
Continuous Learning of Ordinal User Preferences
on Wearable Devices

Simón Weinberger1,2 (�), Jairo Cugliari2, and Aurélie Le Cain1

1 Essilor International, affiliate of EssilorLuxottica, 39 Bd. Jean Baptiste Oudry,
94000 Créteil weinbes@essilor.fr

2 Laboratoire ERIC, 5 Av. Pierre Mendès France, 69500 Bron
jairo.cugliari@univ-lyon2.fr

Abstract. Wearable devices allow collecting data at an individual level,
which can be used to propose an unseen degree of personalization for a
broad domain of applications. For instance, we focus on electrochromic
frames that allow to manually change the lens’ tint, or automatically,
based on an ambient light sensor. We aim to use the user’s interactions
with his frame to adapt this automatic mode to better consider his pref-
erences. From a technical standpoint, this is a difficult task, as prediction
and estimation cannot be done separately. That is why we approach this
industrial problem from a reinforcement learning perspective: a policy
must control the tint class in such a way that the number of user inter-
actions is minimized. A particularity of this problem is that there is an
inherent notion of order between the finite proposed tint classes, as some
are darker than others. The usual Boltzmann parametrization does not
account for this. Thus, we develop and implement policy gradient meth-
ods for ordinal policies. Using a simulation setting, we show that ignoring
the ordinal structure of the response variables yields a suboptimal strat-
egy. Additionally, we tested this technique with real users in controlled
conditions; as the tint-control mode updated, the number of user interac-
tions decreased. At last, using ordinal policies can be adapted to a deep
reinforcement learning context, solving classic problems with continuous
actions using discretization of this space.

Keywords: Reinforcement Learning · On-policy Policy Gradient Meth-
ods · Ordinal regression · Wearables.

1 Introduction

Wearable devices have revolutionized the way we interact with technology, of-
fering personalized experiences tailored to individual preferences and needs [16].
From tracking fitness goals [8] to monitoring health metrics [13], wearables have
become indispensable companions in our daily lives. However, the dynamic na-
ture of user preferences and habits presents a challenge in maintaining optimal
performance over time. As users’ needs evolve, the effectiveness of pre-defined
models and algorithms may diminish, highlighting the necessity for continuous
learning mechanisms.
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Traditional machine learning approaches often struggle to adapt to the chang-
ing preferences observed in wearable device users; moreover, the inherent con-
straints of wearable devices, such as limited computational resources and bat-
tery life, further exacerbate this challenge [17]. In industrial applications, where
reliability and robustness are paramount, the need to fortify decision-making
processes becomes even more pronounced.

In this research, we propose leveraging Reinforcement Learning (RL) tech-
niques to facilitate continuous learning of ordinal user preferences on wearable
devices. By formulating the learning problem as one of policy optimization, we
aim to capture the nuanced ranking of user preferences. To accommodate the
constraints of wearable devices, we integrate a generalized vectorial linear model
that accounts for resource limitations and computational efficiency.

Additionally, our proposed framework can also be used in a Deep Reinforce-
ment Learning (DRL) context to solve classical continuous action RL problems
by discretizing the set of actions into a finite and ordered set of actions. Doing
so yields similar results than using continuous actions.

1.1 A general learning setting for ordinal user preferences

Let us consider a system that pilots automatically a setting of a wearable device,
using the wearable’s sensors. In addition, let us suppose that there are K ∈ N
settings and there exists an order relationship between these categories. The
particular setting will be called level. Additionally, the user may interact with
the wearable and manually adjust the setting at any moment.

Ideally, the system pilots the setting in a way that provides the best user
experience. As a measure of user experience, it is reasonable to use the number
of interactions or the eventual difference between the system-chosen and user-
chosen levels. Indeed, if the system is well adapted for the user, the user should
not manually choose a level often, and inversely if the system is ill-adapted

We formulate this problem in a RL setting. The state space S corresponds
to the measures of the wearable device, the action space A corresponds to the
possible setting levels and the reward space R is either a penalty if the user
manually changed the level or the eventual absolute value difference between
the system-proposed and user-chosen levels.

The data collection process would be as follows: the wearable’s sensors collect
a measure (state). Based on that measure, the system proposes a new level to
the user (action). Then the user would either accept the proposed level or choose
another level (reward). The objective is to have a system that proposes levels
that are often accepted by the user or would be close to the levels the user
prefers. This process would be repeated at each instant for a certain amount of
time (for example, a day), creating an episode τ of length T ∈ N,

τ = (st, at, rt)
T
t=0 ; st ∈ S, at ∈ A, rt ∈ R.

As in standard RL [21], we suppose the state-reward transitions are governed by
the distribution defined by

p(s′, r|s, a) = P(St+1 = s′, Rt+1 = r|St = s,At = a).
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And episodes verify the Markov hypothesis:

P(St+1 = s′, Rt+1 = r|St = s,At = a, . . . , S0, A0) = p(s′, r|s, a).

The tuple (S,A,R, p) is a Markov Decision Process (MDP) [21]. Let us note
P(A) the set of probability distributions over the action space A, at each step,
actions are taken by according to a policy: π(·|st) ∈ P(A). For a given discount
factor γ ∈ [0, 1[, action a ∈ A and state s ∈ S and a policy π, we define the
state-action value function, Qπ(s, a) and state value function V π(s):

Qπ(s, a) = Eπ

(
T∑

t=0

γtRt|S0 = s,A0 = a

)
; V π(s) = Eπ

(
T∑

t=0

γtRt|S0 = s

)
.

Additionally, we suppose that the policy belongs to a given parametric space:

π ∈
{
πθ : S → P(A)|θ ∈ Θ ⊂ Rd

}
.

In this article, the policy families of interest are the Boltzmann distribution,
also known as softmax or multinomial distribution, and policies defined by the
cumulative ordinal model. Both of these allow a policy to choose a level, the first
family does not consider the order between levels, the latter does. Let ν be any
initial state distribution, the goal of policy optimization is to find the maximum
of the objective function J(·):

J(θ) = E
at∼πθ(·|st)

s0∼ν

(
T∑

t=0

γtRt

)
; θ ∈ Θ.

It is worth noting that the problem of parametrizing policies is orthogonal to the
method used for policy optimization. Most policy-based methods, or actor-critic
methods, can be adapted for different types of policies.

1.2 Electrochromic adaptative automatic mode

In our industrial application, we chose to work with smart lenses, which ad-
mits some kind of customization. EssilorLuxottica is developing a smart eye-
wear equipped with electrochromic lenses. The tint of this eyewear can change
by passing an electric signal, allowing the user to choose one tint among four:
C0, C1, C2, C3. There is an inherent order relationship between these classes, as
some are clearer than others. There exists an automatic mode for these frames
that controls the tint by using measures from an Ambient Light Sensor (ALS)
and comparing these values to three predefined, ordered thresholds ρ1 < ρ2 < ρ3.
If the ALS measure is below ρ1, the clearest tint (C0) is chosen, if the value lays
between ρ1 and ρ2, C1 is chosen, if the value is between ρ2 and ρ3, C2 is chosen
and if the value is greater than ρ3 the darkest tint (C3) is chosen. This tint con-
trol could be used to create a hybrid mode: the tint is controlled as previously
described, except when the user manually changes the frame’s tint, when this
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happens the automatic control is disabled for a certain amount of time or until
the situation changes.

In previous work, we studied how to personalize the tint control mode using
labeled data issued from the manual usage of these smart lenses, adopting a
supervised approach [26]. In contrast, this article is about how to personalize
this hybrid mode so that the user’s preferences are considered using observations
collected while in hybrid mode. We do so applying the RL paradigm, as described
in Section 1.1.

For this particular problem, we use only the ALS measures, and because the
eye reacts to light on a logarithmic scale [24], we consider the state space as the
log 10 of the ALS measures (which are between 0 and 5). The set of actions is
the set of tint classes. The reward is -1 if there was a user interaction and 0
otherwise. Concretely:

S = [0, 5] ; A = {C0, C1, C2, C3} ; R = {−1, 0}.

1.3 Main Contributions

We introduce a family of policies taking actions on a finite, totally ordered action
space. These policies are an adaptation of linear ordinal regression models [3]
and CORAL neural networks [4] into a RL setting.

We provide necessary conditions assuring that the policy has a form of
smoothness. We reparametrize the parameters of this model, allowing to op-
timize in an unconstrained space. This is done in a way that guarantees the
smoothness of the policy and respects constraints over the parameters of the
policy. We use this to implement policy optimization using REINFORCE, NPG,
TRPO and PPO for this policy.

We demonstrate that, in certain scenarios where there is a notion of order
among actions, using an ordinal policy converges faster to better policies than
using a softmax distribution (Section 3.1). This suggests that considering the
notion of order among action can be beneficial for tackling real-world problems.

We tested this method with real electrochromic prototypes worn by real users,
in a controlled setting (Section 3.2). The results of this study are positive: as the
tint control parameters are updated, the number of user interactions diminishes.

We show that using an ordinal policy instead of a continuous action policy
can perform as well as a traditional continuous action policy in standard RL
benchmark environments (Section 3.3).

1.4 Related work

In a supervised context, ordinal regression models were introduced by McCul-
lagh [15]; those models belong to the more general family of Vector Generalized
Additive Models (VGAM), which were introduced by Yee and Wild [28]. This
approach can be extended in even a more general setting: the predictor can, in
fact, be parametrized by a neural network. Indeed, ordinal regression can be
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achieved using binary extended classification, as explained by Li and Lin [14],
allowing to perform ordinal regression using any binary classification algorithm.
This was used to implement COnsistent RAnk Logits (CORAL) in neural net-
works [4] and Conditional Ordinal Regression for neural networks (CORN) [20].
Both methods augment the training data set to encode an ordinal regression
problem as a binary classification problem, and then train a neural network
using a particular loss function that assures that the obtained rank logits are
ordered.

In a RL context, the parametrization of policies taking action or ordered
sets has received little to no attention. Although there are some articles that
tackle solving continuous actions by using discretization, for example, this was
done by Seyde et al. [19] and Tang and Agrawal [22] to solve environments with
continuous actions, which achieved state-of-the-art convergence rates in different
benchmark environments. The first article used a dichotomous action space,
using higher and lower actions as actions; the latter used a discretization with
more classes by implementing a policy inspired by “stick-breaking” [12]. Both
approaches rely on defining neural networks outputting logits to take actions, the
latter article then accordingly defines a notion of order between classes (Equation
4 of [22]). Although not directly linked to ordinal actions, efforts have been made
to consider policies taking actions on structured continuous actions spaces, as
presented by Wu et al. [27], or considering monotonic policies as explained by
Feng et al. [6], relying on monotonic neural networks [25]. Either way, using
monotonic or structured policies, yielded more stable numerical results.

We propose using a different parametrization over ordinal actions, based on
a thresholded model [14], which is a latent variable model relying on a scalar
predictor and ordered thresholds. Unlike the method proposed by Tang and
Agrawal [22], our parametrization enforces the notion of order among actions,
which is desirable for our industrial application. For instance, if the state space is
defined by ALS measurements, the scalar predictor is proportional to these. As a
result, the predicted classes will follow an ordered structure: if the proportionality
coefficient is positive, an increase in ALS values will correspond to the prediction
of progressively darker classes.

2 Theory: Ordinal Policies

For simplicity, in this section, we first present an ordinal policy for one-dimensional
actions, present some results and finally extend it to multivariate ordinal actions,
by factorizing across dimensions.

2.1 Definitions

We consider the situation where the action space has a finite number of elements
A = {ak}Kk=1, with K being a natural number greater or equal than three, and
there exists an order relationship between actions:

a1 < a2 < . . . < aK−1 < aK . (1)
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For any natural numbers a, b ∈ N, let us note Ja, bK the set of whole numbers be-
tween a and b. Without losing generality, we suppose A = J1,KK. In the general
discrete setting, the only way to parametrize a distribution is to use the discrete
probability distribution, using a multinomial model over logits for each class,
for example. In the ordinal context, there is another possible parametrization:
using the cumulative distribution function, which is well-defined. Let us consider
a function gω : S → R, parametrized by a weight, ω ∈ Ω, and consider K − 1
ordered thresholds (τk)

K−1
k=1 :

τ1 < τ2 < . . . < τK−2 < τK−1.

Let σ(x) = (1 + exp(−x))−1 be the sigmoid function. A policy π over the set A
is defined by the relation:

σ−1 (P(A ≤ j|S = s)) = τj − gω(s). (2)

Indeed, using the convention τ0 = −∞ and τK = ∞, Equation (2) induces a
probability distribution on the action space A:

π(a|s) = σ(τa − gω(s))− σ(τa−1 − gω(s)) ; a ∈ A.

It is worth noting that because the thresholds (τj)K−1
j=1 are ordered, the obtained

cumulative probabilities are assured to be ordered:

P(A ≤ 0|S = s) < P(A ≤ 1|S = s) < . . . < P(A ≤ K − 1|S = s).

Definition (2) is equivalent to the following latent variable relationship:{
A∗ = gω(s) + e ; e ∼ Logistic(0, 1),
A = j ⇔ τj−1 < A∗ ≤ τj .

(3)

This latter definition is more interpretable: the function gω is a map between
the state space and R, when it is high, the policy will often take high actions,
when low, the policy will take low actions. Let us note ∆K−1 ⊂ RK−1 the set of
ordered thresholds:

∆K−1 =
{
(x1, . . . , xK−1) ∈ RK−1|xi+1 − xi > 0, ∀i ∈ J1,K − 1K

}
.

Definition 1. A policy π is said to be an ordinal policy if it verifies Equation
(2). This parametric family is parametrized by Θ = Ω ×∆K−1.

It is worth noting that unlike normal and multinomial distributions, this
ordinal distribution is not in the exponential family, and therefore it is not
straightforward that usual policy improvement methods work with this ordinal
policy.

Definition 2. Let β be a positive real number and a function f : Rp → R, f is
said to be β-smooth, if its gradient is β-Lipschitz. Namely, ∀a, b ∈ Rp:

∥∇f(a)−∇f(b)∥2 ≤ β∥a− b∥2.
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In general, a suitable condition for gradient optimization techniques is that the
function to optimize must be β-smooth. For instance, in the RL context, the
improvement of policies with NPG, depends on the logarithm of the probability
density function of the policy being β-smooth (Theorem 20 in [2]).

Definition 3. A policy is said to be β-smooth if θ 7→ log πθ(.|s) is β-smooth for
every s ∈ S.

It is straightforward to prove that a policy is β-smooth if it belongs in the
exponential family. Yet, the introduced ordinal policy is neither in the expo-
nential family nor β-smooth, even with a linear predictor. To have a β-smooth
ordinal policy, it is necessary to assure that the distance between thresholds is
sufficiently large. Let ε > 0, let us introduce the set ∆ε

K−1:

∆ε
n = {(x1, . . . , xn) ∈ Rn|xi+1 − xi > ε, ∀i ∈ J1, nK} .

In Proposition 1, we provide sufficient conditions that guarantee that the
ordinal policy is β-smooth, when the predictor, gω, belongs to a large class of
functions, such as some neural networks. When the predictor is a linear function,
the obtained policy is β-smooth as long as the feature mapping is bounded
(Corollary 1).

2.2 Linear prediction

If the function gω is a linear function, in ω, then the obtained policy is exactly
equal to the cumulative ordinal regression model, presented by Agresti [3]. In-
deed, let us suppose Ω = Rp and let us consider a feature mapping ϕ : S → Rp,
then suppose the function gω(·) is a linear function: gω(s) = ⟨ϕ(s), ω⟩Rp . Then,
with Equation 2, we obtain:

P (A ≤ j) = σ (τj − ⟨ϕ(s), ω⟩Rd) ,

which is the definition of a logistic cumulative ordinal regression model [3].

2.3 Thresholded model

The presented ordinal policy does not need the predictor gω(·) to be a linear
function. Indeed, in its more general form, the presented ordinal in an instance
of thresholded model [14]. To use it with policy gradient methods, the predictor
gω should be differentiable in its parameter ω, and preferable somehow “smooth”
in its parameter. For instance, it could be parametrized by any neural network,
this would allow solving complex tasks using DRL techniques. The obtained
policy is then the same as a CORAL or CORN neural networks [4, 20].
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2.4 Sufficient conditions for β-smoothness on ordinal policies

We now present sufficient conditions to guarantee that an ordinal policy is β-
smooth. This is important because theoretical results [1] then ensure that policy
gradient methods can be applied to improve the policy.

Proposition 1. Let s ∈ S, if:

– The function ω 7→ gω(s) is LΩ-Lipschitz
– The function ω 7→ ∇ωgω(s) is CΩ-Lipschitz function and bounded by MΩ

Then the function:

Ω ×∆ε
K−1 → R

(ω, τ) 7→ log π(τ,ω)(a, s)

is β-smooth, with β =
√
2D2

ε + C2
ε , where Cε = (1 + exp(−ε))−2 and Dε =√

2max(CΩ +
√
2MΩCεLΩ ,MΩ).

We provide a proof of Property 1 as supplementary material
As a direct consequence of Property 1, we obtain sufficient conditions assuring

that an ordinal policy with a linear predictor is β-smooth. We present these
condition in Corollary 1.

Corollary 1. If gω(.) = ⟨ϕ(.), ω⟩Rp and ∥ϕ(s)∥ ≤ Mϕ, then the ordinal policy
πθ is β-smooth with β =

√
2D2

ε + C2
ε , where Cε = (1 + exp(−ε))−2 and Dε =√

2max(
√
2M2

ϕCε,Mϕ).

2.5 Implementation details

It is difficult to use policy optimization methods over the set ∆ε
K because there

are constraints that must be respected to remain over this parametric set: the
thresholds must remain ordered and the difference between thresholds must be
controlled, this guarantees stability (Proposition 1). We tackle this by using a
reparametrization ξ = (ξ1, ξ2, . . . , ξK−1) of τ = (τ1, τ2, . . . , τK−1), with:

ξ1 = τ1 ; ξk+1 = log(τk+1 − τk − ε), k ∈ J1,K − 2K.

Thus, policy improvement can be done on (ω, ξ) which belong to the uncon-
strained space Ω ×RK−1. Then the corresponding thresholds, (τk)K−1

k=1 , can be
computed using the inverse of this reparametrization.

Additionally, using log-probabilities instead of probabilities is numerically
more stable. Let a ∈ J2,K − 1K and ηk = τk − gω(s), for ordinal policies we can
use the exact expression of log-probabilities given by:

log πθ(1|s) = log σ(η1), log π(K|s) = log σ(−ηK−1),

log π(a|s) = gω(s) + log(exp(−τa−1)− exp(−τa)) + log σ(ηa) + log σ(ηa−1),
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2.6 Multivariate ordinal actions

It is straightforward to extend univariate ordinal actions to multivariate ordinal
actions, by factorizing across action dimensions. Indeed, let d ∈ N, let us consider
a d-dimensional continuous action space A = J1,KKd. We define a predictor
function gω : S → Rd and consider a parameter τ ∈ (∆ε

K)
d. Then for a given

state s ∈ S, let us note:

gω(s) = (g(1)ω (s), . . . , g(d)ω (s)) ; τ =
(
τ
(j)
k

)
k∈J1,KK,j∈J1,dK

.

Let (k(1), . . . k(d)) ∈ A, we define the multivariate cumulative distribution func-
tion of a policy by the following relationship:

P(A1 ≤ k(1), . . . , A ≤ k(d)) =

d∏
j=1

σ
(
τ
(j)

k(j) − g(j)ω (s)
)
,

Which induces a conditional probability distribution over A. It is worth noting
that actions are not drawn independently across dimensions because the distri-
bution depends on the multivariate predictor gω.

3 Applications

3.1 A simple simulation setting

A key point to consider is that the presented ordinal policy is more restrictive
than the usual softmax policy. As an alternative to an ordinal policy, the policy
may be parametrized by a univariate softmax distribution, but then the predic-
tion zones for the different classes may not be ordered. In this section, we study
numerically if this has an impact on the rate of improvement or quality of the
policies in a simple simulation setting. This simulation setting is similar to the
scenario we expect to observe when facing the problem described in Section 1.2.

We simulate the ALS of one episode by sampling from a Gaussian process,
which is then squished into the set [0, 5] using a sigmoid function. Additionally,
we simulate the user response using a fixed, but unknown ordinal model πU . Let
us suppose that at a given instant, for a given state measure st, the class at is
proposed. We keep track of a “discomfort” score Zt, which is updated:

Zt+1 = (1− πU (at|st))γreaction + γdiscomfortZt.

Then, with probability σ(Zt+1), the user reacts, if he does, a tint class is drawn
accordingly to πU (.|st). The term (1− πU (at|st)) measures the discrepancy be-
tween the proposed class and user preferred class. The environment parameter
γreaction ∈ R+ determines the “laziness” of the user: if it is low, the user often
reacts, if it is high, the user only reacts if the proposed class is unlikely to be
drawn by πU . At last, the environment parameter γdiscomfort ∈ [0, 1] determines
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the memory of the user, if this parameter is zero, the user only reacts to the
current proposed class.

Using this simulation setting, we compare the performances of ordinal policies
against the performances of softmax policies using as updates: REINFORCE,
NPG and TRPO. For every policy and every method, the hyperparameters are
tuned, to provide a fair comparison among parametrizations.

We use γreaction = 0.5, γdiscomfort = 1 and a discount rate of 0.9. We simulate
episodes of length sixty, at the end of each episode the policy is updated. For
a given update strategy and policy, we simulate four hundred episodes. This
process gives one learning trajectory, and we simulate ten learning trajectories
per update strategy and policy combinations. We present the simulation results
in Figure 1. Similarly to how using ordinal information provides better predic-

Fig. 1. Total episodic reward vs episode, for different policy gradient methods and
policies. Average curves are calculated using mean of ten random seeds, calculated on
learning curves after a rolling mean with a window of twenty episodes. Shaded areas
show mean ± one standard deviation.

tions in a supervised setting [7], we find that using ordinal policies improves the
performance of policy gradient methods, independently of the method that is
used. This suggests that using an ordinal policy, when there is a notion of order
among actions.

Indeed, convergence seems faster and towards a better policy for ordinal poli-
cies than for multinomial policies, and this parametrization seems more stable:
the standard deviation is smaller when an ordinal policy is used (see Figure 1).

Among the six studied methods, updating an ordinal policy using TRPO
yield the best results. Indeed, it provides a faster improvement rate than RE-
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INFORCE while being slightly more stable than NPG, this is consistent with
numerical experiments presented by Schulman et al. [18].

We should stress that the simulation setting may favor ordinal policies, as
tints are chosen from an ordinal model. Nevertheless, the setting reflects what
is expected in a real setting: users tend to prefer clear tints for low luminosity
and darker ones for high luminosity, while the thresholds are unknown.

3.2 A real life study

A study was done to test adapting the parameters of the hybrid tint control,
described in Section 1.2, using an ordinal policy updated with TRPO.

We used an electrochromic prototype for this study, which was equipped
with an ALS and two buttons in the branches of the frame. We implemented
the hybrid mode controlling the tint using only the ALS values; the tint was
automatically controlled by default, but at any moment the user could manually
change the tint by using the buttons. After a user interaction, the automatic
control was deactivated for ten seconds, and afterward the tint was again auto-
matically controlled.

Nine users were recruited for this study; these reported using sunglasses in all
seasons of the year and did not work at EssilorLuxottica nor in any optic-related
company. All the participants consented to participate in the study, and a safety
assessment validated the use of this electrochromic prototype in a controlled
environment.

A walking circuit was created for this study, allowing users to experience var-
ious real-life light situations: indoor/outdoor transitions, reading and far vision
situations, etc. The same circuit was used for all participants, and participants
walked the circuit one at a time. Participants were free to walk the circuit at their
rhythm; on average, the circuit was completed after 10 minutes. Each user was
asked to walk the circuit four times while wearing the electrochromic frames in
the hybrid tint control. At the end of each circuit, the parameters controlling the
hybrid mode were updated using TRPO. The same maximum Kullback-Leibler
divergence was used for every participant after every circuit.

The objective of this study was to assess whether the number of user inter-
actions decreases as the model parameters are updated.

For one of the nine users, the model parameters could not be updated; the
TRPO algorithm proposed the old parameters after each episode. We discuss why
this is so later in this section. We present the results obtained with the eight
remaining participants in Figure 2. Two participants did not press the button
at any moment of the study; after the four circuits were done, they reported
that the proposed tint was well adapted for them. At first glance, the number
of button presses seems to decrease as the model is updated, for the remaining
participants.

To assess if there was a significant decrease in the number of user interactions,
we analyzed the trend using a Poisson regression, modeling the link between the
number of button pressings per episode Y (count response) in function of the
episode number X (numeric covariate) with an additive interaction for the user
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Fig. 2. Number of button pressings, per episode and user. Button pressings correspond-
ing to a darker (resp. lighter) tint when current tint is C3 (resp. C0) were removed

j (categorical covariate) to account for the differences between users. Concretely,
we consider the statistical model:

Y ∼ Poisson(λ); log(λ) = α ·X + Fj ,

where the slope α ∈ R and user effects {Fj}6j=1 are model parameters. We present
the observed and fitted number of button pressings as well as 95% confidence pre-
diction intervals in Figure 3. The estimated slope α is statistically significantly
negative (point estimation: −0.28 and 95% confidence interval: [−0.43,−0.13]).
To address possible overfitting issues caused by the observed sparse dataset, we
calculate a confidence interval for α using a leave-one-out procedure, the jack-
knife method [5], and obtain a point estimation of −0.28 and a 95% confidence
interval of [−0.49,−0.06]. Since the slope α is statistically significantly negative,
the number of button pressings diminishes as circuits go by.

These are encouraging results for this exploratory study, yet because no con-
trol group was used, we cannot claim causality; we cannot claim that users
interact less often because the model parameters are updated. A confirmatory
study with more users and a control group should be done to confirm this.

After a close inspection of the data of the participant for whom the model
did not update, we noticed an unexpected behavior: instead of reacting to the
proposed tints, this participant tried different tints and then chose the most
adapted one. This behavior is not well described by the RL formulation of Section
1.2. For instance, when ALS was high, the tint C3 was proposed, and then the
user tried all the tints and then manually selected the tint C3. Thus, proposing
the tint C3 was a good choice in reality. Instead, with our RL approach, proposing
the tint C3 would be judged as a bad action because it yields low rewards:
ALS would be high, the tint C3 would be proposed, and then the user would
successively press the button six times. This is likely the reason for which TRPO
could not update the model parameters.
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Fig. 3. Observed number of user interaction, fitted average (red line) and 95% predic-
tion intervals, per user and episode.

A simple solution to align the RL formulation with this behavior is to adapt
the reward signal. For example, instead of having a reward of −1 when there is
a user interaction, the reward could be the opposite of the eventual difference
between the user selected and automatically proposed tints.

3.3 Discretizing continuous state space

Ordinal actions may arise from the discretization of a continuous action space.
Indeed, let us consider a bounded continuous action space A = [m,M ]. Let us
consider the following discretization of the action space:

AK = {ak}Kk=1 ; ak = m+ k
M −m

K
.

The set AK is an ordinal set: there is an immediate order relationship between
actions, Equation 1, and there is a finite number of actions. Hence, we may take
actions on AK using ordinal policies.

When multivariate continuous are considered, the same discretization may be
applied dimension-wise and then use the multivariate ordinal extension presented
in Section 2.6. We implement this approach, using an ordinal policy with 17
classes (per dimension) to solve different Mujoco [23] and other benchmark RL
environments. To improve the policy we use PPO, as implemented for PPO for
continuous actions by Huang et al. [10], with the same hyperparameters. We use
the same neural network parametrizing PPO for continuous actions implemented
by Huang et al. [10], which uses a two layer MLP to parametrize gω(·) and uses
a learnable standard deviation per action dimension, independent of the state,
as suggested by Huang et al. [9]. We run experiments in the environments of
the Table 1, using a learning rate of 3 · 10−4 and a discount factor of γ = 0.99
for both continuous action PPO and ordinal PPO, in all the environments.We
obtain the results presented in Figure 4
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Environment State dimensions Action Dimensions

Ant-v4 105 8
BipedalWalker-v3 24 4
HalfCheetah-v4 17 6

Hopper-v4 11 3
Humanoid-v4 348 17

InvertedDoublePendulum-v4 9 1
Pusher-v4 23 7

Walker2d-v4 17 6
Table 1. Continuous action environments where ordinal actions were used by dis-
cretization

We find that using ordinal policies for classic RL problems with continu-
ous actions yields similar performances than using a continuous policy. This is
coherent with results from the literature [19, 22].

4 Conclusion — Discussion

Satisfying every user, using one predefined model with fixed parameters, is chal-
lenging since each user’s preferences are unique and may vary and evolve. Thanks
to today’s highly configurable wearable devices, we may tailor a model to an-
swer each individual’s needs. In this article, we present a method to do this in
an online manner using the RL paradigm. This opens a door for a wide range of
real applications, but in a real-world setting, it is important to do so robustly.
For instance, when the system pilots an ordinal setting, using an adapted policy
provides this robustness: no matter how the user interacts with the wearable,
the policy will always be an ordinal model, thus the notion of order between
levels is assured.

Furthermore, the studied simulation setting suggests that considering the
notion of order, when there is one, is beneficial. And the proposed method can
be directly applied in a real-world setting (Section 3.2) and a deep learning
approach may also be used (Section 3.3).

There are two main axes for future work. For the industrial application, it is
of great importance to converge fast to a “good” model. Indeed, a method that
would require thousands of episodes to improve would be pointless for any real-
life application: the user may simply stop wearing the device before there are
enough episodes. Thus, a solution would be to use simple models, such as the one
used in Section 3.2, or leverage off-policy methods, which are known to be more
sample-efficient than on-policy methods. Secondly, ALS collected during a time
window could better explain user context and thus allow for better policies than
the ones that use only the instantaneous ALS. This temporal covariate could be
used with an adapted ordinal model, such as the one proposed by Jacques and
Samardžić [11].
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Fig. 4. Learning curves for different policies across different environments. Mean and
95% confidence prediction interval, fitted using a location-scale Gaussian GAM on data
generated using five different random seeds per environment.
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