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Abstract. Auditing involves verifying the proper implementation of a
given policy. As such, auditing is essential for ensuring compliance with
the principles of fairness, equity, and transparency mandated by the Eu-
ropean Union’s AI Act. Moreover, biases present during the training
phase of a learning system can persist in the modeling process and re-
sult in discrimination against certain subgroups of individuals when the
model is deployed in production. Assessing bias in image datasets is a
particularly complex task, as it first requires a feature extraction step,
then to consider the extraction’s quality in the statistical tests. This pa-
per proposes a robust methodology for auditing image datasets based
on so-called "sensitive" features, such as gender, age, and ethnicity. The
proposed methodology consists of both a feature extraction phase and
a statistical analysis phase. The first phase introduces a novel convolu-
tional neural network (CNN) architecture specifically designed for ex-
tracting sensitive features with a limited number of manual annotations.
The second phase compares the distributions of sensitive features across
subgroups using a novel statistical test that accounts for the imprecision
of the feature extraction model. Our pipeline constitutes a comprehen-
sive and fully automated methodology for dataset auditing. We illustrate
our approach using two manually annotated datasets.5

Keywords: Audit, Images, Bias, Distribution, Statistical test, Uncer-
tainty, Classification, Fitzpatrick, Gender, Age

1 Introduction

The widespread adoption of machine learning (ML) systems in industrial appli-
cations has heightened concerns about fairness, transparency, and accountability.
The issue of bias in algorithmic decision-making has emerged as a critical con-
cern within the machine learning community. A substantial body of research has
examined how such biases can adversely impact algorithmic outcomes, poten-
tially leading to violations of fundamental rights, as highlighted in the European
AI Act. This legislation highlights the need to prevent AI systems from per-
petuating or exacerbating existing societal inequities through systematic bias
5 Code and datasets available at github.com/ValentinLafargue/FairnessDetails
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analysis. These biases not only compromise fairness but also raise ethical and
legal challenges, underscoring the need for rigorous detection through system-
atic audit processes to ensure accountability and mitigate unintended harms.
We refer for instance to [40], [3], [21], [9], [44], [17], [25] or [28]. Beyond decision-
making contexts, we know that algorithmic biases often stem from biases present
in the training datasets themselves. Auditing an image dataset is a challenge in
itself. Firstly, it is necessary to determine which variables to consider and how to
extract them from an image. The importance of auditing image datasets is am-
plified by the fact that every image inherently encodes explicit features. Unlike
text or numerical datasets, which can omit or abstract sensitive details, images
visually represent specific characteristics, often revealing cues about sensitive
features such as ethnicity, age, and gender. Manual labeling of such features is
prohibitively expensive when dealing with large-scale datasets or when conduct-
ing extensive audits across multiple variables. To address this issue, convolu-
tional neural networks (CNNs) can be employed to predict sensitive features,
although they require annotated data for their training (lesser amount). Once
trained, the network can predict the sensitive feature of the remaining data in
the dataset (with a certain error relative to it). In our context, we define bias
in an image dataset as statistically significative difference of distributions (e.g.,
an ethnicity or an age group under-represented). Statistical tests usually do not
take into account the uncertainty of the labels (false predictions). We propose a
prediction-aware testing pipeline that evaluates the underlying characteristic of
a dataset while accounting for the model’s imprecision during statistical analy-
sis. Considering the model’s accuracy in our testing pipeline helps minimize the
required manual labeling, enabling large-scale auditing. The Section 2 presents
the literature review about the sensitive feature extraction method and about
the error-robust statistical testing. The Section 3 introduces the datasets used
and our manual annotation procedure, the Section 4 explains our feature ex-
traction and classification methodology, the Section 5 presents our error-aware
testing protocol, then the Section 6 highlights our results. Section 7 concludes
with some perspectives and future work.

2 Related Works

Assessing bias in image datasets requires careful consideration of several aspects.
First, the dataset contains potentially sensitive variables. Some features must be
extracted to serve as proxy estimates for these variables. Based on these fea-
tures, an auditing pipeline generates reports on diversity and representativeness
using selected metrics or statistical tests. The following subsections provide an
overview of general concepts from the literature related to each of these aspects.

2.1 Choice of possible sensitive variables

Ethnic classification refers to the classification of individuals into distinct groups
based on perceived physical characteristics, such as skin color, hair texture, and
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facial shape. Many academic datasets separate images into at least five cate-
gories: Latino, Asian, White, Black, and Other. This classification is common in
many reference datasets such as the Adult dataset [7] and is derived from the US
Census 2000 classification. In [27], the authors criticize methodologies that rely
exclusively on race as a variable, arguing that this approach is overly restrictive.

An alternative to the Census 2000 classification is to use medical skin anal-
ysis criteria. In [10], the authors presented a method using the ITA (Individual
Typology Angle) algorithm [48, 38] to estimate skin tone in the context of clas-
sifying skin lesions and to normalize the impact of lighting variations on facial
images. Similarly, the Fitzpatrick classification, introduced by [22], classifies in-
dividuals based on their skin’s reaction to sun exposure. This classification has
six classes and takes into account features such as skin color, the presence of
freckles, hair and eye color, and reactions to sun exposure (precise definition
and the demographic distribution are in the Appendix, Section A). Inspired by
[12], we believe that the Fitzpatrick scale is well-defined as it stems from its
dermatology origin. This thorough definition paired is with its popularity justify
in our opinion its usage in the context of auditing.

The authors of [46] recommend considering ethnicity as a color shade, in
particular to use the newly created Monk Skin Tone Scale [39]. However, the
wide range of shades makes it challenging to separate groups and, consequently,
to identify bias. Once the features are selected, the next step is to automate
their extraction from the image dataset.

2.2 Model for dataset labelisation

Depending on the size of the dataset, manual extraction may be time-consuming
and challenging, prompting the use of a classifier to automatically annotate part
of the dataset. CNNs are particularly well suited to images, as they can extract
visually identifiable features. From a face image, CNNs can capture skin tone
as a set of pixel colors or as ITA. However, this information alone omits ethnic
features [48] such as hair texture or face shape, which can reduce the accuracy of
ethnic classification. This highlights the need for image segmentation. Therefore,
the chosen architecture should identify areas that contain these features, while
excluding irrelevant areas such as the background. Among existing methods [23],
the FairFace architecture [33] detects faces and classifies age and gender using a
ResNet34 architecture [29]. A variant approach in [43] employs a nested U-Net
architecture called U2-Net. Finally, interest has brewed around understanding
and guiding the CNNs by understanding how the networks treat facial character-
istics [52]. A segmentation of the skin region can be achieved using DeepLabv3
[15] with a MobileNetV3 Large Backbone model [30] pretrained on Celeb-HQ
[35]. An extension proposed by [48, 38] estimates ITA values. More precisely, after
smoothing the image and applying a skin mask, the authors applied a K-means
clustering on the pixels values and kept the one with the highest luminosity to
extract the ITA values. Finally, [2] trained a CNN from scratch to classify skin
pixel shades into 10 classes. However, none of these methods explore the impact
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of training dataset size which is crucial when auditing, as underlined in [16], or
provide specific configurations for the Fitzpatrick classification.

2.3 Metrics and statistical tests

Once features have been extracted from the dataset and transformed into vari-
ables, they are used to group individuals based on these variables. The fair-
ness auditing process then evaluates whether certain groups are over- or under-
represented in comparison to predefined parameters, which may include equal
or official proportions. This parameter ensures the preservation of the so-called
diversity [18], such as maintaining almost equal frequencies between different
groups. Consider a dataset D of observations composed of p variables : X0, . . . , Xp−1.
Let X0 be a variable that may convey bias (e.g., ethnicity or age), and Xj be a
variable that may induce disparity or the bias representation (e.g., gender). We
focus on the conditional distribution of X0 given Xj , denoted as L(X0|Xj) or
when no ambiguity is possible {X0|Xj}.

The first measure of fairness aims at quantifying the diversity in the dataset.
For this, a diversity loss is introduced in [51]. Given classes {1, . . . , k} with target
frequencies fi

(∑k
i=1 fi = 1

)
, and real frequencies f ′

1, . . . , f
′
k, the diversity loss ∆

is defined as ∆ := 1− inffi>0 f
′
i/fi. Hence, it computes a ratio ∆ ∈ [0, 1] where a

value of ∆ close to 1 means that at least one group is highly under-represented.
Unfortunately, this metric focuses solely on one unrepresented group. For dis-
crete categorical variables, diversity can be evaluated using Conditional Shannon
entropy. The Conditional Shannon entropy distribution C(S) of a subset S ⊆ X0

is defined as:

C(S) = −
k∑

i=1

fi log fi

where xj
i is a possible modality of Xj and si =

|S|∩|Xj=xj
i |

|S| is the probability
to observe S according Xj = xj

i . Equally distributed entropy according to Xj

corresponds to good diversity. Both of the aforementioned metrics cannot be
extended to cases where the space of conditional observations is large and are
not related to a statistical test [13].

The second main measure of fairness for such problems comes from a vol-
umetric perspective comparison. Actually, Geometric diversity [18] provides a
meaningful similarity measure for observations in multiple dimensions. Consider
each data point of the dataset x ∈ X, represented by a variable vector vx. The
geometric diversity of a subset S ⊆ X is defined as the n-volume of the paral-
lelotope spanned by the p variable vectors {vx : x ∈ S}, where n = |S| is the
size of the subset. Denoting the data matrix of the subset S as D ∈ Rp×n, the
(squared) n-volume of the n parallelogram embedded in p dimensional space can
be computed by means of the determinant of the Gramian matrix G = DTD
(with variable vectors as columns in D). Thus, the geometric diversity can be
measured by :

G(S) =

√
Det(DTD)
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The larger G(S), the more diverse is S in the variable space. However, Geo-
metric Diversity cannot be applied if one aims to compare variable distributions
using statistical hypothesis testing [14]. The Disparate Impact (DI) is one of the
most used fairness metric, defined for a binary model Ŷ = f(X) by the ratio

DI(f, S) :=
min

(
P(Ŷ = 1 | S = 0),P(Ŷ = 1 | S = 1)

)
max

(
P(Ŷ = 1 | S = 0),P(Ŷ = 1 | S = 1)

)
This quantity is equal to 1 when there is probabilistic independence between
the model’s decision Ŷ and the sensitive variable S. The smaller the DI is, the
more discrimination towards the minority class exist. Hence, several norms or
regulations impose that a model should have its disparate impact greater than
0.8 as detailed in [26] or [50].

This metric generally used to evaluate the discrimination of a model, can be
applied to evaluate the probabilistic bias of two sensitive variables. We choose
to include it only in the Appendix (1) not to confuse the reader and make
him think that we evaluate our model’s fairness (for the instance the bias in
the CNN predicting the Fitzpatrick Class), (2) homogeneity between the parity
test (about one sensitive variable) where the DI is not applicable and the equal
representation test (about two sensitive variables) where one might use the DI
and (3) while relevant, we believe that testing a null hypothesis with multiple
statistical tests is a more robust approach ; see Section D.3 in the Appendix.

Rather than relying on high-level metrics or aggregated scores, our approach
evaluates biases by directly comparing the distributions of sensitive variables
across subgroups.To quantify the distance between distributions with large, high-
dimensional samples, one may measure the general Wasserstein distance, given
by:

Wp̃(µ, ν) =
(

inf
π∈Γ (µ,ν)

∫
M×M

d(x, y)p̃dπ(x, y)
)1/p̃

where p̃ ≥ 1, Wp̃ is the p̃th Wasserstein distance, Γ (µ, ν) denote all joint distribu-
tions π that have marginals µ and ν, d() is the distance function between points
x and y that matched and M is a given metric space. Using the Wasserstein dis-
tance, a classical distance-based test, such as the two-sample test (i.e. variables
following the same distribution), can be applied following the tests proposed in
[5] using the limit distributions developed in [4] or [6] and [47]. Other statis-
tical tests, such as those based on averages or conditional averages, may also
provide insights into the proximity of variable distributions [18]. Traditional sta-
tistical tests, such as Pearson’s R, the t-test, and ANOVA, are commonly used.
For non-normal data distributions, non-parametric tests, such as the χ2 test,
the Kolmogorov-Smirnov (KS) test, or the Central Limit Theorem (CLT) based
test, serve as an alternative.

The previously mentioned metrics and tests do not account for the classi-
fication accuracy of feature extraction. Since feature extraction is performed
automatically, as highlighted by [1], who evaluated how varying levels of label
error (simulated through label flipping) affected the disparity metrics, it is es-
sential to consider the model’s accuracy in the bias detection task. Permutation
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Fig. 1: Fitzpatrick classification (5 class) from the left to right Phototype I, II,
III-IV, V, VI. The first row is from the GAN dataset, while the second is from
the CelebA dataset, both dataset are released to the community.

methods have long been used in pursuit of robustness, as demonstrated by [20],
who introduced a permutation-based fairness framework with labelled data. Al-
though an extensive body of work has addressed label errors in the training set,
to the best of our knowledge, no specific test for bias detection, that accounts
for errors in the automated extraction of variables, has been proposed .

Our contribution, therefore, is to propose a full pipeline that starts with a
variable extraction step and extends to robust statistical tests designed to con-
sider the fairness according to the accuracy of the model’s annotations. The
following section details our complete methodology and introduces robust sta-
tistical techniques to highlight biases in images datasets.

3 Datasets and manual annotation

3.1 Datasets

To illustrate our pipeline, we rely on two datasets as guidelines, using them
as the starting point of our process. These datasets are academic benchmark
datasets of two different types. Generated Photos dataset [24, 11] is a synthetic
images dataset sourced from a commercial platform and are generated using a
GAN-based model [32]. The dataset intentionally encompasses a broad range
of demographic features, including gender and ethnicity, with the GAN’s hy-
perparameters calibrated to represent individuals with appearances associated
with diverse ethnicities. Each image has been generated with Census 2000 la-
beling, ensuring an almost equal proportion of Caucasian, Asian, Hispanic or
Latino, and Black populations. For our work, we utilized the academic version
of this dataset, which contains 10,000 generated facial images. We also work on
a well-known benchmark: The CelebA dataset [36] for comparative analysis. The
CelebA dataset has approximately 200,000 celebrity images sourced from the In-
ternet, annotated with multiple facial features. From this dataset, we randomly
sampled 1,500 images to assess how our test performs on a smaller dataset.
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Fig. 2: Skin color extracted and Individual Typology Angle (ITA) of the GAN
dataset

(a) GAN dataset (b) Subset of the CelebA dataset

Fig. 3: Probability density of ITA given the Fitzpatrick class

3.2 Manual annotation

All images were manually labeled by three non-expert individuals according to
the Fitzpatrick classification. This manual annotation helps assess how well our
model aligns with a fully manual annotation. However, Phototypes III and IV
are hardly distinguishable for non-experts and rarely reach full agreement. Thus,
we chose to merge them. Fig. 1 gives some examples of our manual classification.
As with ethnicity, a person’s gender is determined by the majority vote of our
three annotators. Even when considering the reflected gender, our dataset did
not adequately represent the transgender or the bi-gender community, just to
name a few, leading the annotators to classify the portrayal of gender to the
limited view of gender binary notion that includes only men and women. In
this regard, we view our work as part of initial studies towards auditing gender
representation, which should further be extended in this direction in the future.
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4 Sensitive variable classification using Neural Network

Manual auditing is not cost-effective for high- or medium-level auditing of large-
scale datasets. This underscores the need for neural networks to predict sensitive
variables accurately. Numerous manually labelled image datasets exist for binary
gender classification - although we regret the lack of datasets with more diverse
gender representations - facilitating the use of highly effective pre-trained net-
works for gender estimation.

4.1 Individual Typology Angle (ITA) estimation and link with
Fitzpatrick

To improve the accuracy of the Fitzpatrick classification, we add an Individual
Typology Angle (ITA) estimation step to our model, which can be seen as an
enrichment of pixel information. ITA values are computationnaly derived from
skin regions (isolated by pre-trained DeepLabv3). The estimate of the ITA value
is based on 2 colorimetric parameters: the luminance L∗ and the yellow/blue
component b∗. The ITA is defined as follows:

ITA = arctan
(
L ∗ −50

b∗

)
× 180

π
(1)

where a perceptual lightness at value 50 corresponds to a maximum chroma.
We extracted the mean and standard deviation of the ITA values and of other
colometric parameters. Fig. 2 presents examples of extracted ITA.

Fig. 3 gives the ITA distribution according the Fitzpatrick class and confirm
the clear correlation between the Fitzpatrick classes and ITA values. Higher
Fitzpatrick class numbers correspond to lower mean ITA values. However, as
a single ITA score can be assigned to several Fitzpatrick classes, there is no
one-to-one correspondence between the two. We further research the difference
between the ITA and the Fitzpatrick class in the Appendix, Section B.

4.2 Gender, age and Fitzpatrick scale classification

We used the FairFace [31] method to classify gender and age, as its architecture
provides the best results for these tasks. Despite certain limitations —such as
detecting undesirable background faces- it achieved the best accuracy (see in
the Appendix, Section E.2). Since our classification task relies primarily on facial
features, especially skin, we studied the effect of applying masks to images before
training our fine-tuned CNN. We tested three approaches (see in the Appendix,
Fig. 9): (1) using the original images, (2) removing the background, and (3)
isolating only the segmented skin region. The extracted ITA and skin-related
information are incorporated as additional features in the latent layer of the
neural network architecture.

In most of our experiments, we added a custom classification head to ResNet-
50 or ResNet-101 embeddings [29] and fine-tuned these models on our labeled
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DeepLabV3 Rembg

Pixel information (ITA, lum..)

concatenate
dim = 15

dim ∈ {1000, 2048}
Overhead Network

Fitzpatrick class

K-means Pre-processing

0 0 0 0 1

Fig. 4: Pipeline for our Fitzpatrick classification

dataset, eliminating the need for full CNN training. The impact of training set
size is analyzed in Section 6. We use two feature extraction configurations: (1) the
final dense layer’s output (1,000-dimensional) and (2) the preceding layer’s out-
put (2,048-dimensional). Fig. 4 present an overview of our classification pipeline.
More details on the architecture, optimizer, early stopping, compute time, and
transfer learning method are provided in the Appendix, Section C.1. We created
a Neural Network architecture to accurately predict the Fitzpatrick class with as
few manually labeled image as possible, however, this part was not mandatory
to our auditing framework thanks to the following section, which explains how
we calibrate our testing pipeline given a model’s accuracy.

5 Uncertainty aware statistical test

Statistical test used We find rejection based on variable distributions more mean-
ingful, hence, H0 assumes that both groups are drawn from the same underlying
distribution. In our proposed methodology, we use a modified version of well-
known statistical tests to compare two distributions, including the χ2 test, the
CLT-based mean test and the Wasserstein-based test. Note that categorical mul-
timodal variables are treated as binary variables in a one-vs-all approach, which
can be considered a limitation to our work. Two tests are presented here: the
parity test and the equal representation test.

Parity test (one sensitive variable) To audit the bias according to a tested vari-
able X0 (gender, age or Fitzpatrick), it is necessary to compare the observed dis-
tribution of X0 with its expected distribution. When X0 is gender, this process
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Accuracy / Precision (%)

Gender (G) Men (M) : 97 %
→3% permutation with W

Women (W) : 95 %
→ 5% permutation with M

Fitzpatrick class V
given G (Fitz.V )

V knowing predicted M : 93 %
{X̂Fitz.V |X̂G = M} ← 7% replacement
x ∼ U(XFitz.V |XG = M,Xpred = False)

V knowing predicted W : 85 %
{X̂Fitz.V |X̂G = W} ← 15% replacement
x ∼ U(XFitz.V |XG = W,Xpred = False)

known
(manual)

prediction

M W

M

W

M

M

W

W

Fitzpatrick class V

3%

5%

7%

predpred

15%

Statistical test:
- Chi2 - Mean test - Wasserstein test

median of test results
( one per simulation )
→ p-value < threshold

Gender class

Fitpatrick class
associated

Gender class
associated

Fig. 5: Diagram explaining our error-aware testing pipeline in an equal represen-
tation test of the Fitzpatrick class V conditioned by the gender.

involves comparing X0 observed values with a Bernoulli distribution of p = 1
2

(i.e. testing H0 : X0 ∼ B(p)). While the assumption of a uniform distribution for
the binary gender may appear reasonable, it is important to recognize the lim-
itations of such an assumption when considering age groups or the Fitzpatrick
class. To this end, a chosen parameter reflecting a real mondial distribution was
utilized for comparison (see in the Appendix, in Section D.2, Table 8 and Table
9 to observe the recorded parameters). Hence, we test, respectively for when X0

is the age (H0 : X0 ∼ RealDistr(Age)) and for when X0 is the Fitzpatrick class
(H0 : X0 ∼ RealDistr(Fitzpatrick)).

Equal representation (two sensitive variables) We test whether the distribution
of a variable X0 (a Fitzpatrick skin type or age interval) differs significantly given
another variable Xj (gender ’men’ or ’women’). Let’s consider x0

i′ ∈ 1, · · · ,K ′ the
K ′ modalities of X0 and xj

i ∈ 1, · · · ,K the K modalities of Xj . To perform this
analysis, we first partition the dataset based on Xj (one-versus-all according to
xj
i ) and then compare the distribution of X0 across the two resulting partitions

of Xj . We define the variable W 0 ∈ {0, 1}K′
such as W 0 = (W 0

1 , · · · ,W 0
K′) and



Fairness is in the details 11

the W 0
i′ are defined as followed:

∀i′ ∈ 1, · · · ,K ′ W 0
i′ :=

{
1 if X0 = x0

i′

0 otherwise.
(2)

a condition notation of W 0
i′ on a subspace S according Xj is given by :

∀i ∈ 1, · · · ,K W 0,j
i′,i :=

{
1 if X0 = x0

i′ in S ∈ {Xj = xj
i}

0 if X0 ̸= x0
i′ in S ∈ {Xj = xj

i}
(3)

W 0,j

i′,
_
i
:=

{
1 if X0 = x0

i′ in S ∈ {Xj ̸= xj
i}

0 if X0 ̸= x0
i′ in S ∈ {Xj ̸= xj

i}
(4)

We test the following assumption on the distributions, H0 : W 0,j
i′,i ∼ W 0,j

i′,
_
i

.

Uncertainty aware To ensure reliability, the auditing process must be robust
to variations in model annotation accuracy. Consequently, the test must be ro-
bust to prediction errors and minimize false negatives for the null hypothesis,
H0. As permutation tests, we randomly invert the automatic annotation modal-
ity of some predicted variables while keeping manual annotations unchanged.
This procedure serves to reduce the discrepancy between distributions and min-
imize false negatives in test decisions. The model prediction is denoted by Ŵ 0

i ,
and the true value by W 0

i . These tests are modified according to the following
methodology:

– Parity test:
1. We calculate the model’s accuracy AW 0

i′ := P[Ŵ 0
i′ = W 0

i′ ] for each of the
estimated variables Ŵ 0

i′ .
2. We randomly replace 100 × (1 − AW 0

i′ )% of Ŵ 0
i′ by values simulated

according to the expected parameter (for example B( 12 ) for gender).
– Representation test:

1. We calculate the prediction’s precision PW j
i := P[W j

i = 1|Ŵ j
i = 1] for

each of the variables Ŵ j
i .

2. We randomly permute 100 × (1 − PW j
i )% between Ŵ j

i and Ŵ j
_
i

values
(e.g., transforming predicted women into predicted men and vice versa)

3. We compute AW 0
i′ ,W

j
i =1 := P[Ŵ 0

i′ = W 0
i′ |W

j
i = 1] which represents the

classification model’s accuracy for the modality x0
i′ conditioned on xj

i .
4. We randomly replace 100 × (1− AW 0

i′ ,W
j
i =1)% of the automatically an-

notated variables Ŵ 0,j
i′,i and Ŵ 0,j

i′,
_
i

respectively with manually annotated

variables W 0,j
i′,i and W 0,j

i′,
_
i
.

Note that the accuracies and precisions above are calculated on the validation
set. We conduct multiple statistical tests across several simulations and aggregate
the results by taking the median p-value of all simulations. This framework is
illustrated in Fig. 5.
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(a) GAN dataset (b) CelebA dataset

Fig. 6: Learning sample size impact
on the Network accuracy (Fitzpatrick
classification). The by-one-accuracy in-
cludes predictions for the true class as
well as the directly adjacent classes.

Hyperparameter GAN CelebA

Skin information (ITA..) +0.6 +0.2
Overhead network choice +3.7 +4.2

Skin mask -1.7 +1.2
Removing background +0.1 +1.8

Latent space size (2048) +1.9 +2.7

Table 1: Impact of hyperparameters
and architecture for neural network de-
signed to classify the Fitzpatrick scale
on the GAN and CelebA datasets.

6 Results

We report results on the two datasets described in Section 3.1. Our auditing
process consists of: (1) assessing whether there is a significant difference in the
observed proportions across three sensitive attributes—gender, age, and Fitz-
patrick classification; and (2) evaluating whether significant differences exist in
the observed proportions of age and Fitzpatrick classification, conditioned on
gender.

6.1 Ablation study of the Fitzpatrick classification

As shown in Fig.6, the size of the manually annotated training dataset has
a significant influence on model accuracy. Using the GAN dataset, our model
achieves a 76% correct Fitzpatrick classification prediction rate on the test set,
with at least 12.5% manual annotation. However, with CelebA, the accuracy of
the model does not exceed 65%, despite hyperparameter tuning. It highlights the
necessity of accounting for model errors in the tests to avoid the need for a full
retraining of the CNN. Age and gender are provided by a trained FairFace model,
so there is no training step, and the model achieved respectively a 97.17% and a
94.46% accuracy on CelebA and GAN for the gender classification. Without age
labels, to verify the consistency of FairFace’s age prediction, we compared its
prediction with another network prediction and obtained a 72.77% classification
similarity for the GAN dataset (More details in the Appendix, see Table 7). Ta-
ble 1 provides an ablation study examining the impact of each hyperparameter
in the CNN architecture for Fitzpatrick classification. A high-dimensional latent
space, the incorporation of ITA into the model, and the removal of image back-
grounds significantly enhance the learning process. However, the use of a skin
mask has a negative effect on the results. This can be explained by the removal
of features such as hair color, which are essential for Fitzpatrick classification.
The addition of ITA showed a notable improvement for small training datasets
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Table 2: Statistical test on the parity of Gender (H0 : p = 0.5) and the real
distribution for the Fitzpatrick class and Age (H0 : marginal and global distri-
butions are equivalent). The test used were the Wasserstein test, the Mean test
and the χ2 test. ✓, ✓2/3 and × respectively means that 0, 1 or at least 2 tests
rejected H0. Colored cell means that the test result are different because of the
error-aware protocol: means that, thanks to the error-aware method, less test
rejected H0.

(a) GAN

Sensitive
Variable

Sample Size
100 500 1000 3000 8000

Gender × × × × ×
Age

0-2 ✓ ✓ ✓ ✓ ✓
3-9 × × × × ×
10-19 × × × × ×
20-29 × × × × ×
30-39 × × × × ×
40-49 × × × × ×
50-59 × × × × ×
60-69 × × × × ×
70+ × × × × ×

Fitzp. class
I × × × × ×
II × × × × ×
III- IV × × × × ×
V × × × × ✓
VI × × × × ×

(b) CelebA

Sample Size
100 500 1000 1200
× × × ×

✓ ✓ ✓ ✓
× × × ×
× × × ×
× × × ×
× × × ×
✓ ✓ ✓ ✓
✓ ✓ ✓ ✓
× × × ×
× × × ×

× × × ×
× × × ×
× × × ×
× × × ✓
× × × ✓2/3

with an embedding size of 1000 dimensions. We believe that skin-related fea-
tures are sufficiently captured for the embedding of size 2048 but lost during
dimensionality reduction (embedding of size 1000).

6.2 Ablation study of the error-aware method

To study the impact of the error-aware approach, we evaluated the statistical
tests with and without taking into account the imprecision of the neural net-
work’s predictions. The colored cell on Table 2 and Table 3 show the effect of
adding the uncertainty aware corrections to the statistical tests. For the parity
test (1), for over the 135 tests, the aggregation of test accepted H0 20 times
with the error-aware approach, and only six times without it. For the equal
representation test (2), the error-aware method affected the result of 88 of the
126 aggregations of tests: for 84 out of the previously mentioned 88, the uncer-
tainty aware corrections made the audit result more tolerant. we provide in the
Appendix the Table 2 and Table 3 without corrections (Table 10 and Table 11).

6.3 Sample size impact on statistical test results

Here, we assess whether both test methodologies produce the same conclusions
as those obtained from the fully annotated dataset, which serves as the ground
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Table 3: Equal representation statistical test on the for the Fitzpatrick class and
the Age, with respect to each reflected closest binary gender subgroup. H0: The
Fitzpatrick or Age distribution of the reflected men subgroup is the same as the
reflected women subgroup. The tests used were the Wasserstein test, the Mean
test, and the χ2 test. ✓, ✓2/3 and × respectively means that 0, 1 or at least 2
tests rejected H0. Colored cell means that the test result are different because of
the error-aware protocol: and respectively mean that, because of the error-
aware method, more test or respectively less test rejected H0

(a) GAN

Sensitive
Variable

Sample Size
100 500 1000 3000 8000

Age
0-2 ✓ ✓ ✓ ✓ ✓
3-9 ✓ ✓ × ✓ ✓
10-19 ✓ ✓ ✓ ✓ ✓
20-29 ✓2/3 ✓ × ✓ ✓2/3

30-39 ✓ ✓ ✓ ✓ ✓
40-49 ✓ ✓ ✓ ✓ ✓
50-59 ✓ ✓ ✓ ✓ ✓
60-69 ✓ ✓ ✓ ✓ ✓
70+ ✓ ✓ ✓ ✓ ✓

Fitz. class
I ✓2/3 ✓2/3 × × ×
II × × ✓2/3 ✓2/3 ✓
III- IV × × × × ✓2/3

V × × ✓ × ✓2/3

VI × × × × ×

(b) CelebA

Sample Size
100 500 1000 1200

✓ ✓ ✓ ✓
✓ ✓ ✓ ✓
✓ ✓ ✓ ✓
× × × ×
✓ ✓2/3 ✓ ✓
✓ ✓ ✓ ✓
✓ ✓ ✓ ✓
✓ ✓ ✓ ✓
✓ ✓ ✓ ✓

✓2/3 ✓2/3 × ×
× × × ×
✓ ✓ ✓ ✓
× × ✓2/3 ✓
✓ × ✓2/3 ✓2/3

truth without annotation errors, given different amounts of manually annotated
data. The parity test (1), for the GAN dataset resulted in only four false rejec-
tions out of the 75 tested hypotheses, with the error associated with Fitzpatrick
category V (Table 2a). For the CelebA dataset, we observed two modalities with
false rejection out of the 15 tested (see Table 2b). In both datasets, our parity
test demonstrates robustness to the sample size effect. The equal representation
test (2) is more sensitive to sample size effect. For the GAN dataset, it produced
eleven false rejections out of 70 tests (Table 3a). It seems that sample size≥ 1000
is enough to get stabilized results. For the CelebA dataset, Our equal representa-
tion test (Table 3) produced three false negative and three false positives among
56 tests.

6.4 Auditing result

Parity test results (1) For the GAN dataset, the parity tests of our audit (Table
2a) reveal that the observed proportions for gender, age, and Fitzpatrick scale
features do not align with the proportions recorded in the general population.
For the CelebA dataset, the population aged 40 to 59 is the only age group
representative of the recorded parameter.
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Equal representation test result (2) For the GAN dataset, our auditing reveals
a strong gender-related bias with ethnicity, for example, a woman is 1.37 times
more likely to be in the Fitzpatrick class I compared to a man. Contrariwise, a
man is 1.41 times more likely to be in the Fitzpatrick class VI (For all values,
see in the Appendix, the Table 9). No gender-related biases with age are present
in the Gan dataset. In CelebA, the age group 20-29 is overrepresented among
women (73% of women are in this age group against 36% for men). There also
exist a strong Fitzpatrick-gender bias : while 66% of women are of Fitzpatrick
class II, 52% of men are. On the contrary, men are 12.5 times more likely to be
in the Fitzpatrick class I.

7 Conclusion

We have proposed a new bias auditing method that minimizes the need for man-
ual annotation (requiring between 100 and 1000 annotations) and is robust to
errors in automated annotation. When rejecting the null hypothesis, data fluctu-
ations mean that not all statistical tests necessarily yield the same conclusions.
For instance, the χ2 test appeared more lenient compared to the Wasserstein
test. To address this, we consider the majority vote of the results from our three
tests. We are also aware that our method tends to accept the null hypothesis
(H0) more readily in the equal representation test. However, we aim to avoid
discouraging users from adopting our method due to an excessive number of
false rejections. Our primary goal is to encourage users to utilize our tool rather
than to achieve a high recall rate (sensitivity). We emphasize the importance of
assessing the representativity of individuals before using an image dataset for
training, in order to mitigate potential discrimination. In the context of the AI
Act, which will require companies to certify the compliance of training data for
machine learning models, we hope that this audit will serve as a first tool at
their disposal. Our future work will aim to monitor bias in generative models in
online mode.
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