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Abstract. The discovery and optimization of materials for specific ap-
plications is hampered by the practically infinite number of possible
elemental combinations and associated properties, also known as the
‘combinatorial explosion’. By nature of the problem, data are scarce
and all possible data sources should be used. In addition to simula-
tions and experimental results, the latent knowledge in scientific texts
is not yet used to its full potential. We present an iterative framework
that refines a given scientific corpus by strategic selection of the most
diverse documents, training Word2Vec models, and monitoring the con-
vergence of composition-property correlations in embedding space. Our
approach is applied to predict high-performing materials for oxygen re-
duction (ORR), hydrogen evolution (HER), and oxygen evolution (OER)
reactions for a large number of possible candidate compositions. Our
method successfully predicts the highest performing compositions among
a large pool of candidates, validated by experimental measurements of
the electrocatalytic performance in the lab. This work demonstrates and
validates the potential of iterative corpus refinement to accelerate ma-
terials discovery and optimization, offering a scalable and efficient tool
for screening large compositional spaces where reliable data are scarce
or non-existent.
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1 Introduction

The discovery of new materials has traditionally relied on experimental intuition
and trial-and-error methods, where researchers manually combined and tested
materials, guided by experience and theoretical knowledge [6,7,26]. These meth-
ods have led to significant breakthroughs, such as platinum-based electrocata-
lysts for fuel cells [5] and advanced alloys for aerospace applications [4]. However,
they are time-consuming, resource-intensive, and difficult to scale, particularly
as material systems containing more than one or two principle elements become
more complex. Modern material systems, such as high-entropy alloys [15] or ox-
ides [27], multi-principal element compounds [9], involve a large number of possi-
ble and tunable compositions, which represents a possibility to use them as ‘dis-
covery platforms’ [2]. However, the sheer number of possible compositions makes
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experimental searches impractical or even impossible. Furthermore, global chal-
lenges such as the switch to renewable energy and sustainability require faster
and more efficient ways to discover new and optimize existing materials [11,17].

In recent years, computational methods have become powerful tools for ma-
terials discovery. Simulation techniques such as density functional theory (DFT)
can predict material properties, reducing the need for extensive experimen-
tal trials at the cost of the energy spent in high performance computing cen-
ters [10,18,19]. Machine learning has added another dimension by finding pat-
terns in structured datasets and predicting properties for unexplored compo-
sitions [13,16]. Although these methods have been successful in narrowing the
search space, they have limitations. DFT simulations are computationally expen-
sive, in particular when small ≤ 1 atom-% compositional changes require many
calculation to achieve a statistically correct property prediction for one com-
position point due to the different random distributions of elements and their
impact on material properties. Supervised machine learning models to substi-
tute expensive DFT simulations require high-quality datasets that are available
at scale and variety to match the parameter space of technologically interesting
materials.

The scientific literature offers an alternative resource for material discovery.
Research articles and patents contain hidden knowledge encoded in text about
composition-property relationships from experimental results and theoretical ap-
proaches [25]. Natural language processing (NLP) methods like Word2Vec [14]
and Doc2Vec [12] can extract this knowledge by turning textual data into vector
representations. These vectors capture relationships and correlations between
words, which allows to link ‘material dimensions’, such as composition, to prop-
erties, e.g. electrocatalytic performance, and to develop models for the prediction
of new high-performing candidate compositions. Unlike simulations or structured
datasets, text mining can leverage unstructured data, providing access to this
latent knowledge.

Despite its potential, using the scientific literature effectively presents chal-
lenges. Not all text sources are equally relevant, and including too many irrele-
vant or redundant sources can reduce the predictive quality of the models. The
increasing volume of scientific literature, including artificial intelligence (AI)-
generated content, makes this issue even more pressing. Many AI-generated texts
are repetitive or inaccurate, introducing noise into the dataset, and if repetetively
used to retrain the models eventually leading to their collapse [20,21]. Effective
methods are therefore needed to filter out ‘low-quality content’ to ensure that
models are trained on the most meaningful information.

Another challenge is scalability. NLP models can process large datasets, but
training them on massive corpora is expensive and it is unclear if more data
actually results in a better model. Static, corpus-based models also struggle to
adapt to specific tasks. For instance, a model trained on a broad corpus may not
effectively capture the relationships required to predict material properties for
a specific system accurately. The term ‘material system’ here refers to a fixed
set of elements which can be mixed in an arbitrary proportion. To address these
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challenges, there is a need for methods that allow to tailor a training corpus
w.r.t. specific prediction tasks.

In this work, we propose an iterative framework to address these challenges.
First we start with a broad collection of abstracts from scientific papers, fur-
theron referred to as ‘documents’, and use Doc2Vec embeddings [3] to create
a map of abstracts. This map allows us to then derive an ordered list based
on greedy selection which represents the most diverse documents to avoid in-
formation duplication and information fuzziness. From this list, we use batches
of 50 documents to train Word2Vec [8,14] models. In their respective embed-
ding space, we measure the change of the centroid of the embeddings w.r.t.
our specific prediction task and stop adding new document batches once a con-
vergence criterion is met. The resulting Word2Vec model then constitutes our
material system-optimized model which we use to predict reaction-specific high-
performance candidate compositions for electrocatalysis. To demonstrate the
effectiveness of our approach, we predict highest performing compositions from
three different material systems for three different electrocatalytic reactions: oxy-
gen reduction (ORR), hydrogen evolution (HER), and oxygen evolution (OER)
and validate them against experimental measurements. While electrocatalysts
are used as a case study, our framework is general and can be applied to a wide
range of materials discovery tasks.

2 Experiments

All code and data needed to reproduce our workflow are available. The code can
be found in [29], references to all datasets are provided when they are introduced
further below.

2.1 Corpus Collection and Preprocessing

Fig. 1 shows a schematic overview of our methodology. First, we collect a relevant
corpus of documents using the PaperCollector module in MatNexus [28]. As
source for the documents we use the application programming interfaces (APIs)
of Scopus and and limit ourselves to use open access-only publications up to
including the year 2023 which results in 6506 papers. The retrieved abstracts and
metadata are stored in a structured comma-separated values (CSV) file. Text
preprocessing is performed using the TextProcessor module, which removes
licensing statements, filters common English stopwords, and retains domain-
specific terms, such as chemical element symbols. Tokenization is applied to
prepare the text for embedding generation.

2.2 Embedding Generation and Greedy Selection

The initial document embeddings are generated using a Doc2Vec model trained
on the full corpus containing 6506 documents. The embeddings capture the se-
mantic content of each document, mapping the tokens into a 200-dimensional



4 L. Zhang and M. Stricker

Literature Collection
(MatNexus)

Preprocessing & 
Filtering

Train Doc2Vec
(Initial Embedding)

PCA & Greedy 
Document Selection

Train Word2Vec on 
Selected Set

Compute Material 
Similarities 
(Properties)

Check Centroid 
Stability

Pareto Analysis & 
Final Use

Not 
Stable

Stable

Fig. 1. Schematic overview for iterative corpus refinement framework from literature
collection, document selection, Word2Vec model training to final predictions based on
Pareto front analysis.

vector space, which offers a balanced trade-off between computational efficiency
and representational capacity for capturing domain-specific linguistic nuances.
A greedy selection algorithm is then applied to iteratively refine the subset of
documents for analysis.

Initialization: We initialize the greedy selection algorithm with the central
document in embedding space. This ensures that the starting point is represen-
tative of the corpus’s overall thematic distribution, i.e. an “average abstract”
w.r.t. the Doc2Vec embedding space.

Iterative Expansion: Subsequent documents are selected by identifying
the farthest (in cosine distance) from all previously selected documents. It is a
classic greedy farthest point sampling except the initial point is selected always
the central document in embedding space instead of a random starting point. To
improve computational efficiency and focus on principal directions of variance,
the 200-dimensional Doc2Vec embeddings are reduced to two dimensions using
principal component analysis (PCA) before distance calculations. The selection
process continues until a predetermined batch size of 50 additional documents
is reached, which serves as a heuristic balance between introducing sufficient
diversity in each iteration and maintaining computational manageability. This
process results in an ordered list of the most different documents in batches of
50 and constitutes the basis for subsequent analysis and optimization.

A selected subset is then used to train a Word2Vec [14,8] model via the Vec
-Generator module of MatNexus [28]. The skip-gram architecture is used with
a vector size of 200, a window size of 5, and hierarchical softmax. The vector
size of 200 provides sufficient capacity to capture nuanced relationships between
terms while maintaining training efficiency. A window size of 5 is used to reflect a
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moderate contextual range, allowing the model to learn meaningful co-occurrence
patterns without overextending semantic connections. Hierarchical softmax is
chosen for its effectiveness in handling large vocabularies with improved training
speed over full softmax.

Material Similarity Calculation: We create the representation of ‘a ma-
terial’ w.r.t. its composition by a linearly weighted superposition of the embed-
dings for pure elments, e.g. ‘Pt’ for platinum, ’Pd’ for palladium, etc. The linear
weights model the composition. That is, the representation of a composition
of 20% element A and 80% element B means to linearly superpose the word
embeddings Ri of elements A and B RA20B20

= 0.2RA + 0.8RB . We then calcu-
late the similarity scores of each composition to the embedding vectors of the
two properties ‘dielectric’ and ’conductivity’ using cosine similarity which we
denote Sdielectric and Sconductivity. Given a composition space and concentration
resolution for a given material system containing several elements, we can use
the two-dimensional similarity scores to calculate a centroid of the based on N
different compositions in the material system as follows:

centroid =
1

N

N∑
i=1

[
Sdielectric(i)

Sconductivity(i)

]
. (1)

Convergence Criterion: The previous step is then iterated with an in-
creasing corpus size in batches of 50 documents. With each increase, we monitor
the change of the centroid coordinates using Euclidean distance. If the distance
between the previous and current centroid falls below a heuristically determined
threshold of 0.03, we stop adding more documents and define the word em-
bedding model converged. Our rationale is that when an additional batch of
50 documents does not significantly change the word embeddings, adding more
documents is unnecessary or even detrimental to predictive performance.

2.3 Pareto Optimization for Candidate Selection

With the converged Word2Vec model for a given material system, Pareto opti-
mization is applied to identify optimal trade-offs between material properties for
three electrochemical reactions. For the Pareto front optimization we follow [30]
which was shown to be very effective in identifying high-performing regions.

– For HER and ORR, the objective was to maximize similarity to conductivity
while minimizing similarity to dielectric.

– For oxygen evolution OER, the objective was to maximize similarity to di-
electric while minimizing similarity to conductivity.

Compositions on the reaction-specific Pareto fronts in similarity space defined
by Si constitute our predictions for high-performing materials.
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Fig. 2. Centroid distance as a function of iterations for different material systems.

3 Results

3.1 Centroid Convergence Over Iterations

Figure 2 shows the changes in centroid distance during each iteration for the
six material systems we tested: AgPdPt, AgPdRu, AgPdPtRu (for ORR) [1],
AgAuPdPtRh, AgAuPdPtRu (for HER) [22], and NiPdPtRu (for OER) [23].
The centroid distance measures the shift in the embedding space between iter-
ations, and serves as a quantitative indicator of convergence. The first iteration
constitutes the initialization and, therefore, does not have a previous iteration
to compare against. Additionally, not all systems have values for every iteration
because the embedding space is only defined when a trained Word2Vec model
provides representations for all required elements as well as the target properties
dielectric and conductivity. In other words, for some compositions, the first few
batches of documents do not contain all tokens required to compute the word
embeddings as well as their similarity scores. If the selected corpus for a given
iteration lacks such similarities, the similarity space representation can not be
established and, consequently, the centroid cannot be calculated. The number of
iterations required to reach the convergence threshold of 0.03 for each material
system is as follows:

– AgPdPt: Converged after 8 iterations, indicating steady refinement and
early stabilization.

– AgPdRu: Required 18 iterations to stabilize, reflecting a gradual and ex-
tended refinement process.

– AgPdPtRu: Achieved convergence in 16 iterations, suggesting moderate
complexity in refining its embedding space.
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– AgAuPdPtRh: Stabilized after 15 iterations, indicating consistent refine-
ment with gradual improvement.

– AgAuPdPtRu: Required 24 iterations to reach the threshold, showing a
more extended effort to refine the embedding space.

– NiPdPtRu: Converged after 14 iterations, balancing between moderate re-
finement complexity and stabilization.

These results for different material systems exhibit a large variability in con-
vergence behavior. AgPdPt has relatively fast convergence, while AgAuPdPtRu
requires the largest number of iterations, reflecting the challenges of establish-
ing a complex embedding space. Again, once the centroid distance falls below a
user-defined, heuristically obtained threshold of 0.03, we consider the embedding
space converged.

3.2 Pareto Analysis with Full Corpus vs. Selected Subset

After centroid convergence, we perform Pareto analysis following the method
presented in [30] on each reaction type (ORR, HER, OER) using the final
Word2Vec model for each material system. We compare the prediction of the
candidate materials of the converged representations with predictions based on
a model trained on all documents. This reference full-corpus model is the same
for all three materials systems. Figures 3, 4, and 5 summarize the prediction
metrics, highlighting the models’ ability to predict high-performing materials in
very different material systems and reaction types.

For ORR (Fig. 3), the selected-corpus model identified high-performing ma-
terials with subsequently measured minimum current densities at 850mV of -
0.50, -0.67, and -0.37mA/cm2 for the AgPdPt, AgPdRu, and AgPdPtRu sys-
tems, respectively. These predictions align closely with best-performing exper-
imentally measured electrocatalytic response, which recorded -0.58, -0.67, and
-0.37 mA/cm2, respectively. The full-corpus model, while also successful in iden-
tifying high-performing materials, predicted slightly less optimal values of -0.44,
-0.67, and -0.37 mA/cm2. This difference demonstrates the effectiveness of the
selected-corpus model in refining the search space and focusing on the most
relevant documents for a given composition space.

Fig. 4 shows the performance for the AgAuPdPtRh and AgAuPdPtRu sys-
tems for HER. The selected-corpus model achieved minimum current densities
at -300 mV of -1.13 and -1.44mA/cm2, closely matching the best measured elec-
trocatalytic response of -1.13 and -1.49 mA/cm2. The full-corpus model predicts
values of -1.11 and -1.41 mA/cm2, which, while accurate, do not represent the ac-
tual highest-performing compositions. These results further validate the ability
of the selected-corpus model to identify optimal candidates effectively.

For HER, Figure 4 presents the performance for the AgAuPdPtRh and
AgAuPdPtRu systems. The selected-corpus model predicts minimum current
densities at -300 mV of -1.11 and -1.27 mA/cm2. For the AgAuPdPtRu sys-
tem, the value is slightly less optimal than the full-corpus model predictions
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Fig. 3. Comparison of minimum current density values at 850mV for ORR systems
(AgPdPt, AgPdRu, AgPdPtRu) derived from the original performance data, the full-
corpus model, and the selected-corpus model.
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of -1.41 mA/cm2. Despite this, the selected-corpus model captures essential in-
formation from the full corpus, demonstrating its ability to approximate high-
performing materials with a significantly smaller number of documents.
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Fig. 5. Comparison of maximum current density values at 1700mV for the OER system
(NiPdPtRu) derived from the original performance data, the full-corpus model, and
the selected-corpus model.

For OER, as shown in Figure 5, the maximum current density at 1700 mV
for the NiPdPtRu system is identical across all models, including the selected-
corpus model, the full-corpus model, and the best measured data performance:
6.90 mA/cm2. This, again, confirms the consistency of our approach in capturing
the best-performing materials using much fewer documents for creation of the
representations.

All results collectively demonstrate that both the full-corpus and selected-
corpus models successfully predict high-performing materials across all reaction
types. Notably, the selected-corpus models achieve this with a much smaller
number of documents. By refining the training corpus to only the most diverse
documents measured by a combination of Doc2Vec embeddings, greedy selection
and convergence threshold based on the centroid change, the iterative selection
process improves the predictive power of the model without compromising per-
formance across very different scenarios.



10 L. Zhang and M. Stricker

Table 1. Statistical details for electrocatalysts under specified potentials. Abbrevia-
tions: Entries (Ori), the original number of possible compositions before text-mining
selection; Entries (Full), number of compositions on the Pareto front for the Word2Vec
model based on the full corpus; Entries (Selection), number of compositions on the
Pareto front based on the converged model with iterative greedy selection; Selected
Documents, the total number of documents used in the final iteration to train the
selected-corpus model.

Material
Systems

Potential
(mV)

Entries
(Ori)

Entries
(Full)

Entries
(Selection)

Selected
Documents

AgPdPt 850 341 11 63 400
AgPdRu 850 342 15 10 900
AgPdPtRu 850 341 27 4 800
AgAuPdPtRh -300 327 16 29 750
AgAuPdPtRu -300 335 23 3 1200
NiPdPtRu 1700 4026 374 168 700

Table 2. Minimum and maximum current densities (mA/cm2) for electrocatalysts
under specified potentials. Abbreviations: Min/Max (Ori, Full, Selection), the minimum
and maximum current densities for each of the three scenarios (original data, full corpus
model, selected-corpus models).

Material
Systems

Min
(Ori)

Min
(Full)

Min
(Selection)

Max
(Ori)

Max
(Full)

Max
(Selection)

AgPdPt -0.58 -0.44 -0.50 -0.06 -0.16 -0.06
AgPdRu -0.67 -0.67 -0.67 -0.07 -0.36 -0.36
AgPdPtRu -0.37 -0.37 -0.37 -0.06 -0.06 -0.34
AgAuPdPtRh -1.13 -1.11 -1.11 -0.69 -0.73 -0.72
AgAuPdPtRu -1.49 -1.41 -1.27 -0.79 -1.14 -1.06
NiPdPtRu 0.24 0.60 0.53 6.90 6.90 6.90

3.3 Current Density Measurements and Statistical Overview

Table 1 and Table 2 present the statistical details and measured current densities
(in mA/cm2) for each system at its corresponding potential.
ORR Systems (AgPdPt, AgPdRu, AgPdPtRu at 850 mV):

– In AgPdPt, the selection-based model retains 63 entries compared to 11
in the full-corpus model. The minimum current density shifts from −0.44
mA/cm2 in the full model to −0.50 mA/cm2 in the selection model, while
the maximum rises to −0.06 mA/cm2.

– In AgPdRu, the minimum and maximum current densities remain the same
across selection-based model and full-corpus model, at −0.67 mA/cm2 and
−0.36 mA/cm2, respectively, with 10 entries retained in the selection model
compared to 15 in the full model.

– In AgPdPtRu, the selection-based model retains 4 entries compared to 27
in the full model. The minimum current density remains −0.37 mA/cm2,
while the maximum is lower at −0.34 mA/cm2 compared to −0.06 mA/cm2

in the full model.
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HER Systems (AgAuPdPtRh, AgAuPdPtRu at −300 mV):

– In AgAuPdPtRh, the selection-based model retains 29 entries compared
to 16 in the full model. The minimum current density is consistent at −1.11
mA/cm2, while the maximum slightly increases from −0.72 mA/cm2 in the
selection model to −0.73 mA/cm2 in the full model.

– In AgAuPdPtRu, the selection-based model retains 3 entries compared to
23 in the full model. The minimum current density slightly increases from
−1.41 mA/cm2 in the full model to −1.27 mA/cm2 in the selection model,
while the maximum decreases from −1.14 mA/cm2 to −1.06 mA/cm2.

OER System (NiPdPtRu at 1700 mV):

– NiPdPtRu starts with a large set of 4026 candidate compositions. The
selection-based model retains 168 entries compared to 374 in the full-corpus
model. The minimum current density decreases from 0.60 mA/cm2 in the full
model to 0.53 mA/cm2 in the selection model, while the maximum remains
consistent at 6.90 mA/cm2.

All these results demonstrate that the iterative selection-based approach ef-
fectively narrows the dataset while preserving or even improving the ability to
predict high-performing electrocatalysts from a large list of possible candidate
compositions. The evidence in Table 2 supports the conclusion that a focused
corpus can adequately capture and even surpass predicting the key characteris-
tics of the full-corpus dataset.

4 Discussion

Our iterative selection approach consistently results in models that match or
exceed the performance of the model built using the full corpus. For ORR and
HER systems, the method identifies more negative (better) current densities,
indicating higher catalytic performance. For OER, the selected-corpus model
suggests the same high-performing compositions as the full corpus model. These
results confirm that reducing the training set—when done strategically—does
not compromise, and even improves the capability to predict high-performance
compositions.

4.1 Advantages of Iterative Corpus Selection

A feature of our approach is the stability criterion that checks whether adding
more information significantly changes the model’s representation of materials.
Once the difference between subsequent centroids in embedding space stays be-
low a user-defined, heuristically found threshold, we stop adding more informa-
tion. Note, all models use the same threshold. This ensures:

1. Reduced Noise: Unnecessary or very similar information is left out, pre-
venting additional fuzziness of key semantic signals related to electrocatalytic
properties.
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2. Computational Efficiency: Fewer documents result in faster training and
analysis.

3. Focus: The final Word2Vec embeddings capture terminology tailored to the
studied compositions, reactions, and the properties dielectric and conductiv-
ity.

4.2 Practical Impact on Electrocatalyst Screening

By identifying fewer yet relevant documents for training, this approach can speed
up the overall pipeline of electrocatalyst design in particular for scenarios where
experimental data are scarce and simulation-based data prove computationally
intractable. Fewer experimental tests are needed because the Pareto analysis,
driven by these tailored embeddings, allows to narrow down a large pool of
candidate compositions to a much small, experimentally accessible likely high-
performing compositions.

4.3 Mitigating the Growing Volume of AI-Generated Text

The rise of AI-generated information, specifically texts, poses new challenges.
Large language models sometimes produce repetitive, paraphrased, or even wrong
content by hallucination [31]. On a large scale, if generative AI models which are
retrained on recursively generated output (meaning their own output), the re-
sulting models become defective – they start producing noise [20]. Our iterative
selection loop, which operates in the embedding space and discards informa-
tion that does not shift the centroid meaningfully, offers a possibility to filter
noise or at least avoid duplicated information: our framework avoids documents
which contribute little new information. As AI-generated content continues to
grow, such filtering mechanisms may become essential to maintaining reliable
text-based models.

4.4 Limitations and Potential Extensions

While the proposed framework demonstrates significant strengths in refining
training corpora and often even improves predictive performance, it is not with-
out limitations. A critical challenge lies in balancing coverage and specificity. If
the initial subset of documents is too small or biased, it risks omitting important
details, potentially reducing the general applicability of the model. Additionally,
reliance on predefined target properties, such as dielectric and conductivity as in
our case require domain knowledge to be defined. Such terms might be difficult
to find for other prediction scenarios and broader applicability of our method.
Future work will address these challenges by exploring the following extensions:

– Human in the loop: Involve domain experts to review and validate the
selected documents, ensuring that important topics or underrepresented do-
mains are not overlooked. For example, experts could identify emerging areas
or validate key materials that align with research objectives.
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– Hybrid Models: Integrate advanced NLP methods, such as transformer-
based encoders (e.g., MatBERT [24]), to complement the iterative selection
process. These models may provide additional layers of semantic evaluation
or help identify nuanced relationships that Word2Vec with fixed representa-
tions might miss.

– Property Expansion: Extend the framework to incorporate a broader
range of material properties or performance metrics. For instance, multi-
objective optimization could include properties like catalytic efficiency, sta-
bility under reaction conditions, or environmental impact, enabling more
targeted materials discovery and optimization pipelines.

5 Conclusion

Our contribution introduces an iterative framework for refining scientific cor-
pora to create word2vec representations of with a minimal set of documents
for specific prediction scenarios. By dynamically selecting a subset of ‘most di-
verse’ documents sampled in Doc2Vec embedding space with a greedy selection
strategy and subsequently training Word2Vec models, our approach results in
representations with minimal noise w.r.t. user-defined composition spaces and
target properties as well as their relationships. Applied to material systems for
ORR, HER, and OER, our framework reliably identifies high-performing com-
positions from a large candidate pool using fewer training documents, matching
or exceeding the performance of models trained on full corpora. Our predictions
are verified with experimental data. This verification demonstrates the ability of
our framework to efficiently use text-based knowledge for composition-property
correlations.

Acknowledgments. The authors gratefully acknowledge the financial support pro-
vided by the China Scholarship Council (CSC, CSC number: 202208360048) and fund-
ing by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
through CRC 1625, project number 506711657, subprojects INF, A05.

Disclosure of Interests. The authors have no competing interests to declare.

References

1. Banko, L., Krysiak, O., Schumann, W., Ludwig, A.: Electrochemical activity of
several compositions in the system ag-pd-pt-ru for the oxygen reduction reaction
in 0.05 m koh solution ph 12.5 (Oct 2024). https://doi.org/10.5281/zenodo.
13992986

2. Batchelor, T.A., Pedersen, J.K., Winther, S.H., Castelli, I.E., Jacobsen, K.W.,
Rossmeisl, J.: High-entropy alloys as a discovery platform for electrocataly-
sis. Joule 3(3), 834–845 (2019). https://doi.org/https://doi.org/10.1016/j.
joule.2018.12.015

3. Bilgin, M., Sentürk, I.F.: Sentiment analysis on twitter data with semi-supervised
doc2vec. In: 2017 International Conference on Computer Science and Engineering
(UBMK). pp. 661–666 (2017). https://doi.org/10.1109/UBMK.2017.8093492

https://doi.org/10.5281/zenodo.13992986
https://doi.org/10.5281/zenodo.13992986
https://doi.org/10.5281/zenodo.13992986
https://doi.org/10.5281/zenodo.13992986
https://doi.org/https://doi.org/10.1016/j.joule.2018.12.015
https://doi.org/https://doi.org/10.1016/j.joule.2018.12.015
https://doi.org/https://doi.org/10.1016/j.joule.2018.12.015
https://doi.org/https://doi.org/10.1016/j.joule.2018.12.015
https://doi.org/10.1109/UBMK.2017.8093492
https://doi.org/10.1109/UBMK.2017.8093492


14 L. Zhang and M. Stricker

4. Ezugwu, E., Bonney, J., Yamane, Y.: An overview of the machinability of aero-
engine alloys. Journal of Materials Processing Technology 134(2), 233 – 253 (2003).
https://doi.org/10.1016/S0924-0136(02)01042-7

5. Ferreira, P., La O’, G., Shao-Horn, Y., Morgan, D., Makharia, R., Kocha, S.,
Gasteiger, H.: Instability of pt/c electrocatalysts in proton exchange membrane fuel
cells: A mechanistic investigation. Journal of the Electrochemical Society 152(11),
A2256–A2271 (2005). https://doi.org/10.1149/1.2050347

6. Fujishima, A., Rao, T.N., Tryk, D.A.: Titanium dioxide photocatalysis. Journal of
Photochemistry and Photobiology C: Photochemistry Reviews 1(1), 1 – 21 (2000).
https://doi.org/10.1016/S1389-5567(00)00002-2

7. Geim, A., Novoselov, K.: The rise of graphene. Nature Materials 6(3), 183 – 191
(2007). https://doi.org/10.1038/nmat1849

8. Goldberg, Y., Levy, O.: word2vec explained: deriving mikolov et al.’s negative-
sampling word-embedding method (2014), https://arxiv.org/abs/1402.3722

9. Huang, P.K., Yeh, J.W., Shun, T.T., Chen, S.K.: Multi-principal-element alloys
with improved oxidation and wear resistance for thermal spray coating. Advanced
Engineering Materials 6(1-2), 74 – 78 (2004). https://doi.org/10.1002/adem.
200300507

10. Jain, A., Shin, Y., Persson, K.A.: Computational predictions of energy materials
using density functional theory. NATURE REVIEWS MATERIALS 1(1) (JAN
2016). https://doi.org/10.1038/natrevmats.2015.4

11. Larcher, D., Tarascon, J.M.: Towards greener and more sustainable batteries for
electrical energy storage. Nature Chemistry 7(1), 19 – 29 (2015). https://doi.
org/10.1038/nchem.2085

12. Le, Q., Mikolov, T.: Distributed representations of sentences and documents (2014)
13. Liu, Y., Zhao, T., Ju, W., Shi, S.: Materials discovery and design using machine

learning. Journal of Materiomics 3(3), 159 – 177 (2017). https://doi.org/10.
1016/j.jmat.2017.08.002

14. Mikolov, T., Chen, K., Corrado, G., Dean, J., Sutskever, L., Zweig, G.: word2vec.
URL https://code. google. com/p/word2vec 22, 795 (2013)

15. Miracle, D., Senkov, O.: A critical review of high entropy alloys and related
concepts. Acta Materialia 122, 448 – 511 (2017). https://doi.org/10.1016/j.
actamat.2016.08.081

16. Raccuglia, P., Elbert, K.C., Adler, P.D.F., Falk, C., Wenny, M.B., Mollo, A., Zeller,
M., Friedler, S.A., Schrier, J., Norquist, A.J.: Machine-learning-assisted materials
discovery using failed experiments. Nature 533(7601), 73 – 76 (2016). https://
doi.org/10.1038/nature17439,

17. Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert,
C.A., Frederick Jr., W.J., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R.,
Murphy, R., Templer, R., Tschaplinski, T.: The path forward for biofuels and
biomaterials. Science 311(5760), 484 – 489 (2006). https://doi.org/10.1126/
science.1114736,

18. Saal, J.E., Kirklin, S., Aykol, M., Meredig, B., Wolverton, C.: Materials design
and discovery with high-throughput density functional theory: The open quantum
materials database (oqmd). JOM 65(11), 1501 – 1509 (2013). https://doi.org/
10.1007/s11837-013-0755-4

19. Schmidt, J., Cerqueira, T.F., Romero, A.H., Loew, A., Jäger, F., Wang, H.C.,
Botti, S., Marques, M.A.: Improving machine-learning models in materials science
through large datasets. Materials Today Physics 48, 101560 (2024). https://doi.
org/https://doi.org/10.1016/j.mtphys.2024.101560

https://doi.org/10.1016/S0924-0136(02)01042-7
https://doi.org/10.1016/S0924-0136(02)01042-7
https://doi.org/10.1149/1.2050347
https://doi.org/10.1149/1.2050347
https://doi.org/10.1016/S1389-5567(00)00002-2
https://doi.org/10.1016/S1389-5567(00)00002-2
https://doi.org/10.1038/nmat1849
https://doi.org/10.1038/nmat1849
https://arxiv.org/abs/1402.3722
https://doi.org/10.1002/adem.200300507
https://doi.org/10.1002/adem.200300507
https://doi.org/10.1002/adem.200300507
https://doi.org/10.1002/adem.200300507
https://doi.org/10.1038/natrevmats.2015.4
https://doi.org/10.1038/natrevmats.2015.4
https://doi.org/10.1038/nchem.2085
https://doi.org/10.1038/nchem.2085
https://doi.org/10.1038/nchem.2085
https://doi.org/10.1038/nchem.2085
https://doi.org/10.1016/j.jmat.2017.08.002
https://doi.org/10.1016/j.jmat.2017.08.002
https://doi.org/10.1016/j.jmat.2017.08.002
https://doi.org/10.1016/j.jmat.2017.08.002
https://doi.org/10.1016/j.actamat.2016.08.081
https://doi.org/10.1016/j.actamat.2016.08.081
https://doi.org/10.1016/j.actamat.2016.08.081
https://doi.org/10.1016/j.actamat.2016.08.081
https://doi.org/10.1038/nature17439
https://doi.org/10.1038/nature17439
https://doi.org/10.1038/nature17439
https://doi.org/10.1038/nature17439
https://doi.org/10.1126/science.1114736
https://doi.org/10.1126/science.1114736
https://doi.org/10.1126/science.1114736
https://doi.org/10.1126/science.1114736
https://doi.org/10.1007/s11837-013-0755-4
https://doi.org/10.1007/s11837-013-0755-4
https://doi.org/10.1007/s11837-013-0755-4
https://doi.org/10.1007/s11837-013-0755-4
https://doi.org/https://doi.org/10.1016/j.mtphys.2024.101560
https://doi.org/https://doi.org/10.1016/j.mtphys.2024.101560
https://doi.org/https://doi.org/10.1016/j.mtphys.2024.101560
https://doi.org/https://doi.org/10.1016/j.mtphys.2024.101560


Corpus Refinement for Materials Prediction 15

20. Shumailov, I., Shumaylov, Z., Zhao, Y., Papernot, N., Anderson, R., Gal,
Y.: Ai models collapse when trained on recursively generated data. Nature
631(8022), 755–759 (Jul 2024), https://doi.org/https://doi.org/10.1038/
s41586-024-07566-y

21. Shumailov, I., Shumaylov, Z., Zhao, Y., Papernot, N., Anderson, R., Gal, Y.: Ai
models collapse when trained on recursively generated data. Nature 631(8022),
755 – 759 (2024). https://doi.org/10.1038/s41586-024-07566-y,

22. Thelen, F., Zehl, R., Limani, N., Schuhmann, W., Ludwig, A.: High-throughput
seccm and edx data for the hydrogen evolution reaction in ag-au-pd-pt-ru and ag-
au-pd-pt-rh thin-film materials libraries (Mar 2025). https://doi.org/10.5281/
zenodo.14959252

23. Thelen, F., Zehl, R., Zerdoumi, R., Bürgel, J.L., Schuhmann, W., Ludwig, A.:
Dataset - accelerating combinatorial electrocatalyst discovery with bayesian opti-
mization: A case study in the quaternary system ni-pd-pt-ru for the oxygen evo-
lution reaction (Feb 2025). https://doi.org/10.5281/zenodo.14891704

24. Trewartha, A., Walker, N., Huo, H., Lee, S., Cruse, K., Dagdelen, J., Dunn,
A., Persson, K.A., Ceder, G., Jain, A.: Quantifying the advantage of domain-
specific pre-training on named entity recognition tasks in materials science.
Patterns 3(4), 100488 (2022). https://doi.org/https://doi.org/10.1016/j.
patter.2022.100488,

25. Tshitoyan, V., Dagdelen, J., Weston, L., Dunn, A., Rong, Z., Kononova, O., Pers-
son, K.A., Ceder, G., Jain, A.: Unsupervised word embeddings capture latent
knowledge from materials science literature. Nature 571(7763), 95 – 98 (2019).
https://doi.org/10.1038/s41586-019-1335-8

26. Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H.,
Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements:
Novel alloy design concepts and outcomes. Advanced Engineering Materials 6(5),
299 – 303 (2004). https://doi.org/10.1002/adem.200300567

27. Zerdoumi, R., Ludwig, A., Schuhmann, W.: High entropy intermetallic compounds:
A discovery platform for structure–property correlations and materials design prin-
ciples in electrocatalysis. Current Opinion in Electrochemistry 48, 101590 (2024).
https://doi.org/https://doi.org/10.1016/j.coelec.2024.101590

28. Zhang, L., Stricker, M.: Matnexus: A comprehensive text mining and analysis suite
for materials discovery. SoftwareX 26, 101654 (2024). https://doi.org/10.1016/
j.softx.2024.101654

29. Zhang, L., Stricker, M.: Code for “iterative corpus refinement for materials property
prediction based on scientific texts” (2025), https://github.com/lab-mids/word_
embedding_paper_selection

30. Zhang, L., Stricker, M.: Electrocatalyst discovery through text mining and multi-
objective optimization (2025), https://arxiv.org/abs/2502.20860

31. Zhang, Y., Li, Y., Cui, L., Cai, D., Liu, L., Fu, T., Huang, X., Zhao, E., Zhang,
Y., Chen, Y., Wang, L., Luu, A.T., Bi, W., Shi, F., Shi, S.: Siren’s song in the ai
ocean: A survey on hallucination in large language models (2023), https://arxiv.
org/abs/2309.01219

https://doi.org/https://doi.org/10.1038/s41586-024-07566-y
https://doi.org/https://doi.org/10.1038/s41586-024-07566-y
https://doi.org/https://doi.org/10.1038/s41586-024-07566-y
https://doi.org/https://doi.org/10.1038/s41586-024-07566-y
https://doi.org/10.1038/s41586-024-07566-y
https://doi.org/10.1038/s41586-024-07566-y
https://doi.org/10.5281/zenodo.14959252
https://doi.org/10.5281/zenodo.14959252
https://doi.org/10.5281/zenodo.14959252
https://doi.org/10.5281/zenodo.14959252
https://doi.org/10.5281/zenodo.14891704
https://doi.org/10.5281/zenodo.14891704
https://doi.org/https://doi.org/10.1016/j.patter.2022.100488
https://doi.org/https://doi.org/10.1016/j.patter.2022.100488
https://doi.org/https://doi.org/10.1016/j.patter.2022.100488
https://doi.org/https://doi.org/10.1016/j.patter.2022.100488
https://doi.org/10.1038/s41586-019-1335-8
https://doi.org/10.1038/s41586-019-1335-8
https://doi.org/10.1002/adem.200300567
https://doi.org/10.1002/adem.200300567
https://doi.org/https://doi.org/10.1016/j.coelec.2024.101590
https://doi.org/https://doi.org/10.1016/j.coelec.2024.101590
https://doi.org/10.1016/j.softx.2024.101654
https://doi.org/10.1016/j.softx.2024.101654
https://doi.org/10.1016/j.softx.2024.101654
https://doi.org/10.1016/j.softx.2024.101654
https://github.com/lab-mids/word_embedding_paper_selection
https://github.com/lab-mids/word_embedding_paper_selection
https://arxiv.org/abs/2502.20860
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219

	Iterative Corpus Refinement for Materials Property Prediction Based on Scientific Texts

