with a number of differ-
ent statistical and machine learning techniques, identifying potential molecular
drivers of methane production, with several contigs emerging as strong candi-
dates for further investigation. Our domain experts confirmed that our results
are reasonable and reveal new and interesting mechanisms.

Looking ahead, to augment our understanding of rumen microbial interac-
tions and methane production, a larger-scale subsequent experiment could ben-
efit from additional samples (particularly from a larger number of individual
animals, but also from other ruminant species such as cattle and deer). Increas-
ing the dataset size will enhance the reliability of machine learning models and
support the training process, making it possible to train more complex models
than were used in this study.
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Integrating metadata on the contigs, such as their molecular structure or
existing relationships, could help define a graph and open the field for graph
neural networks, even on relatively small datasets.

In conclusion, this project is a step towards utilizing machine learning ap-
proaches to understand the complex interactions affecting methane production
in ruminant livestock.
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