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Abstract. Spatial transcriptomics (ST) technologies offer valuable in-
sights into tissue organisation by capturing gene expression within its
spatial context. Among these, 10x Visium stands out for its capacity to
integrate gene expression profiles with histological images, facilitating
multi-modal tissue analysis. However, comprehensive analysis requires
manual pathologist’s annotations at the capture spot level, a labour-
intensive and time-consuming process that demands a significant amount
of pathologists’ time. Given the scale of studies involving multiple ST sam-
ples, manual annotation becomes impractical, and no automated solutions
currently exist. To address this, we introduce ActiveVisium, an active
learning framework designed to enhance spot-level annotation in 10x
Visium datasets. To the best of our knowledge, ActiveVisium is the first
framework to leverage tissue morphology and, optionally, gene expression
data to automate large-scale spot annotation while selecting the most
informative ones for manual labelling. Furthermore, this approach enables
transfer learning across similar samples, thereby reducing annotation time
for entire studies. Evaluations across breast cancer, colorectal cancer, and
healthy kidney samples demonstrate that ActiveVisium has the potential
to significantly improve annotation efficiency and consistency. All code
and data are publicly available.
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1 Introduction

Recent advancements in high-throughput technologies and imaging methods
have enabled the development of ST, allowing for the capture of gene expression
profiles within their native tissue context and opening new opportunities for
investigating tissue organisation and function [17]. Various ST technologies are
available [6], where some, such as 10x Visium [21], integrate gene expression
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stroma tumor&stroma tumor

Fig. 1: Spot-level annotations in a FF colorectal cancer sample. Each spot, 55µm
in diameter, is labelled based on the tissue composition it covers. Standard 10x
Visium slides have 5000 barcoded spots.

data with histological images, facilitating simultaneous analysis of molecular and
morphological features of a tissue sample. With both modalities available—gene
expression data and histological images—molecular analyses are often cross-
referenced with pathologist annotations on the corresponding whole slide images
(WSIs) [24,1]. Such a multi-perspective view of tissue is especially important for
gaining a comprehensive understanding of tissue organisation, as some differences
may only be visible at the molecular level. For example, in a Colorectal Cancer
(CRC) study [24], spots with similar morphological features that were uniformly
annotated as tumours by a pathologist exhibited distinct gene expression profiles.

The 10X Visium [21] platform is one of the most widely utilised ST technolo-
gies [30], compatible with both fresh-frozen (FF) and formalin-fixed, paraffin-
embedded (FFPE) tissue sections. It allows for the capture of near-whole tran-
scriptome readouts in specially designed barcoded spots, which can be mapped
to a histological image of the tissue, as illustrated in Figure 1. The standard
Visium platform employs capture slides containing approximately 5,000 spatially
barcoded spots, each with a diameter of 55µm. Additionally, slides with 11,000
spots are available. For a comprehensive analysis, annotations by pathologists
should ideally correspond to individual capture spots, as illustrated in Figure 1.

To obtain relevant biological information, a typical experimental study de-
sign requires multiple samples under different conditions. This usually involves
biological and, occasionally, technical replicates to draw statistically significant
conclusions. Furthermore, each sample is processed in a separate Visium capture
area, each requiring its own annotations for comprehensive analysis. In these
conditions, the annotation task becomes highly repetitive, time-consuming, and
error-prone. As a result, the annotation process can often take hours or even
days, depending on factors such as the number of samples, tissue heterogeneity,
the number of spots covered by the tissue, and the level of detail required in
the annotations. Annotations can be broad—such as distinguishing between tu-
mour and non-tumour areas—or more detailed, such as identifying heterogeneous
spots with mixed content, referred to as mixed spots (e.g. tumor&stroma spots
in Figure 1). In particular, mixed spots can help delineate region boundaries,
which are important for understanding key biological processes. For instance,
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cell communication at the tumour-stroma interface plays a vital role in tumour
growth and progression [32]. Therefore, identifying and annotating those spots is
crucial yet highly time-consuming, as it requires examining the composition of
the tissue within each spot in the anatomical boundary region. This manual and
labour-intensive process of spot-level annotation significantly limits the number of
samples that can be thoroughly correlated with the pathologist’s input. Further-
more, the variability in annotation complexity among samples and experiments
poses a major challenge for developing universal automated solutions. Currently,
there are no existing solutions that fully address this issue.

To tackle these challenges, we present ActiveVisium—the first active learning-
based framework, to our knowledge, that offers case- and pathologist-specific
support for manual annotations in ST datasets. ActiveVisium identifies the most
informative spots for pathologist manual labelling by utilizing morphological and,
optionally, molecular features from tissue samples while automatically annotating
the remaining spots. This framework significantly reduces the annotation workload
for pathologists, resulting in a more efficient, scalable, and consistent annotation
process.

2 Related work

A standard procedure in ST data analysis involves grouping spots based on shared
transcriptomic profiles, morphological features, or spatial proximity. This grouping
helps identify functional regions within the tissue and uncovers the biological
identity of each spot [33], linking them to specific spatial domains or cellular
niches [23,33]. Nevertheless, the biological interpretation of these groups remains
a downstream step, often relying on marker genes or differential gene expression
analysis, usually cross-referenced with manual pathologist annotations [23,33].
However, the time-consuming nature and complexity of manual annotation tasks
pose a significant challenge to the number of samples that can be thoroughly
analysed. While regional annotations (e.g., assigning a single label to a large
tissue area covering several dozen spots) offer a seemingly straightforward way
to reduce such manual effort, this approach often fails to account for critical
spatial heterogeneity. This is particularly true for small, low-represented, or
transitional regions, such as mixed or boundary spots common in technologies
like 10x Visium. Therefore, despite its time commitment, individual, spot-by-spot
expert annotation remains the most reliable approach for precise characterisation.

Similar bottlenecks in obtaining high-quality manual annotations also arise
in the digital pathology (DP) field. Despite significant progress in Artificial Intel-
ligence (AI)-based solutions[20], these methods still heavily depend on (manual)
expert annotations, which are both resource-intensive and time-consuming to
produce [28]. Consequently, numerous workflows have been developed to alleviate
annotation demands, including methods to accelerate manual labelling [14,26,7].

Active learning, a paradigm aimed at maximising performance with minimal
labelled data, is widely adopted in DP to minimize annotation effort. These
approaches, used for tasks like cell classification [25] and whole-slide image
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Fig. 2: The ActiveVisium framework leverages active learning to streamline spot-
level annotations in ST experiments. Pathologists begin by annotating an initial
subset of spots, which is used to train a model for predicting annotations on
the remaining spots. Subsequently, additional spots are selected for annotation,
enabling pathologists to review and refine the model’s predictions. Once these new
annotations are incorporated, the model is retrained with the updated dataset.
This process continues until the expert is satisfied with the model’s predictions or
until correcting the model’s potential errors requires less effort than annotating
a new set of suggested spots.

annotation [16], iteratively select the most informative data points for labelling.
To improve learning efficiency, many active learning techniques leverage pre-
trained models, frequently initialized with ImageNet weights [9,12]. The recent
emergence of foundation models in DP [2,29] is further enhancing these approaches
through the development of integrated active learning frameworks [5].

The existence of a wide range of methods designed to automate the labelling
process in DP underscores a crucial point: for large datasets requiring expert
annotation, it is often more practical and efficient for experts to review and
validate model predictions rather than manually label every individual data point
[25,11]. However, such strategies have yet to be effectively translated to ST, in
part due to the novelty of the field and the unique challenges posed by spot-level
annotations. This motivated the development of the ActiveVisium framework,
which leverages foundational models and active learning strategies to minimize
the number of spots requiring manual annotation. This approach significantly
reduces the workload for experts, addressing a challenge that, to the best of our
knowledge, has been largely unexplored in the literature.

3 Methods

ActiveVisium is a framework that leverages active learning to optimize and
accelerate manual spot-level annotations in 10x Visium ST experiments. It starts
with a small set of manually annotated spots and iteratively selects additional
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spots for annotation, progressively improving predictions for the remaining spots.
Figure 2 presents an overview of the workflow.

In ST technologies such as 10x Visium, WSI is co-registered with the capture
area containing gene expression capture spots. Let IWSI represent a WSI obtained
as part of such ST experiment, where the positions of gene expression capture
spots are mapped onto the image. We define Sall as the set of tuples:

Sall = {(xi, gi) | xi ∈ RH×W×3, gi ∈ Rn, i ∈ {1, . . . , N}}

where: xi ∈ RH×W×3 represents an image patch extracted from IWSI corre-
sponding to a capture spot i, and gi ∈ Rn is the gene expression vector for the
same spot, with n denoting the number of detected genes and N the total number
of capture spots covered by tissue. The spatial dimensions H ×W correspond to
the pixel area covered by a capture spot (in standard 10x Visium experiments,
this corresponds to a circle with a diameter of 55µm).

Furthermore, let Sann ⊂ Sall represent the subset consisting of manually
annotated spots provided by the pathologist (|Sann| ≪ |Sall|). Starting from the
initial set of annotated spots Sann_init, the active learning pipeline is established
to accelerate the process of obtaining annotations for the remaining spots in the
following way:

1. Model Learning: The model is trained using the available annotations Sann
(initially Sann = Sann_init) to predict labels for all remaining spots (see 3.1
for details).

2. Data Acquisition Strategy: Predictions are generated for all spots in
Sall \ Sann. Using a predefined active learning strategy, an additional set
Sto_ann ⊆ Sall \ Sann of M spots is selected for expert annotation.

3. Expert Annotation: The pathologist reviews the model’s predictions for
spots in Sall\(Sann∪Sto_ann) and assigns labels to the newly selected spots in
Sto_ann. The set of annotated spots is then updated as Sann = Sann∪Sto_ann.

4. Iteration: Steps 1–3 are repeated iteratively until the model achieves accurate
predictions across Sall, or until correcting misclassified samples requires more
effort than annotating a new set Sto_ann, as determined by an expert.

3.1 Model training

Let fmorph : RH×W×3 → Rdm and fge : Rn → Rdg be feature extractors mapping
image patches and gene expression profiles to dm- and dg-dimensional embeddings,
respectively. A classifier ϕ : Rd → RK projects embeddings into K classes, where
K is specified by a pathologist.

We consider two settings - an unimodal setting where d = dm and only
morphological features are used and, a multimodal setting where a fusion layer
h : Rdm+dg → Rd combines outputs from fmorph and fge, providing the fused
representation h(fmorph(x), fge(x)) as input to ϕ.

Morphological features are extracted using pre-trained DP foundational mod-
els. Each spot x ∈ Sall is mapped to the feature representation of the foundational
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model, which is stored to accelerate training. This representation is then processed
through a Multi-Layer Perceptron (MLP) to obtain the morphological feature
representation fmorph(x). Similarly, gene expression features are processed by the
gene expression feature extractor fge, which maps them into a latent space using
an MLP. To ensure consistent feature representation across all capture spots
within the sample, we identify the top 1,000 highly variable genes (HVGs) across
the sample. The normalized and log-transformed expression levels of these HVGs
are used as features for each spot and subsequently mapped into the latent space
via an MLP. Nevertheless, given that the field of foundational models in DP and
ST is actively evolving [27,18], ActiveVisium is designed to support the seamless
integration of state-of-the-art and emerging models. This flexibility extends to
the classifier ϕ, which is implemented as a configurable stack of MLPs, allowing
for adaptability to various classification tasks.

Our model leverages the UNI framework [2] for morphological feature extrac-
tion. The classifier includes a single hidden layer with 128 neurons. Both gene
expression and morphology branches use projection heads with 128 neurons and
LeakyReLU activation. The fusion layer integrates these features via a normal-
ization layer, an MLP with 256 neurons, LeakyReLU activation, and a dropout
layer.

During each active learning iteration, the model is trained for 50 epochs,
selecting the best-performing model based on validation loss, following standard
practice in active learning literature [10]. The initial set Sann_init is determined
using k-means clustering in the morphological representation space of all spots,
where nclusters = |Sinit|. In our experiments, we set the size of the initial
annotation set |Sinit| = 55. To ensure comprehensive class representation, in
cases where the initial k-means clustering fails to encompass all classes (a scenario
often encountered in datasets with highly imbalanced class distributions, such as
the kidney tissue samples used in this study), the initial dataset Sinit is augmented
by randomly selecting and incorporating one spot from the annotation pool for
each unrepresented class.

In real-world applications of ActiveVisium, using a predefined validation set is
impractical, as annotating data solely for validation during active learning is not
feasible. Consequently, this setting is used only to report experimental results.
In practical applications, the training strategy adapts based on the size of Sann,
assuming no available validation set. For small Sann, the model is trained for
50 epochs (configurable), after which the final model is retained for evaluation.
With larger Sann, the annotated data is split into training and validation sets
during each model training, saving the model based on validation performance.

In the initial iteration, the model is initialized with random weights. Subse-
quent iterations reuse the model from the previous iteration as the starting point.
Weighted categorical cross-entropy loss is employed to address data imbalance.
The class weights are dynamically recalculated in each active learning cycle as
the inverse of class frequencies.
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3.2 Data Acquisition Strategy

To select M spots for manual annotation, a hybrid least-confidence and diversity-
based sampling approach is implemented. At iteration i, the model predicts labels
for non-annotated spots Si = Sall \ Sann, and each spot xj ∈ Si is assigned an
uncertainty score:

score(xj) =
[
1− PΘi(y

∗
j | xj)

]
× K

K − 1

where y∗j is the highest softmax output, Θi are model parameters at iteration i,
and K is the number of classes. This score reflects the model’s uncertainty about
its most confident prediction for each spot, with higher scores indicating greater
uncertainty.

While active learning methods vary widely [22], least-confidence uncertainty
sampling is chosen as the default due to its simplicity and effectiveness across
datasets [5,28]. Nevertheless, the framework remains flexible regarding its active
learning strategy. Recent evaluations confirm that incorporating diversity into
uncertainty-based selection enhances performance and can outperform more
complex strategies [5,3]. Therefore, diversity is incorporated using a k-means
clustering approach: the top 5% most uncertain spots are grouped into M clusters
within a feature space defined by morphological representations (or a combined
feature space in a multimodal setting). From each cluster, the spot closest to
the centroid is selected for annotation. As a baseline, we also include random
sampling, in which M spots are chosen randomly from Sall \Sann, with each spot
having an equal probability of selection, irrespective of uncertainty score.

3.3 Expert annotation

Expert annotations are conducted using Loupe Browser, the standard software
for exploring outputs from 10x Visium experiments. Loupe provides an intuitive
graphical interface that enables pathologists to interact with ST data easily.
Given that pathologists are already familiar with using Loupe for manual spot
annotation, we opted to integrate ActiveVisium with it to maintain this workflow.
Pathologists annotate selected spots in Loupe and export the results as CSV files.
Likewise, ActiveVisium generates predictions and selects spots for annotation
also in CSV format, ensuring seamless import into Loupe for further review and
refinement.

3.4 Datassets

ActiveVisium framework was evaluated on a diverse set of 10x Visium ST datasets,
encompassing human and mouse samples from various tissues and pathological
conditions, including breast and colorectal cancer (CRC) (human), as well as
healthy kidney tissue (human and mouse). Breast cancer and kidney samples were
FFPE-preserved samples, while CRC samples were FF-preserved. Experienced
pathologists manually annotated each dataset at the spot level, determining the
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Table 1: Dataset Summary
Specimen Tissue Pres. Reference Spots Classes Ann.

Time

Colorectal SN048_A121573_Rep1 2,750 8 ∼8h
(Cancer) FF SN048_A121573_Rep2 2,906 7 ∼8h

SN123_A595688_Rep1 1,394 11 ∼8h

Human Breast FFPE – 4,992 11 ∼12h
(Cancer)

Kidney FFPE – 5,928 11 ∼12h
(Healthy)

Mouse Kidney FFPE – 3,124 14 ∼3h
(Healthy)

number of classes based on tissue morphology. Table 1 presents a concise overview
of the datasets used, while the Appendix provides detailed dataset descriptions,
including references for each dataset.

The annotation process was highly time-intensive, with complexity varying
across samples. Individual samples required between 3 to 12 hours of continuous
annotation time, with a typical case taking 8 hours of continuous work per sample.
This substantial time investment translates to multiple days needed to complete
annotations across all datasets. These annotations serve as the ground truth for
evaluation purposes in this study. Each dataset is divided into a training set
(annotation pool), comprising 90% of the total spots covered by a tissue, and a
test set, containing the remaining 10%. Additionally, 10% of the training set is
set aside as a validation set to monitor training progress. The split is performed
to maintain the class distribution, ensuring a proportional representation of all
classes across the data splits.

4 Results

In this section, we showcase the effectiveness of the ActiveVisium framework
across various tasks: simulated annotation experiments in both unimodal and
multimodal contexts (Section 4.1), cross-sample annotation transfer illustrated
through a CRC case study (Section 4.2), enhancement of annotation consistency
(Section 4.3), and significant time savings in the annotation process (Section
4.4). Furthermore, we provide practical guidelines for the optimal utilization of
ActiveVisium (Section 4.5).

4.1 Evaluating ActiveVisium: Simulated Annotation Experiments

All datasets used in this study are entirely manually annotated by a trained
pathologist. To simulate the active learning process, we initially considered
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all spots in each fully annotated dataset as unlabeled. In each active learning
iteration, ActiveVisium selects a subset of spots for annotation, which are then
incorporated into the training data for the next iteration.

Experiments are conducted in both unimodal (morphology only) and multi-
modal (morphology and gene expression) settings, with three independent runs
of ActiveVisium performed for each dataset within each setting. In each active
learning iteration, we fixed M = 55 spots to be chosen for annotation, selected
based on the given experimental strategy, and this process is repeated for 10
rounds. The evaluation metrics include the average weighted F-score and the
percentage of misclassified spots (along with standard deviations), compared to
manual annotations that are treated as the ground truth.

Following the evaluation protocol outlined in Zhang et al. (2023) [31], Figure
3 presents active learning performance on the annotation pool, which aligns
closely with the purpose of ActiveVisium—annotating a whole sample using a
limited amount of provided data. To ensure a comprehensive evaluation, results
on held-out test sets are included in the Appendix. Additionally, fully supervised
model performances (both unimodal and multimodal) are reported to estimate
the upper-bound performance.

The results obtained across various datasets suggest that using AI-based
assistance for annotations is beneficial. In the early stages of training, both active
learning and random sampling show promising trends in reducing misclassified
samples and increasing the weighted F-score. However, active learning strategies
consistently outperform random sampling, demonstrating the advantages of
guided annotation over random approaches. The most significant changes are
observed in the initial iterations, emphasizing the importance of following the
model’s suggestions for annotation in the early steps. Nonetheless, the quantitative
results should be interpreted with caution, taking into account the limitations
and variability associated with manual annotations (see more in Section 4.3).

The impact of multimodal approaches varies among samples and does not
uniformly improve performance (see Figure 3). For instance, while the breast
cancer sample shows substantial improvement, the human kidney sample exhibits
only minimal benefit. This inconsistency likely arises from the degree of alignment
between gene expression profiles and pathologist annotations, as morphology and
gene expression can capture different biological aspects of tissue. To quantify
this alignment, we first performed Louvain clustering at multiple resolutions-a
hyperparameter that determines the total number of clusters- on the highly
variable genes in the gene expression space. We then assessed the correspondence
between the resulting clusters and the manual pathologist annotations using the
Adjusted Rand Index (ARI) 1. The breast cancer sample achieved the best ARI
of 0.49 (resolution 0.7), notably higher compared to the human kidney sample
had the best ARI of 0.17 (resolution 0.3). Therefore, it is not surprising that the
incorporation of gene expression data led to significant performance gains in the
breast cancer dataset, whereas the multimodal approach offered only marginal

1 An ARI of 1 indicates a perfect match, while an ARI close to 0 suggests the agreement
is no better than random.
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Fig. 3: Performance comparison of ActiveVisium across all evaluated datasets,
including multimodal and unimodal settings. Each approach is assessed against
its random sampling.
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benefits in the human kidney sample. Additional ARI results across different
Louvain clustering resolutions and samples are provided in the Appendix.

4.2 Cross-Sample Annotation Transfer: A Colorectal Cancer Case
Study

To ensure statistically robust biological conclusions, ST studies typically comprise
multiple samples from a certain tissue or disease type. Some experiments also
include replicate samples from the same subject, obtained from consecutive tissue
sections. In this context, our goal is to evaluate the generalizability of a model
trained on a single sample by assessing its performance in two scenarios: (i) a
replicate from a consecutive section of the same patient and (ii) a morphologically
and pathologically similar sample from a different patient.

We evaluated the transfer learning ability of ActiveVisium on human FF
resection samples from a CRC study [24]. Specifically, we trained a model in
an active learning setting on Sample_SN048_A121573_Rep1 and subsequently
applied it to its replicate, Sample_SN048_A121573_Rep2 and the sample from a
different patient, Sample_SN123_A595688_Rep1. Manual annotations, obtained
from the original study [24] served as ground truth. Since annotations were inde-
pendently performed per sample, some classes present in the original sample were
not available in the others. To ensure consistency in evaluation, we standardized
the labels by merging similar classes and excluding non-corresponding ones (see
Appendix).

In a zero-shot setting, we evaluated inter-observer variability by comparing
the annotations provided by ActiveVisium— which has no annotated spots in this
sample— to those manually annotated by a pathologist. In the unimodal setting,
the average inter-observer agreement for the replicate sample was 0.59(0.01),
while for the sample coming from a different patient, it was 0.52(0.02), indicating
moderate agreement [13]. This level of concordance translates to a substantial
proportion of correctly classified spots. For instance, on average, 89% and 82%
of tumour spots are correctly classified in the replicate and in the sample from a
different patient, respectively.

For multimodal annotation transfer, we first integrated and batch-corrected
gene expression among samples with Harmony [8]. Then, highly variably genes
were identified in the integrated set, and the active learning multimodal model
is trained using the sample Sample_SN048_A121573_Rep1. Then, we applied
it to the replicate and the sample from another patient. This approach yields
inter-observer agreements of 0.061(0.00) for the replicate and 0.53(0.05) for the
other sample, indicating substantial and moderate agreement, respectively. The
multimodal approach is particularly beneficial for enhancing the detection rate
of spots with mixed composition. For instance, when transferring to another
sample, the percentage of correctly classified spots covering both tumour and
stroma increased from 41.91% in an unimodal setting to 66.5% in a multimodal
setting. These results are not surprising, as transcriptomic heterogeneity is more
evident in mixed spots, where genes specific to various anatomical regions come
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together in different proportions based on their composition. In contrast, it is
more challenging to identify them based on morphological features only.

The ActiveVisium approach has the potential to greatly reduce annotation
time by transferring labels from samples with similar morphological features.
This is especially advantageous for studies involving multiple samples with similar
features. However, pathologists still need to review and correct annotations, which
can include leveraging initial predictions from transfer learning to initiate the
active learning process.

4.3 ActiveVisium Improves Annotation Consistency

Consistency in annotations is crucial for the accuracy and reliability of ST data
analysis. To assess whether ActiveVisium enhances this consistency, we evaluated
its performance on an FFPE human kidney sample, where discrepancies between
its predictions and expert annotations were most pronounced. Given the subjec-
tivity of manual annotations, we investigated whether these misclassifications
resulted from noisy manual labels rather than from model errors.

The human kidney sample consists of 5,928 annotated spots categorized into
11 classes. The initial manual annotation process took approximately 12 hours
over several days, making it difficult to establish consistent labelling criteria,
particularly in heterogeneous regions. Three independent ActiveVisium runs are
conducted, each comprising 10 active learning cycles. The model’s predictions
were then compared to the original manual labels. We found 606 instances where
all three models, after completing the 10th iteration of active learning, consistently
classified these instances differently from the original manual annotations. A
detailed breakdown of the misclassified instances by category is included in
the Appendix. The pathologist who performed the initial manual annotations
reviewed these spot annotations 20 weeks later, comparing the model predictions
with the original annotations.

Upon investigation, the pathologist changed the annotations for 330 spots
(54. 46%) - 307 accepted the model prediction, while 23 received new annotations
(disagreement between model prediction, but also with the original annotation).
This highlights inconsistencies in the original annotations and the challenge of
maintaining uniform criteria over time. As expected, most of the changes occurred
in heterogeneous areas (e.g., tubule vs. tubule-interstitium regions). While these
findings confirm spot-level annotation inconsistencies, this experimental setting
may be subject to confirmation bias [4] - experts might question their original
annotations when faced with conflicting model predictions. Nevertheless, these
results suggest that ActiveVisium enhances annotation consistency by promoting
uniform criteria throughout the process. This is particularly evident in certain
classes, such as glomeruli, where the model successfully identified and corrected
annotations that were clearly overlooked or misclassified in the original manual
process (see Appendix).
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Fig. 4: Confusion matrix comparing spot-level annotations between Pathologist 1
(manual annotation) and Pathologist 2 (ActiveVisium-assisted annotation) for
Sample_SN048_A121573_Rep2.

4.4 Accelerating Annotation: Time Savings with ActiveVisium

This section quantifies the time savings achieved by ActiveVisium compared to
fully manual annotation using Sample_SN048_A121573_Rep2 (2906 spots, 7
classes). Two pathologists were asked to annotate the sample—one did it entirely
by hand, while the other used ActiveVisium. Pathologist 1, who performed the
manual annotation at the spot level, estimated that the task took approximately
8 hours of uninterrupted work. In contrast, Pathologist 2, after a brief orientation
and practice with ActiveVisium, annotated the same sample in just 1 hour and 15
minutes, achieving a moderate inter-observer agreement of 0.6 with Pathologist
1. The ActiveVisium workflow involved an initial annotation of 102 spots in 17
minutes. This was followed by two active learning iterations, each annotating 55
spots in an average of 10 minutes, resulting in 211 annotated spots ( 7% of all
spots). After each active learning iteration, Pathologist 2 spent approximately 7
minutes inspecting model predictions. Following the second iteration, Pathologist
2 assessed that the model’s predictions were sufficiently accurate for the task at
hand (with minor corrections needed) and that further active learning iterations
were unnecessary. This correction process, applied to 42 spots, took 13 minutes
and 17 seconds, ultimately resulting in 253 pathologist-provided annotations.

Final annotations occasionally differed from Pathologist 1’s. These divergences
were most pronounced in heterogeneous regions—like at the transition between
the tumour and the stroma—where annotation criteria are inherently subjective
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and vary between experts. This is illustrated in the confusion matrix in Figure 4.
Despite these discrepancies, Pathologist 2 verified that this final set accurately
represents their annotation style and provides a representative annotation of
the sample. These differences are consistent with the inter-observer variability
commonly encountered in pathology [19], further demonstrating ActiveVisium’s
potential as a valuable, personalised assistant that adapts to individual pathologist
workflows.

4.5 Guidelines for Effective Use of ActiveVisium

Given the human-in-the-loop nature of ActiveVisium, it is reasonable to anticipate
that expert interactions may deviate from theoretical expectations, and that is
what we observe in practical application. For example, experts might prioritize
annotating spots they find more relevant over algorithm-selected ones, particu-
larly in early iterations when classification criteria are not yet fully established.
Additionally, they may focus on correcting model errors rather than annotat-
ing new spots, which can shift model performance closer to random sampling
approaches—shown in this study to be inferior to active learning strategies. To
improve ActiveVisium’s efficiency, we recommend establishing clear classification
criteria and annotating representative spots in the first iteration. At least two
active learning iterations should be completed before prioritizing error correction,
as early predictions tend to be less reliable due to limited data. Once the model
stabilizes, reviewing and correcting predictions is beneficial.

5 Limitations and Conclusion

This study introduces ActiveVisium, an active learning-based framework designed
to streamline manual spot annotation in 10x Visium ST experiments. It demon-
strates significant potential for reducing annotation workload and improving
consistency across diverse tissue types. However, we acknowledge several key
limitations.

A primary challenge in evaluating active learning frameworks, such as Active-
Visium, lies in the inherent trade-off between minimizing annotation effort and
the need for comprehensive performance assessment. This validation paradox [10]
is further amplified by the relatively small dataset sizes (in terms of the number
of samples available) and the difficulty in establishing a reliable ground truth
due to inherent noise and inter- and intra-observer variability in pathologists’
annotations. Consequently, while a traditional train-test-validation split was
performed for consistency with the literature, we focus on performance within
the annotation pool as a more relevant indicator of the model’s utility.

The choice of the annotation tool presents another limitation. While we
utilized the Loupe Browser for its familiarity and accessibility, its design is
not optimal for active learning annotation tasks. Therefore, more specialized
applications should be developed. This aspect was not explored at this stage of
our research, as we focused on a proof-of-concept study using an established tool
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which pathologists were already familiar with. Developing a dedicated tool was
beyond the scope of this study. However, we envision integrating ActiveVisium
into a broader workflow in the future.

Beyond the limitations discussed above, several possibilities exist for future
enhancement of ActiveVisium. Given the dynamic shifts in data distribution
inherent to active learning, adaptive hyperparameter tuning [15] and more so-
phisticated regularization techniques are expected to improve learning efficiency
and robustness. Furthermore, integrating multi-scale learning and leveraging the
spatial context of spots are promising strategies. Finally, given the increasing
adoption of Visium HD with its significantly higher resolution (2µm bins com-
pared to 55µm spots in standard Visium), future work should prioritize adapting
ActiveVisium to this platform, as the manual annotation of these high-resolution
datasets is anticipated to present a substantial bottleneck

Looking ahead to the future applications of ActiveVisium, it is important to
clarify its role in relation to pathologists. ActiveVisium is designed to comple-
ment, not replace, their expertise. By automating repetitive and time-intensive
annotation tasks, it allows pathologists to focus on higher-level analysis and
interpretation.

6 Data and Code Availability

All code and data used in this study—including manual pathologist annotations,
configuration files, model checkpoints, and intermediate results—are available at
10.5281/zenodo.15625539 and github.com/jelica-vasiljevic/ActiveVisium.
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