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Abstract. Alternative polyadenylation (APA) is a critical process that
enables genes to generate mRNA transcripts with different 3′ untrans-
lated regions. Notably, during a transcription event, only one polyadeny-
lation (poly(A)) site is used. Thus, estimating the relative usage of al-
ternative poly(A) sites within a gene, known as the poly(A) site quan-
tification problem, is crucial for unraveling the regulatory mechanisms
of APA. However, existing approaches either frame the problem as a
non-quantitative binary classification task or ignore the RNA structural
information. To address these limitations, we propose a novel Hierarchi-
cal Attentive Graph Neural Network model for alternative poly(A) site
quantification prediction, namely HAGAPS. To the best of our knowl-
edge, we are the first to leverage Graph Neural Networks and RNA sec-
ondary structures to quantitatively predict the usage of multiple alterna-
tive poly(A) sites. In particular, our model employs a poly(A) site-level
message passing network, incorporating RNA secondary structure infor-
mation. In addition, to account for the competing interactions among
poly(A) sites, HAGAPS integrates a gene-level message passing network
combined with a nucleotide attention mechanism. Our experimental eval-
uation on publicly available datasets demonstrates that the proposed
HAGAPS model significantly outperforms several state-of-the-art meth-
ods. Finally, for reproduction purposes, we make the implementation
of HAGAPS publicly available at https://github.com/egiovanoudi/
HAGAPS.

Keywords: Hierarchical graph neural networks · Attention mechanism
· Polyadenylation site quantification · Alternative polyadenylation · RNA
secondary structure.

1 Introduction

The central dogma of molecular biology describes the fundamental flow of genetic
information in an eukaryotic gene through transcription, post-transcriptional
modification, and translation processes [9]. In particular, genetic information is
first transcribed into pre-mRNA, which undergoes post-transcriptional modifi-
cations to become mature mRNA, and is then translated into the corresponding

https://github.com/egiovanoudi/HAGAPS
https://github.com/egiovanoudi/HAGAPS
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Fig. 1: Example of a RNA secondary structure.

protein. One critical post-transcriptional process is polyadenylation, responsible
for creating the mature 3′ ends of nearly all eukaryotic mRNAs by adding a
polyadenylation (poly(A)) tail at the 3′ end of the premRNA [34]. It is a two-
step reaction that involves an endonucleolytic cleavage near the 3′ end of the pre-
mRNA and synthesis of the poly(A) tail at the cleavage site, commonly referred
to as the poly(A) site. Importantly, studies have shown that polyadenylation in-
fluences multiple aspects of mRNA metabolism, including stability, translation
efficiency, transcription termination, and localization [2,8,20,30,35].

A key regulatory feature of polyadenylation is the presence of multiple poly(A)
sites within a gene. Alternative poly(A) sites generate different mRNA tran-
scripts with distinct 3′ untranslated regions (3′ UTRs), a process known as al-
ternative polyadenylation (APA) [32]. APA is controlled by interactions between
cis-regulatory elements located in the vicinity of poly(A) sites and the associated
trans factors [13]. Among these cis-elements, the most well-known is the hexamer
AAUAAA and its variants. In mammalian genes, APA is highly prevalent, with
more than half of human genes undergoing this process, playing a crucial role
in modulating gene regulation dynamics [12,31]. Furthermore, various human
diseases, including cancer, alpha-thalassemia, and IPEX syndrome, have been
linked to dysregulation of APA [10]. Hence, comprehensive understanding of
poly(A) sites and the regulatory mechanisms governing APA are essential for
unraveling its role in normal physiology and disease pathology.

Research has indicated that RNA secondary structures near poly(A) sites also
impact APA by determining the accessibility of cis-elements to the polyadenyla-
tion machinery [1,7]. The primary structure of RNA refers to its linear sequence
of nucleotides, connected by phosphodiester bonds along the RNA backbone. The
secondary structure arises when complementary bases within the RNA strand
form hydrogen bonds, creating structural motifs such as hairpins, bulges, stems,
and internal loops. Base-pairing hydrogen bonds occur between A-U and C-G
pairs, as well as less stable G-U pairs [16]. An example of a RNA structure
illustrating these two types of bonds is shown in Fig. 1. Meanwhile, Graph Neu-
ral Networks (GNNs) have been developed to analyze graph-structured data
by leveraging the relationships and topological information among nodes. In
RNA secondary structure analysis, GNN-based methods have been employed to
address various biological problems, including mRNA subcellular localization,
RNA-protein binding, and gene silencing [22,25,26,39]. However, these studies
are not incorporated into APA analysis.
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There has been a long-standing interest in identifying poly(A) sites within ge-
nomic sequences. Various models have been developed to distinguish sequences
that contain a poly(A) site from those that do not, defining the poly(A) site
recognition problem [5,18,19,27,37]. Beyond recognition, a key aspect of APA is
that during each transcription event, only a single poly(A) site within the gene
is utilized. Consequently, the selection of alternative poly(A) sites within a gene
is intrinsically competitive, where usage of one poly(A) site over another is often
attributed to its relative strength. This challenging task of estimating the rela-
tive usage of alternative poly(A) sites within the same gene is referred to as the
poly(A) site quantification problem [21]. Several computational approaches have
emerged to address this problem using RNA-seq data [6,14,15,36,40]. Significant
progress has also been made in inferring the relative strength of poly(A) sites
based on genomic sequences. Early methods focus on predicting the stronger
poly(A) site from a pair, framing the poly(A) site quantification problem as a
binary classification problem [1,21]. However, this approach has notable limita-
tions, as it fails to account for the competition between multiple poly(A) sites
within a gene and does not provide quantitative predictions of usage. Subse-
quently, regression-based methods were developed to address the challenge of
multiple competing poly(A) sites [23,24]. Despite their advantages, these meth-
ods do not take advantage of the RNA secondary structure information.

In summary, the current challenges in poly(A) site quantification prediction
from genomic sequences are i) the lack of consideration for the competition
among multiple poly(A) sites within a gene, and ii) the omission of the RNA
secondary structure information. To address the shortcomings of existing ap-
proaches, we propose the HAGAPS model, making the following contributions:

– We present a novel architecture of Hierarchical GNNs to improve alternative
poly(A) site quantification prediction. In particular, we introduce a hierar-
chical design of custom Message Passing Networks (MPNs), that is the Site
and the Gene MPN, to predict the usage of all poly(A) sites within a gene,
regardless of the number of competing sites.

– We design the Site MPN, leveraging the RNA secondary structure informa-
tion. In doing so, the proposed model learns a more representative depic-
tion of the poly(A) sites, capturing both sequential and structural patterns,
thereby enabling communication between nucleotides within a site.

– We facilitate communication between poly(A) sites within a gene through
the Gene MPN in combination with a nucleotide attention mechanism. This
approach ensures that the model accounts for the competing interactions
among alternative poly(A) sites.

The rest of the paper is organized as follows, in Section 2 we provide an
overview of related work, and Section 3 details the architecture of the proposed
HAGAPS model. In Section 4, we present the experimental evaluation of our
model against baseline methods, and Section 5 concludes our work.
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2 Related Work

Initially, computational methods were proposed to address the poly(A) site
recognition problem based on genomic sequences. For instance, Kalkatawi et
al. [19] present an artificial neural network and a random forest model that
leverage human genomic sequence properties. These properties include thermo-
dynamic, physico-chemical, and statistical features. Magana-Mora et al. [27] in-
troduce a new set of hand-crafted features combined with a recognition model.
Their approach employs multiple classifiers in a tree-like decision structure, op-
timized using genetic algorithms. Xia et al. [37] design a a deep learning model
based on Convolutional Neural Networks (CNNs) with group normalization.
Additionally, they employ transfer learning to adapt the model for a different
species. Kalkatawi et al. [18] propose a CNN-based method for recognizing vari-
ous genomic signals and regions, including poly(A) signals and translation initi-
ation sites. The model relies on genomic neighborhoods and spatial correlations.
However, these methods cannot predict the relative strength of poly(A) sites.

The first study to tackle the poly(A) site quantification problem based on
genomic sequences was conducted by Leung et al. [21]. Their approach employs
a CNN-based model to predict the stronger poly(A) site from a given pair of
competing sites. Arefeen et al. [1] also cast poly(A) site quantification as a pair-
wise comparison task, incorporating RNA secondary structure features in the
DeepPASTA model. Nevertheless, both methods define quantification as a binary
classification problem, failing to provide quantitative usage predictions. Restrict-
ing competition to only two poly(A) sites is a significant limitation, as studies
indicate that a substantial proportion of mammalian genes have more than two
alternative poly(A) sites [11,38]. Moreover, DeepPASTA does not utilize GNNs,
and its one-hot encoding representation of secondary structures loses valuable
structural information [25]. Subsequently, Li et al. [23] formulate poly(A) site
quantification as a regression task, considering all competing sites within a gene.
Their approach employs CNNs, followed by a Bidirectional Long Short Term
Memory (BiLSTM) network to capture interactions between competing poly(A)
sites. In addition, Linder et al. [24] present a sequence-based residual neural
network with dilated convolutions. Nontheless, these models do not take into
account any RNA secondary structure information.

GNN-based models incorporating RNA secondary structures have been pro-
posed to address various biological problems. For example, Li et al. [22] integrate
RNA sequences and secondary structures to predict mRNA subcellular localiza-
tion. Four parallel feature extractors are constructed using Multi-Layer Per-
ceptrons (MLPs), multi-head attention mechanisms, and GNNs. Yan et al. [39]
design a GNN-based approach that learns the RNA sequence and secondary
structure information using a recurrent GNN and a BiLSTM for RNA-protein
binding prediction. Long et al. [26] present a GNN framework for siRNA efficacy
prediction. A variety of siRNA and mRNA features are extracted, including se-
quence encodings and base-pairing probabilities. However, since these methods
are not designed for APA analysis, they do not consider the relationships among
alternative poly(A) sites.
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Fig. 2: Overview of the proposed HAGAPS model.

3 The Proposed HAGAPS Model

The HAGAPS model is designed to predict the usage values of the different
poly(A) sites within a gene. The input is a graph Gk = (Vk, Ek) for each poly(A)
site k ∈ [1,K], where the node set Vk is derived from the encoded RNA se-
quence and the edge set Ek is determined by the RNA secondary structure.
Notably, genes do not have a uniform number of poly(A) sites, that is K is not
a constant. To accommodate this variability, HAGAPS is designed to handle
inputs of different sizes, ensuring flexibility across genes. As illustrated in Fig. 2,
the model adopts a two-level hierarchical encoding structure, poly(A) site-level
and gene-level encoding, leveraging hierarchical GNNs with two custom MPNs.
Specifically, the poly(A) site level consists of the Site MPN and the gene level
consists of the Gene MPN and a nucleotide attention mechanism. Firstly, each
Gk is processed by the Site MPN, which encodes information at the poly(A)
site level, that is each site is independently encoded based on its sequence and
structure. Nodes are updated via message passing with their neighborhoods, de-
fined from both sequential and structural relationships. This process results in
the node embedding Hk

r ∈ Rl×h, where l is the length of the RNA sequence
and h is the hidden embedding size. To capture interactions between alternative
poly(A) sites within the same gene, the model then performs gene-level encoding.
More specifically, the Gene MPN first updates eack poly(A) site’s embedding Hk

r

based on messages from its neighborhood, that is the rest K − 1 poly(A) sites,
producing Hk

g ∈ Rl×h. Then, the nucleotide attention integrates both Hk
r and

Hk
g to enhance poly(A) site representation. These interactions ensure that the

prediction for each poly(A) site is influenced by the entire gene context, yielding
the embedding Hk

a. Finally, Hk
a is passed through an output layer to generate

the predicted usage value Ûk ∈ [0, 1]. During the training process, HAGAPS
minimizes the error between predicted and true usage values using the LMAE

and LMSE losses, while also optimizing poly(A) site ranking via the LRANK

loss.
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3.1 Sequence & Structure Representation

Each poly(A) site k is represented as a graph Gk = (Vk, Ek), where Vk is the set of
node features derived from the RNA sequence and Ek is the set of weighted edges
determined by the RNA secondary structure. Given an initial RNA sequence
S = {si|i = 1, 2, . . . , l}, we encode S using a mapping function:

m(si) =


1, if si = A
2, if si = T or U
3, if si = C
4, if si = G

. (1)

Thus, we obtain the node set V = {vi|i = 1, 2, . . . , l}, where vi = m(si).
The structure of a poly(A) site is defined by two types of bonds between nu-

cleotides: i) phosphodiester bonds between consecutive nucleotides and ii) hydro-
gen bonds between complementary bases. The edge set regarding phosphodiester
bonds is defined as:

Ecov = {(i, i+ 1, wcov(i, i+ 1))|0 ≤ i ≤ l − 1}, (2)

where wcov(i, i+1) is the edge weight, set to a constant value of 1, as these bonds
always do exist. To obtain hydrogen bonds, we use the RNAplfold package [3],
which, given an RNA sequence, outputs probable RNA secondary structures
based on thermodynamic principles. Rather than relying solely on the minimum
free energy structure, we retain an ensemble of probable structures to capture
the inherent uncertainty and dynamics of RNA folding. The probability of a
given structure X for sequence S is defined as:

p(X|S) = 1

Z
e−βE(X,S), (3)

where Z is a partition function and E(X,S) represents the free energy of S under
X [28,39]. Considering all possible secondary structures in a thermodynamic
equilibrium, the base-pairing probability for nucleotides i and j is then computed
as:

p([i, j]|S) =
∑

[i,j]∈X

p(X|S). (4)

Based on these probabilities, we define the edge set for hydrogen bonds as:

Ebase = {(i, j, wbase(i, j))|p([i, j]|S) > 0}, (5)

where wbase(i, j) = p([i, j]|S) is the edge weight, reflecting the likelihood of base
pairing. Finally, the overall weighted edge set is the union of the phosphodiester
and hydrogen bond edge sets:

E = Ecov ∪ Ebase, (6)

ensuring a comprehensive structural representation of the poly(A) site.
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3.2 Site MPN

Firstly, each poly(A) site is encoded independently to ensure that the model
learns a representation based on its sequence and structure. The encoding pro-
cess begins by passing Vk through an embedding layer that maps each distinct
nucleotide to a dense vector representation in a h-dimensional space, resulting
in G′k = (V ′k, Ek). Next, G′k is passed to a custom MPN, namely the Site MPN,
as shown in Fig. 2, consisting of a GNN and a CNN. This way, we obtain the
node embedding Hk

r ∈ Rl×h from MPNr for the kth poly(A) site:

Hk
r = MPNr(G′k) = CNN(GNN(G′k)). (7)

This approach allows the model to effectively integrate both structural and se-
quential information. Our GNN employs auto-regressive moving average graph
convolutional (ARMAConv) layers [4], as follows:

Hk =
1

C

C∑
c=1

Hk(T )
c (8)

with H
k(T )
c being recursively defined by:

Hk(t+1)
c = σ(D− 1

2AD− 1
2Hk(t)

c W1 +Hk(0)W2), 1 ≤ t ≤ T, 1 ≤ c ≤ C. (9)

Here, A ∈ Rl×l is the weighted adjacency matrix, D is the degree matrix,
W1,W2 ∈ Rh×h are trainable parameters, T is the number of ARMAConv
layers, C is the number of parallel stacks of layers, and σ(·) is the non-linear ac-
tivation function ReLU. Then, the node embedding Hk ∈ Rl×h is further refined
by the CNN, which is a two-layer convolutional network with batch normaliza-
tion, max-pooling, and the non-linear activation function LeakyReLU:

Hk
r = CNN(Hk). (10)

This design allows MPNr to effectively capture both local and long-range de-
pendencies in the RNA sequence. Regarding local interactions, each nucleotide
embedding is updated using hydrogen and phosphodiester bond information us-
ing Eq. (8) and (9). As for long-range dependencies, messages from more distant
nucleotides along the RNA backbone are aggregated via Eq. (10).

3.3 Gene MPN & Nucleotide Attention

The gene-level network facilitates communication between each poly(A) site k
and its neighborhood within the gene, that is the rest of the poly(A) sites of
the gene. This interaction ensures that the predicted usage value of a given
poly(A) site is influenced by the alternative sites, effectively capturing poly(A)
site competition within the gene. To achieve this, we construct the neighborhood
of poly(A) site k as:

Nk =

K∑
d=1
d̸=k

Hd
r . (11)
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This formulation allows the model to handle the variable number of poly(A)
sites across genes. Then, we feed the poly(A) site-level representation Hk

r , along
with its neighborhood Nk, into the Gene MPN (Fig. 2):

Hk
g = MPNg(H

k
r ,N

k) = LSTM(Hk
r ,N

k), (12)

where MPNg is composed of a one-layer LSTM network with ReLU activation.
The output Hk

g ∈ Rl×h provides an updated representation of the poly(A) site,
determined by messages from the other sites in the gene. To further refine the
representation, we employ a nucleotide attention mechanism, as illustrated in
Fig. 2, with the following architecture:

ak = Hk⊤
r Hk

g (13a)

wk
i =

exp(aki )∑l
j=1 exp(akj )

(13b)

bk =

l∑
i=1

wk
i H

k
i,r (13c)

Hk
a = [Hk

g ;b
k]. (13d)

Thus, we obtain the attended context embedding Hk
a ∈ Rl×2h, which incorpo-

rates sequence-dependent interactions along the spatial axis of the RNA [33].
In summary, each poly(A) site k is initially influenced by the remaining K−1

competing sites using Eq. (12). Then, the attention mechanism utilizes both the
individual poly(A) site-level embedding and the gene-level updated embedding
to enhance the representation through Eq. (13a) - (13d).

Finally, Hk
a is passed to a BiLSTM layer with LeakyReLU to learn a more

global nucleotide embedding, and a two-layer Feed-Forward Network (FFN) with
LeakyReLU and Softmax respectively, to obtain the final predicted usage value
Ûk.

3.4 Model Optimization

The loss function of the model consists of three parts:

– LMAE is the Mean Absolute Error (MAE) loss between the predicted Û and
true U usage values:

LMAE =
1

K

K∑
k=1

|Ûk −Uk| (14)

– LMSE is the Mean Squared Error (MSE) loss between the predicted Û and
true U usage values:

LMSE =
1

K

K∑
k=1

(Ûk −Uk)2 (15)
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– LRANK penalizes deviations from the expected ranking of poly(A) sites
within a gene. It is computed as:

LRANK = 1− corr(r̂, r), (16)

where corr denotes the Spearman correlation coefficient, and r̂, r are the
predicted and true rankings, respectively. Both rankings are determined by
placing the poly(A) sites in descending order based on their predicted and
true usage values.

Thus, we formulate the joint loss function:

L = λLMAE + (1− λ)LMSE + γLRANK , (17)

where γ and λ are regularization parameters that control the influence of the
LRANK and LMAE , LMSE losses, respectively. More specifically, λ governs the
balance between LMAE and LMSE .

Optimization Our proposed HAGAPS model was developed in PyTorch. Since
HAGAPS is designed to process all alternative poly(A) sites within a gene si-
multaneously, we group poly(A) sites by their corresponding gene before passing
them to the model. This means that the batch size refers to the number of gene
groups rather than individual poly(A) sites. During training, in each epoch,
the model learns a low-dimensional representation of the initial poly(A) sites
via the joint loss function L of Eq. (17). By minimizing the LMAE and LMSE

losses of Eq. (14) and (15), HAGAPS outputs usage values that are closer to the
ground truths. Furthermore, optimizing the LRANK loss of Eq. (16) improves
the model’s ability to correctly capture the relative strength of poly(A) sites.
Optimization is achieved through backpropagation using the Adam optimizer.

4 Experiments

4.1 Datasets

For the model evaluation, we use two publicly available poly(A) site quantifi-
cation datasets1. The data were derived from the fibroblast cell lines of the
C57BL/6J (BL) and SPRET/EiJ (SP) mouse strains [23,38]. To build a poly(A)
site reference for the two strains, the total RNA was extracted from their fi-
broblasts, and then subjected to 3′ region extraction and deep sequencing [17].
Subsequently, 3′ mRNA sequencing was performed to quantify poly(A) site us-
age, with usage values computed based on sequencing read counts. The sequence
surrounding each cleavage site was extracted. While both datasets contain the
same poly(A) sites associated with the same genes, they differ in their sequences,
due to single nucleotide polymorphisms and indels, as well as in their poly(A)
site usage values.
1 Datasets

https://github.com/lzx325/DeeReCT-APA-repo/tree/master/APA_ML/Parental
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Fig. 3: Distribution of genes based on the number of alternative poly(A) sites K
in the BL and SP datasets.

In the preprocessing phase, following the evaluation protocol of [23], we ex-
cluded poly(A) sites with missing usage values, thus retaining 30, 940 poly(A)
sites belonging to 7, 884 genes for each dataset. As mentioned in Section 3, the
number of alternative poly(A) sites K varies across genes. Fig. 3 illustrates the
distribution of genes according to the number of associated poly(A) sites in the
two datasets. Next, we randomly split the genes into training, validation and
testing sets with a 6:2:2 ratio, yielding 4, 730 genes for training, 1, 577 for vali-
dation, and 1, 577 for testing. The dataset was split at the gene level rather than
at the poly(A) site level to ensure that all poly(A) sites within the same gene
remained in the same set, preserving their competing interactions. This split-
ting process was repeated five times for each dataset, and we report the average
experimental results with the standard deviation.

4.2 Evaluation Protocol

To evaluate the models’ ability to predict poly(A) site quantification, we report
the following evaluation metrics:

– Mean Absolute Error (MAE) between the predicted Û and ground truth U
usage values:

MAE =
1

F

F∑
f=1

|Ûf −Uf |, (18)

where F is the total number of poly(A) sites across all genes in the testing
set.

– Root Mean Squared Error (RMSE) between the predicted Û and ground
truth U usage values:

RMSE =

√√√√ 1

F

F∑
f=1

(Ûf −Uf )2. (19)
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– Highest Usage Prediction Accuracy (HUPA) evaluates the ability of predict-
ing the poly(A) site with the highest usage within a gene. It is defined as
the percentage of genes whose strongest poly(A) site is correctly predicted:

HUPA =
Mch

M
, (20)

where M is the total number of genes in the testing set, and Mch is the
number of genes with correctly identified highest-usage poly(A) sites [23].

In doing so, we assess the models on the direct regression task of poly(A) site
usage prediction (MAE and RMSE), as well as the important task of identifying
the strongest poly(A) site within a gene (HUPA).

4.3 Compared Methods

– Allocator2 consists of four parallel feature extractors, two for RNA se-
quences and two for RNA secondary structures. The model utilizes MLPs,
multi-head attention mechanisms and GNNs [22].

– RNASSR-Net3 utilizes a CNN to extract RNA sequence features and a
GCN to capture RNA secondary structure features. In addition, the spatial
importance learned by the CNN guides the GCN training process [25].

– RPI-Net4 learns the RNA sequence and secondary structure information
with a recurrent GNN and a BiLSTM. Moreover, a Set2Set model is em-
ployed to pool the node embeddings along the spatial axis of the RNA [39].

– APARENT25 employs a sequence-based residual neural network incorpo-
rating dilated convolutions [24].

– DeeReCT-APA6 utilizes a CNN-BiLSTM architecture. The CNN extracts
RNA sequence features and the BiLSTM models the competing interactions
between poly(A) sites [23].

– HAGAPS-Seq is a variant of the proposed model, omitting the GNN in
the Site MPN and the RNA secondary structure information.

– HAGAPS-Site is a variant of the proposed model, without the Gene MPN.
– HAGAPS is the proposed model.

The parameters of the examined models have been determined via cross-
validation and we report the best results in our experiments. For the proposed
method, the learning rate is set to 1e-3 with a batch size of 32 across both
datasets. The parameter analysis of HAGAPS is further investigated in Sec-
tion 4.5.
2 Allocator code
3 RNASSR-Net code
4 RPI-Net code
5 APARENT2 code
6 DeeReCT-APA code

https://github.com/ABILiLab/Allocator
https://github.com/ziniBRC/RNASSR-Net
https://github.com/HarveyYan/RNAonGraph
https://github.com/johli/aparent-resnet
https://github.com/lzx325/DeeReCT-APA-repo
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Table 1: Average MAE, RMSE, and HUPA of the proposed HAGAPS method,
when compared with its variants and the baselines on the BL and SP datasets.
Bold values indicate the best method.

Datasets Methods MAE RMSE HUPA

BL

Allocator 0.2387± 0.0021 0.3851± 0.0054 0.4159± 0.0105
RNASSR-Net 0.2350± 0.0032 0.3778± 0.0062 0.4814± 0.0077

RPI-Net 0.2118± 0.0044 0.3369± 0.0085 0.5978± 0.0144
APARENT2 0.2290± 0.0043 0.3231± 0.0105 0.4685± 0.0147

DeeReCT-APA 0.2081± 0.0272 0.2755± 0.0215 0.5646± 0.0590
HAGAPS-Seq 0.1824± 0.0035 0.2717± 0.0039 0.5910± 0.0070
HAGAPS-Site 0.1751± 0.0047 0.2648± 0.0025 0.6086± 0.0058

HAGAPS 0.1696± 0.0050 0.2599± 0.0043 0.6257± 0.0059

SP

Allocator 0.2456± 0.0193 0.3762± 0.0170 0.4183± 0.0295
RNASSR-Net 0.2328± 0.0021 0.3770± 0.0073 0.4888± 0.0200

RPI-Net 0.2157± 0.0023 0.3403± 0.0048 0.5698± 0.0232
APARENT2 0.2313± 0.0044 0.3325± 0.0104 0.4632± 0.0124

DeeReCT-APA 0.2133± 0.0267 0.2839± 0.0196 0.5362± 0.0674
HAGAPS-Seq 0.1811± 0.0052 0.2767± 0.0044 0.5990± 0.0086
HAGAPS-Site 0.1808± 0.0026 0.2740± 0.0043 0.5905± 0.0072

HAGAPS 0.1770± 0.0026 0.2688± 0.0036 0.6159± 0.0067

4.4 Performance Evaluation

In Table 1, we show the experimental results of the examined models on the
BL and SP datasets, in terms of average MAE, RMSE, and HUPA. The re-
sults indicate that the proposed HAGAPS model and its variants outperform
the baseline models across all metrics in both datasets. In particular, the GNN-
based models, that is Allocator, RNASSR-Net, and RPI-Net, overlook the rela-
tionships between competing poly(A) sites. Ignoring the co-existence of multiple
poly(A) sites within a gene, which determines how the total usage is distributed
among them, results in lower prediction accuracy. Meanwhile, DeeReCT-APA
and APARENT2 do not incorporate RNA secondary structure information, rely-
ing solely on RNA sequences. Therefore, these methods do not take advantage of
the poly(A) site structural data, lacking a more meaningful representation. Re-
garding the variants of the HAGAPS model, that is HAGAPS-Seq and HAGAPS-
Site, they outperform the other baselines, highlighting the valuable contributions
of the Gene and Site MPNs, respectively. Nevertheless, the HAGAPS-Seq vari-
ant underperforms compared to HAGAPS-Site and HAGAPS, emphasizing the
significance of RNA secondary structures and GNNs in the analysis of poly(A)
sites. Likewise, HAGAPS-Site performs worse than HAGAPS, underscoring the
importance of the custom attention-based modeling of poly(A) site interactions.
Overall, the proposed HAGAPS model consistently achieves the best perfor-
mance across all metrics on the two datasets. By leveraging hierarchical GNNs
through two levels of MPNs, poly(A) site and gene level, HAGAPS delivers the
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Fig. 4: Average MAE of HAGAPS on the BL and SP datasets when varying the
number of ARMAConv layers T and the hidden embedding size h.

Fig. 5: Average MAE of HAGAPS on the BL and SP datasets when varying the
regularization parameters λ and γ.

most accurate predictions for both poly(A) site usage, expressed by the lowest
MAE and RMSE, and the identification of the strongest poly(A) site in a gene,
corresponding to the highest HUPA values.

4.5 Parameter Tuning

The most important parameters in our model are i) the hidden embedding size
h, ii) the number of ARMAConv layers T in the Site MPN, iii) the regularization
parameter λ for the LMAE and LMSE losses, and iv) the regularization parame-
ter γ for the LRANK loss. For h = {32, 64, 128, 256} we vary T ∈ [1, 4] by a step
of 1. In Fig. 4, we demonstrate the impact of h and T , reporting the average MAE
on the BL and SP datasets. We observe that the best architecture is obtained
with h = 128 and T = 2 for both datasets. Notably, selecting significantly higher
or lower values for h and T leads to overfitting or underfitting, preventing the
model from effectively capturing poly(A) site representations. Fig. 5 illustrates
the effect of the regularization parameters λ and γ in Eq.(17), on the perfor-
mance of our model in terms of MAE across the two datasets. In particular, we
vary λ ∈ [0, 1] by a step of 0.1, where lower values emphasize the LMSE loss
and higher values prioritize the LMAE loss. Aiming for a balance between the
two loss functions, we fix λ to 0.3 for both datasets. Moreover, we vary γ in
{10−3, 10−2, 10−1, 100, 101} and observe that the best performance is achieved
when setting γ = 10−1 for both datasets. Lower values of γ result in decreased
performance, highlighting the importance of the LRANK loss in capturing the
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(a) (b) (c)

Fig. 6: Predicted usage values of the original BL, SP and the mutated BLmut,
SPmut poly(A) sites. BLmut and SPmut denote the respective BL and SP se-
quences with a variation. (a) BLmut has the G substitution and SPmut has the
canonical A instead of G for the Lpar2 gene. (b) BLmut has the T substitution
and SPmut has the canonical A instead of T for the Zfp709 gene. (c) BLmut has
the UUUU insertion and SPmut lacks the insertion for the Alg10b gene.

relative strength of competing poly(A) sites. However, excessively high γ val-
ues also degrade performance, as they place disproportionate emphasis on the
LRANK loss, diminishing the contributions of LMAE and LMSE .

4.6 Case Study: Impact of sequence variations on APA

To further investigate the ability of HAGAPS in understanding APA regula-
tion, we leverage experimental findings from [38]. The study demonstrates that
specific sequence variations in the SP strain relative to the BL strain (Sec-
tion 4.1) in the distal poly(A) site of three genes, that is Lpar2, Zfp709, and
Alg10b (Ensembl Gene IDs: ENSMUSG00000031861, ENSMUSG00000056019,
ENSMUSG00000075470), result in reduced poly(A) site usage in the SP strain
compared to BL. Specifically, these variations include a substitution from A to
G in Lpar2, a substitution from A to T in Zfp709, and an insertion of UUUU in
Alg10b. To assess whether HAGAPS can predict the impact of these sequence
alterations on poly(A) site usage, we generate two additional mutated sequences
for each gene, along with their respective structures, by swapping the sequence
differences between BL and SP [23,38]. Our analysis in Fig. 6 showcases the abil-
ity of the proposed model to capture the effects of the variations on poly(A) site
usage. In all three genes, the SP strain exhibits lower predicted usage than BL.
Moreover, consistent with experimental observations, the mutated BLmut shows
reduced usage relative to BL, whereas the mutated SPmut exhibits higher usage
compared to SP. Consequently, these results highlight the potential of HAGAPS
to contribute to the study of APA, offering valuable insights that may advance
gene regulation research.
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5 Conclusion

In this study, we presented HAGAPS, a hierarchical GNN-based approach for
alternative poly(A) site quantification prediction. The two key factors of the pro-
posed model are i) the poly(A) site-level MPN that integrates RNA secondary
structure information, and ii) the gene-level MPN coupled with a nucleotide
attention mechanism to capture the competing interactions between multiple
alternative poly(A) sites. Our experimental evaluation demonstrates the superi-
ority of HAGAPS compared to several state-of-the-art methods. In addition, we
conducted a case study, showcasing the model’s ability in uncovering the under-
lying mechanisms of APA. An interesting future direction is the incorporation
of a parameter-evolving strategy between alternative poly(A) sites, enhancing
communication within the gene [29].

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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