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Abstract. Financial fraud detection systems rely on machine learning
models, but their performance degrades over time due to concept and
covariate drift. A critical challenge is the delayed label problem: ground
truth labels (confirming fraud) often arrive 1-6 months after the ini-
tial prediction. This creates a "blind period" where models can silently
deteriorate, leading to substantial financial losses. Existing monitoring
approaches, relying on delayed labels or statistical drift detection, are
often too slow or insensitive. To address this, we propose PRODEM
(PROactive DEtection of Model degradation), a framework that detects
model degradation without immediate ground truth. PRODEM uses a
meta-modeling technique: a sophisticated "meta-model" learns to pre-
dict when the deployed "primary" fraud model will make errors. We
use a reverse distillation approach, where the meta-model specifically
targets error prediction in out-of-time scenarios typical of fraud detec-
tion. Experiments on two proprietary datasets from a payment network
show that PRODEM significantly improves degradation detection com-
pared to statistical methods and recent drift detection techniques. Im-
portantly, PRODEM identifies failing models before ground truth labels
become available, mitigating the financial impact of model degradation
in high-stakes decision-making. We also demonstrate PRODEM’s effec-
tiveness at identifying increases in false positive rates, a crucial but often
overlooked aspect of fraud model monitoring.
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1 Introduction

Financial fraud presents a significant threat to the global economy, with to-
tal losses soaring to approximately $485.6 billion in 2023 [7]. Fraud detection
systems are essential for minimizing these financial losses and protecting insti-
tutions from evolving threats. However, a major challenge in this domain is the
delayed label problem: ground truth labels confirming fraud often arrive 1-6
months after a transaction is processed [9]. This delay is due to factors such as
lengthy investigations, customer dispute processes, and chargeback periods. This
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"blind period" creates a significant vulnerability where machine learning mod-
els, commonly used for fraud prediction, can degrade silently due to covariate
drift (changes in the input feature distribution while the relationship between
features and target remains stable) and concept drift (changes in the relationship
between features and the target variable).

These distribution shifts are driven by the constantly evolving landscape
of financial fraud. Fraudsters adapt their tactics, new attack vectors emerge,
and seasonal variations, economic fluctuations, changes in customer behavior
all contribute to shifts in the underlying data distribution [38]. This makes the
problem increasingly critical as fraud attacks become more sophisticated and
regulatory scrutiny intensifies. Without timely feedback, a model trained on his-
torical data can quickly become outdated and ineffective. The combination of
sophisticated fraud techniques and stringent regulatory requirements necessi-
tates effective monitoring systems.

Existing model monitoring approaches are inadequate for addressing this
challenge effectively. Methods relying on delayed ground truth are, by definition,
too late; significant losses can accumulate before any action is triggered. Statisti-
cal drift detection techniques, such as Kolmogorov-Smirnov tests [2], Population
Stability Index (PSI) [6], and Wasserstein distance metrics [40] often struggle
to distinguish between harmless covariate drift and performance-impacting con-
cept drift. This can lead to either excessive false alarms, reducing operational
efficiency by prompting unnecessary investigations, or, worse, missed degrada-
tion signals. More recent approaches integrate machine learning with statistical
testing [20], but still exhibit similar limitations.

To address these shortcomings, we introduce PRODEM (PROactive DEtec-
tion of Model degradation), a framework that detects model degradation before
ground truth labels become available. PRODEM employs a meta-modeling ap-
proach, where a sophisticated "meta-model" is trained to predict the errors of
the deployed "primary" fraud prediction model. We leverage a reverse dis-
tillation technique, where, unlike traditional knowledge distillation—where a
smaller model learns from a larger one—our meta-model is more compler than
the primary model. This design choice, driven by production constraints on the
primary model, enables the meta-model to capture subtle patterns indicative
of future errors, particularly in out-of-time scenarios common in fraud detection
with delayed feedback. The meta-model learns, in essence, the "failure modes" of
the primary model. This proactive approach enables timely intervention — such
as model retraining, feature re-engineering, or adjustments to decision thresh-
olds — mitigating the financial impact of model degradation and preventing a
prolonged period of increased losses.

A particularly overlooked aspect of monitoring financial fraud detection is the
importance of identifying false positives, cases where legitimate transactions are
incorrectly flagged as fraudulent. In label-delayed environments, a silent increase
in false positive rates can go undetected for months, resulting in significant
customer friction when legitimate transactions are declined and eventual loss
of confidence in the automated system. PRODEM addresses this challenge by
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outperforming existing methods in detecting increases in false positive rates with
greater accuracy and timeliness.

Fraud Deployed Model
Prediction Integrity

Deployed Model Meta Model

Fig.1: The PRODEM framework architecture. The deployed model generates
fraud predictions on transaction data, while the meta-model analyzes the same
inputs to predict the likelihood of the deployed model making errors. This enables
early detection of model degradation during periods of label unavailability.

Our key contributions are:

— A framework, PRODEM, for the proactive detection of model degradation in
financial fraud detection systems operating under delayed label conditions,
enabling timely intervention and risk mitigation.

— A meta-modeling approach leveraging reverse distillation to predict the er-
rors of a deployed fraud model, specifically designed to handle the out-of-
time challenges inherent in this domain. This allows the meta-model to learn
complex patterns that the primary model misses.

— Demonstrated superior performance on two real-world financial fraud datasets
from a payment network, significantly outperforming existing statistical and
drift detection methods in identifying errors and model degradation.

The remainder of this paper is organized as follows: Section [2] reviews related
work in model monitoring and drift detection. Section [3]describes our PRODEM
framework in detail. Section [4] presents our experimental setup. Section [f evalu-
ates PRODEM’s degradation detection capabilities and analyzes error prediction
performance. Finally, Section [6] concludes the paper and outlines directions for
future research.

2 Related Work

Model degradation from temporal distribution shifts presents a fundamental
challenge in machine learning, particularly in dynamic domains like financial
fraud detection. This section reviews relevant literature, highlighting limitations
of existing approaches when confronted with delayed label availability.
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2.1 Drift Detection

Drift detection methods identify changes in data distributions that may im-
pact model performance [8]. These methods typically address two primary types
of drift: covariate drift and concept drift. Traditional statistical approaches in-
clude the Kolmogorov-Smirnov test[2], Population Stability Index (PSI)[6l40],
and Wasserstein distance metric [6J40], which compare reference and current
distributions. However, these methods often fail to distinguish harmful concept
drift from benign covariate drift, leading to false alarms or missed degradation
signals.

Recent advances have integrated machine learning with statistical testing.
Hinder et al. [I6] combined JS-Divergence with feature importance analysis,
while Webb et al. [37] introduced techniques for early drift detection by analyz-
ing changes in low-density regions. Despite these improvements, these methods
remain fundamentally reactive rather than proactive when confronted with de-
layed labels.

2.2 Model Monitoring Systems

Production model monitoring systems have evolved beyond simple performance
tracking. Pozzolo et al. [30] developed adaptive learning frameworks for credit
card fraud detection, though computational costs limit practical adoption [32].
Modern approaches employ multi-faceted monitoring stacks. Breck et al. [29]
introduced a comprehensive validation framework examining data quality, model
staleness, and prediction drift simultaneously.

These sophisticated systems remain largely reactive—they either observe per-
formance degradation (requiring delayed labels) or detect statistical data drift
(an imperfect proxy for performance degradation). They do not predict future
model errors before ground truth labels become available.

2.3 Anomaly and Out of Distribution Detection

Anomaly detection and Out-of-Distribution (OOD) detection approaches iden-
tify irregular patterns and data points that deviate from expected distributions.
Statistical anomaly detection methods like Isolation Forest [23] and One-Class
SVM [36] establish decision boundaries around normal data. Deep learning ap-
proaches have expanded these capabilities, with methods such as Variational Au-
toencoders demonstrating particular effectiveness in practical applications like
credit card fraud detection [33].

For OOD detection, Hendrycks and Gimpel [I4] proposed Maximum Softmax
Probability (MSP) for detecting OOD samples. Lee et al. [2I] improved this
approach with Mahalanobis distance-based confidence scores, while Liu et al. [24]
demonstrated even better performance using energy-based models that leverage
energy scores derived from logit outputs.

While these methods can signal model degradation through emerging anomaly
clusters or distribution shifts, they have limitations for proactive monitoring.
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They primarily focus on identifying individual anomalous or out of distribution
instances rather than systematic degradation patterns, and don’t directly assess
whether model predictions will be incorrect.

2.4 Meta-Modeling for Error Prediction and Anomaly Detection

Our approach in PRODEM employs meta-modeling for error prediction, where
auxiliary models predict the errors of primary fraud detection models. Several
foundational works have explored this paradigm: Platanios et al. [28] developed a
framework for estimating machine learning model accuracy without ground truth
labels, while Raghu et al. [3I] used meta-models to predict when deep learning
models would fail in medical imaging classification tasks. Xiao et al. [39] pro-
posed a meta-modeling framework for model error prediction in computer vision
tasks, though their approach relies on dense feature representations specific to
image data that do not transfer well to financial transaction data. Han et al.
[12] propose SuperMentor, an oracle framework for predicting model correctness
across in-domain, out-of-domain, and adversarial inputs with cross-model gener-
alization capabilities, but their approach operates on static image datasets with
readily available ground truth labels, making it unsuitable for delayed-feedback
scenarios typical of fraud detection.

Another relevant paradigm comes from anomaly detection methods using
reverse distillation [2527I5II8]. In this approach, a "student" model is trained
to reproduce the feature representations of a "teacher" model exposed only to
normal data. When encountering anomalous samples, the student’s inability to
accurately reconstruct the teacher’s output generates high reconstruction er-
ror, serving as an anomaly score. This principle of identifying deviations from
learned norms aligns conceptually with our goal of predicting model errors when
encountering evolving fraud patterns.

Building on these foundational ideas, PRODEM addresses the specific chal-
lenge of delayed labels in financial fraud detection through a novel meta-modeling
approach with reverse distillation. Unlike traditional reactive methods that wait
for confirmed fraud labels, our framework proactively identifies potential model
failures before significant financial losses accumulate, enabling timely interven-
tion in the face of evolving fraud patterns.

3 Methodology

3.1 Problem Formulation

Let Dirain = { (74, )}, represent the training dataset used to develop a fraud
detection model, where each sample consists of tabular features z; € R? and a
corresponding binary fraud label y; € {0, 1}. The deployed fraud detection model
fdeploy : R? — [0, 1] maps input features to fraud probability estimations, with a
decision threshold 6 determining the binary prediction: §; = 1| faeploy(2:) > 6].
In operational environments, financial institutions continuously receive new
data Dyecent requiring immediate predictions. However, the corresponding ground
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truth labels only become available after a significant delay period 7 (typically
1-6 months), creating a blind spot during which model degradation may occur
undetected. This delay can be formalized as: y; becomes available only at time
t + 7 where t represents the timestamp of an observation.

The objective of PRODEM is to develop a meta-model fieta : RS — [0,1]
that estimates the probability that the deployed model will make an error on a
given input z:

1, if faeploy(x) incorrectly predicts y (1)

0, otherwise

fmeta(x) = P(g 7& y|{17) = {

By accurately estimating the deployed model’s error probability distribution
on recent data, the meta-model enables early detection of model degradation
during the label lag period, allowing for timely interventions before significant
financial losses materialize.

3.2 PRODEM Framework Overview

Our PRODEM framework, illustrated in Figure [I} addresses the challenge of
detecting model degradation during the label lag period through a two-tier ar-
chitecture:

Deployed Model The deployed model fqepioy Tepresents the production fraud
detection system in operation. In financial fraud detection domains, these mod-
els are predominantly tree-based ensemble algorithms (e.g., Gradient Boosted
Trees [19/4], Random Forests[3]) due to their effectiveness with tabular data, in-
terpretability requirements, and operational efficiency constraints. The deployed
model remains fixed throughout the monitoring process, as it represents the
actual production system under surveillance.

Meta-Model The meta-model ficta serves as a specialized error predictor de-
signed to anticipate the deployed model’s misclassifications. Unlike the deployed
model, the meta-model is not subject to the same operational constraints, en-
abling the utilization of more sophisticated architectures to capture nuanced
patterns of model degradation. We implement the meta-model as a neural net-
work with residual connections and attention mechanisms. This design allows
fmeta to flexibly model complex error patterns that emerge from shifting data
distributions, including evolving fraud strategies and gradual feature drift.

The meta-model processes the same input features as the deployed model but
produces two outputs: (1) an approximation of the deployed model’s prediction
and (2) a probability estimate of the deployed model making an error.

This design enables PRODEM to provide actionable early warnings about
reliability decay in the absence of fresh ground-truth labels, helping institutions
mitigate risk before degradation materially impacts business performance. This
dual output architecture is essential for the reverse distillation process described
below.
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3.3 Reverse Distillation Approach

Traditional knowledge distillation [ITI7] transfers knowledge from a complex
teacher model to a simpler student model. PRODEM inverts this paradigm
through "reverse distillation", where a more sophisticated meta-model learns
to model the behavior of a simpler deployed model with the specific objective of
predicting its errors.

This approach is motivated by the operational reality in financial fraud detec-
tion, where production models must prioritize inference speed and interpretabil-
ity over complexity. By allowing the meta-model to develop an internal repre-
sentation of the deployed model’s decision boundaries, we enable it to identify
regions of uncertainty, blind spots, and failure modes that emerge as data dis-
tributions evolve over time.

3.4 Model Architecture

Deployed Model Architecture The deployed model typically utilizes tree-
based ensemble methods such as XGBoost [4] or LightGBM [19], which are
industry standards for fraud detection tasks. The specific architecture of the
deployed model is not altered by PRODEM—instead, PRODEM treats it as a
black box system that produces fraud probability scores.

Meta-Model Architecture The meta-model employs a neural network archi-
tecture with the following key components:

h1 = ReLU(Wix + by) (2
hi = hi_y + ReLU(Wihi_, + b;) forie {2,....,L—1} 3
Zmeta = Wrhrp—1+br (4
DPmeta = 0(Werrhr—1 + berr) (5

~ — — —

where h; represents the hidden layer activations, zmeta represents the logits
mimicking the deployed model, and pyets represents the probability of the de-
ployed model making an error. The residual connections (h; = h;—1 +...) [13]
facilitate gradient flow through deep networks, allowing the meta-model to learn
complex representations that capture both the deployed model’s behavior and
its failure modes.

Additionally, we incorporate a self-attention mechanism [34] to enable the
model to focus on feature interactions that are particularly relevant for error
prediction:

Q=Wqh;, K=Wgkh;, V =Wyh, (6)
Attention(Q, K, V) = soft (QKT)V (7)
ention(Q, K,V) = max
Vi,

h;?““ = Attention(Q, K, V) + h; (8)
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This enables the meta-model to dynamically weight feature importance based
on context, aiding detection of subtle patterns that precede model failures.

3.5 Training Methodology

Composite Loss Function The meta-model is trained using a composite loss
function that balances two objectives:

Etotal = aﬁlogit + (1 - a)ﬁerror (9)

where « € [0,1] is a hyperparameter controlling the trade-off between the
two components.

The logit matching loss Liogi¢ facilitates the meta-model’s understanding of
the deployed model’s decision-making process:

Liogit = MSE(Zdeploy; Zmeta) + 5 - KL <0 (Zde;loy> HU (%;m)) (10)

where MSE(,-) is mean squared error, KL(-||-) is Kullback-Leibler diver-
gence, o(-) is the softmax function, Zqeploy and zmeta are the logits from the
deployed and meta-models respectively, T' is a temperature parameter control-
ling distribution softness, and f is a balancing hyperparameter.

The error prediction loss Lo employs focal loss [22], an enhanced version
of binary cross-entropy that addresses class imbalance by down-weighting easy-
to-classify examples:

Lerror = - [Ctrue : (1 - pmeta)w . log(pmeta) + (1 - Ctrue) . p;yneta ! 10g(1 - pmeta)]

(11)

where cyue is the ground truth correctness indicator, pmeta is the meta-

model’s predicted probability of error, and v > 0 is the focusing parameter
that reduces the loss contribution from easy examples.

Temporal Training Protocol To effectively address model degradation in
out-of-time scenarios, we implement a rigorous temporal training protocol with
structured chronological data partitioning. The complete dataset D is partitioned
into three segments:

D = Dirain U Dmeta U Diest Where  tirain < tmeta < Trest (12)

where t represents the timestamps associated with each partition.

— Dirain (first N months): Used exclusively to train the deployed model

— Dpneta (subsequent M months, typically M < N): Used to train the meta-
model

— Diest (remaining available data): Used for evaluation
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This temporal separation ensures that the deployed model fyepioy is trained
on past data, reflecting a realistic production scenario, while the meta-model
fmeta learns to identify errors arising from temporal distribution shifts. This
setup allows for an accurate evaluation of the meta-model’s ability to anticipate
model degradation before it affects business metrics.

3.6 Degradation Detection Mechanism

Operational Metrics Estimation To operationalize model degradation detec-
tion, we construct a monitoring system based on meta-model error predictions.
The meta-model enables estimation of critical performance metrics without re-
quiring ground truth labels, providing early signals of degradation during the
label lag period. We first estimate the confusion matrix components using meta-
model predictions with a threshold e:

[Drecent |
FP= > i I[pmeta(wi) > € (13)
i=1
- [Drecent |
FN= > (1= 3 Ipmeales) > (14)
i=1
- [Drecent |
TP = > G Ipmeta(i) < ¢ (15)
i=1
| Drecent]
TN = Z (1= 9i) - I[pmeta(@i) < ¢ (16)
i=1
Here, g; is the deployed model’s binary prediction, ppeta(x;) is the meta-model’s
predicted probability of error for input z;, and I[-] is the indicator function that
returns 1 if the condition is true and 0 otherwise. Using these estimated con-
fusion matrix components, we calculate key performance metrics that financial
institutions prioritize:

> ingi—1 Amount; - I[pyeta(;) < €

VDR = 17
> ; Amount; - y; (17)
_——  FP
TP

where VDR (Value Detection Rate) measures the proportion of total fraud value
correctly identified by the model, and FAR (False Alarm Rate) quantifies the
ratio of false positives to true positives. In fraud detggtion, due to significant class
imbalance, we monitor estimated False Positives (FP) directly as a degradation
signal. Since true negatives (TN) vastly outnumber other components and remain
relatively stable, an increase in false positives serves as an effective proxy for
model degradation without requiring the full FPR calculation. The threshold
€ is typically calibrated using historical data to optimize the trade-off between
detection sensitivity and specificity.
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Degradation Detection Heuristics We establish degradation detection heuris-
tics based on these estimated metrics by comparing them against baseline per-
formance values:

VDR,
@baseline
FAR,
mbaseline

FP,
F/‘I\Dbaseline - 5FP
0, otherwise

< dypr Or

> 0pAR OT

Degradation Alert = (19)

where dypRr, draRr, and drp are configurable thresholds (typically set to 0.75,
1.25, and 1.25 respectively) that trigger alerts when VDR decreases significantly
or when FAR or FP increases significantly compared to the baseline.

4 Experiments

In this section, we present a thorough evaluation of the PRODEM framework on
two financial fraud detection datasets, showcasing its ability to identify model
degradation early — before ground truth labels become available.

4.1 Experimental Setup

Datasets We evaluate PRODEM on two proprietary datasets from a payment
network company.

— Transaction Fraud Dataset (TF-Dataset): This dataset contains card
transaction data from a large issuer spanning 9 months with over 3 million
transactions per month. Approximately 50% of transactions are declined
by the issuer bank through their risk management systems. The feature set
includes diverse risk scores, merchant identifiers, transaction type indicators,
velocity features, and historical transaction patterns. The fraud rate among
approved transactions is 0.42%. The dataset exhibits significant temporal
patterns in both feature distributions and fraud tactics.

— Account Fraud Dataset (AF-Dataset): This dataset focuses on account-
level (card-level) fraud detection for a large issuer spanning 9 months. It con-
tains approximately 5 million active accounts per month with a positive class
rate of 0.91%. Features include account profile characteristics, aggregated
transaction patterns, risk scores, spending behavior statistics, and historical
dispute information. This dataset exhibits pronounced seasonal effects and
regional fraud pattern evolution.

Temporal Data Partitioning Following the temporal protocol described in
Section[3] we partition each dataset as follows. For both the TF and AF-Datasets,
we use months 1-2 for Dyyain (deploy model training), month 3 for Dyeta (meta-
model training), and months 4-9 for Dyes; (evaluation).



PRODEM 11

The months 4-9 for Di.; have been referred to as months 1-6 in the results
section for better readability and ease of explanation.

4.2 Baselines

We compare PRODEM against established approaches for model monitoring and
drift detection:

Statistical Distribution Monitoring

— Kolmogorov-Smirnov (KS) Test: Applied to top 20 features by impor-
tance to detect univariate distribution shifts.

— Kullback-Leibler (KL) Divergence: Measures distribution shifts in con-
tinuous features.

Output Distribution Monitoring

— Maximum Class Probability (MCP) [15]: Monitors the maximum pre-
diction probability of the deployed model. Predictions with MCP below a
threshold are flagged as potential errors.

— Class Probability Entropy (CPE) [20]: Calculates the entropy of the
prediction probability distribution. Higher entropy indicates greater uncer-
tainty in the model’s prediction, potentially signaling an error.

Implementation Details

— Fraud Detection Model (fdeploy): XGBoost trained on Dyain with 150
trees (max depth=10, learning rate=0.05) and subsampling (row=0.8, col-
umn=0.8). Hyperparameters optimized via optuna [I] using 5-fold cross-
validation and weighted log-loss to address class imbalance (1:99 for TF-
Dataset, 1:55 for AF-Dataset).

— Meta-Model: FT-Transformer [I0] with tokenized tabular inputs and a
Transformer encoder with multi-head self-attention. Architecture: 4 trans-
former blocks (hidden sizes: 256, 128, 64, 32), residual connections, layer nor-
malization, SeLU activations, dropout (0.2), and L2 regularization (0.001).
Optimized using Adam (Ir=0.001) with cosine annealing, composite loss from
Section [3| (&« = 0.3, T = 2.0), batch size 4096, trained for 100 epochs with
early stopping, implemented in PyTorch and trained on NVIDIA A100 GPUs
(80GB).

— Baselines: Baselines include Kolmogorov-Smirnov (KS) Test (p < 0.01),
Kullback-Leibler (KL) Divergence (KL > 0.5), Maximum Class Probability
(MCP) (MCP < 0.7), and Class Probability Entropy (CPE) (CPE > 0.8).
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5 Results and Analysis

5.1 Error Prediction Performance

We first evaluate its ability to accurately predict when the deployed model will
make errors. This error prediction capability forms the foundation of our proac-
tive degradation detection framework. Table [I] presents the meta-model’s per-
formance in predicting deployed model errors across the two datasets, compared
against baseline approaches.

Table 1: Error prediction performance comparison across datasets (best results
in bold)

Dataset Method EDP EDR
MCP 0.43 0.37

TF-Dataset CPE 0.51 0.48
PRODEM 0.66 0.64

MCP 0.42 0.41

AF-Dataset CPE 0.45 0.49
PRODEM 0.68 0.65

It’s important to note that traditional statistical techniques (KS Test and KL
Divergence) are not included in this comparison as they detect feature or score
distribution drift rather than predicting specific model errors at the instance
level. Their detection mechanisms operate at a distributional level, which is
fundamentally different from the error prediction task evaluated here.

The results demonstrate that PRODEM achieves significant improvements in
both precision (EDP) and recall (EDR) of error detection compared to uncertainty-
based methods (MCP and CPE). For the TF-Dataset, PRODEM achieves an
error detection precision of 0.66 and recall of 0.64, representing improvements of
29.4% and 33.3% respectively over the best baseline method. Similar improve-
ments are observed for the AF-Dataset, with PRODEM achieving 51.1% higher
precision and 32.7% higher recall compared to the best baseline.

This superior error prediction capability stems from the meta-model’s abil-
ity to learn specific error patterns of the deployed model through our reverse
distillation approach, enabling more accurate identification of potential misclas-
sifications in the complex financial fraud domains represented by our proprietary
datasets.

5.2 Model Degradation Detection

We next analyze how PRODEM'’s error prediction capability translates into
early detection of model degradation compared to baseline approaches. Table
summarizes the performance of PRODEM and baseline approaches, showing the
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Fig. 2: Temporal comparison of estimated (PRODEM) versus actual performance
metrics (VDR, FAR, and false positives) for TF-Dataset and AF-Dataset over
the six-month testing period. Vertical markers indicate the month of degradation
detection for different methods, with PRODEM demonstrating earlier detection
(month 4) compared to baseline approachesﬂ

Table 2: Model degradation detection timing across datasets (lower month num-
ber indicates earlier detection)

Method TF-Dataset (Month) AF-Dataset (Month)
KS Test 6 6
KL Divergence 6 5
MCP 6 5
CPE 5 5
PRODEM 4 4

month in which each method first identified significant performance deteriora-
tion.

The results demonstrate that PRODEM provides significantly earlier detec-
tion of model degradation compared to baseline methods. For the TF-Dataset,
PRODEM detected degradation in Month 4, while the best baseline methods
only identified issues in Month 5. For the AF-Dataset, PRODEM detected degra-
dation in Month 4, a full month before any baseline approach.

5.3 Temporal Performance Monitoring

Finally, we analyze how PRODEM monitors model performance over time com-
pared to the actual performance metrics derived from ground truth labels. This
analysis is crucial for understanding how accurately PRODEM can track degra-
dation patterns in deployed models throughout the label delay period. Figure [2]
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shows the estimated versus actual performance metrics for both datasets over
the testing period.

For the TF-Dataset, our analysis reveals significant changes in key metrics
over the six-month monitoring period. The value detection rate (VDR) showed
substantial fluctuations, with a 55.6% decrease from Month 1 to Month 6. PRO-
DEM effectively tracked these changes, with estimated VDR following a similar
pattern, showing a 34.1% decline over the same period. Most critically, false
positives increased dramatically by 201% from Month 1 to Month 6. PRODEM
successfully estimated this trend, projecting a 170% increase in false positives
over the same timeframe. The false acceptance rate (FAR) estimates by PRO-
DEM showed a consistent upward trend, increasing by 56% from Month 1 to
Month 6.

For the AF-Dataset, we also observed notable variations in key metrics.
The VDR decreased by 32.4% from Month 1 to Month 6. PRODEM accurately
tracked this degradation, with estimated VDR decreasing by 51.3%. False pos-
itives increased dramatically by 173% over the monitoring period. PRODEM’s
estimates closely followed this trend, projecting a 144% increase in false pos-
itives. The FAR estimates showed a steady increase of 48% from Month 1 to
Month 6.

For both datasets, PRODEM demonstrated remarkable accuracy in tracking
critical metric changes during periods of significant degradation. The average
deviation between PRODEM’s estimated metrics and actual metrics was ap-
proximately 14.5% for VDR and 7.2% for false positives throughout the testing
period. This confirms PRODEM’s effectiveness in providing advance warning of
model degradation, with particularly strong performance in tracking false posi-
tive rate increases, a critical concern in fraud detection systems where the cost of
false positives directly impacts customer experience and operational efficiency.

6 Conclusion

We introduced PRODEM, a proactive framework for detecting model degrada-
tion in financial fraud detection systems under label delay constraints. Lever-
aging a meta-modeling approach with reverse distillation, PRODEM identifies
performance deterioration without requiring immediate ground truth. Evalua-
tions on two proprietary datasets show PRODEM provides a 1-2 month advance
warning over traditional monitoring, enabling timely intervention. Key contribu-
tions include a meta-modeling approach for proactive error prediction of fraud
models, a reverse distillation-based loss, and a temporal training protocol for
out-of-time degradation. PRODEM significantly improves error detection preci-
sion and recall over baselines.

Future work includes incorporating explainability, and developing adaptive
monitoring thresholds based on the severity and type of detected degradation
patterns.

1 To preserve data confidentiality, the Y-axis values for False Positives are presented
as ratios normalized to the baseline month (Month 1).
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7 Ethics Statement

Our proposed framework does not raise any ethical concerns. However, it is es-
sential to acknowledge that ethical applications of financial fraud detection can
greatly benefit from the improved early warning capabilities and performance
enhancements provided by PRODEM. To ensure responsible and socially benefi-
cial deployment of machine learning in financial systems, it is crucial to exercise
caution, transparency, and fairness in model monitoring and adaptation. This
involves not only maintaining accountability in how alerts are generated and
acted upon, but also ensuring that model updates do not reinforce existing bi-
ases or disproportionately impact specific customer segments over time or across
different demographics.
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