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Abstract. Recycling is essential to the circular economy. However, effi-
cient material sorting, particularly in steel scrap recycling, remains chal-
lenging due to material diversity and contamination. Visual computing
via deep learning offers a significant promise in automation, with mod-
els such as YOLO and Mask R-CNN excelling in object detection and
segmentation. However, high computational requirements often limit in-
dustrial deployment, which necessitates more efficient algorithmic solu-
tions targeted for such applied machine learning problems. We intro-
duce a novel approach to prune large image segmentation models based
on instance-based importance scores (IBIS), specifically tailored to the
problem of instance segmentation for automated steel scrap recycling.
Our method identifies and prunes low priority parameters by leveraging
parameter importance scores estimated by considering the presence of
recyclable instances to be segmented in the frames. Moreover, we utilize
a novel custom dataset constructed for the instance segmentation task
during copper and steel scrap recycling, which involves recyclable objects
of different sizes with various levels of difficulty. Our evaluations demon-
strate promising computational efficiency gains without significant per-
formance drops, while also enabling powerful out-of-distribution general-
ization, a game-changing capability. Finally, we discuss the potential of
our work for real-world industrial applications, enabling resource-efficient
deep learning deployment in large-scale automated sorting systems.

Keywords: instance segmentation - steel scrap recycling - neural net-
work pruning - sparsity - out-of-distribution generalization.

1 Introduction

As the European Union (EU) advances toward its goal of becoming a sustainable,
climate-neutral economy by 2050 under the European Green Deal [5], pressure
is mounting on energy-intensive industries like steel manufacturing to adopt
more environment friendly practices. Steel production remains one of the most
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carbon-intensive industrial processes globally, contributing to 5.7% of total EU
emissions [33]. Recycling plays a pivotal role in reducing the environmental im-
pact of such industries, yet effective material sorting especially in complex en-
vironments like steel scrap recycling remains a challenge. Traditional sorting
relies heavily on manual labor, which is slow, costly, and error-prone, making it
unsuitable for large-scale, real-time operations. To address these challenges, au-
tomated solutions based on machine learning and computer vision have become
increasingly important [6,32]. These technologies offer significant improvements
in sorting efficiency and scalability, especially for the diverse and often contam-
inated materials found in recycling streams. Real-time image segmentation and
object detection models are at the core of these systems, enabling faster and
more accurate classification of materials. However, effective deployment of these
models in real-world industrial settings often require significant computational
efficiency improvements in terms of memory and energy requirements.

In the field of recycling, deep learning based models, particularly in image
segmentation and object detection, have proven effective in automating mate-
rial classification [7]. Deep neural network architectures such as YOLO (You
Only Look Once) [29] and Mask R-CNN [13] are commonly used for real-time
detection due to their inference speed and accuracy, making them suitable for
various recycling applications, including waste sorting and steel scrap classifica-
tion. These models have shown promise in differentiating between different types
of materials, such as plastics, metals, and paper [3], thereby enabling automated
separation. Among these, YOLO variants are often regarded as state-of-the-art
for real-time applications in recycling, due to their strong downstream task per-
formances. However, these models also pose significant computational challenges,
particularly in industrial settings where real-time processing often requires han-
dling 50-100 frames per second, each involving 100-10.000 objects. Furthermore,
high memory consumption and increased inference times limits their deployment
on edge devices or in resource-constrained environments. To address these issues,
efficient solutions must balance high performance with reduced computational
and memory demands for large-scale automated recycling.

Model sparsification based on weight pruning is a widely-studied approach for
reducing the memory usage and computational load of deep neural networks [15].
Pruning involves removing less important parameters from a pre-trained model,
leading to smaller, more efficient networks with minimal sacrifice in accuracy [11].
Particularly in semantic segmentation tasks, pruning techniques have been suc-
cessfully applied to U-Net type models to reduce model size, computational com-
plexity, and memory requirements while maintaining high performance [21]. We
present a novel neural network pruning criterion that utilizes instance-based
importance scores (IBIS), to prune YOLO-based steel scrap industrial recy-
cling segmentation models. Our method harnesses parameter gradients from an
instance-based strategy, allowing us to identify and remove less critical param-
eters while preserving essential features needed for accurate scrap classification.
We conduct extensive experiments on a novel dataset specifically designed for
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industrial copper and steel scrap recycling applications, evaluating feasibility of
our method in real-world industrial settings. Our contributions are as follows:

— We present a model pruning criterion that utilizes instance-based importance
scores (IBIS) to prune YOLO-based steel scrap segmentation models, and
significantly reduce model size while maintaining high performance.

— We introduce a novel dataset constructed for instance segmentation during
copper and steel scrap recycling in a real-world industrial setting, which
involves recyclable objects of different sizes with hierarchical task difficulty.

— We empirically show that our approach enhances computational efficiency
with up to 95% reduction in model size, while maintaining high performance.
Moreover, we demonstrate strong out-of-distribution generalization capabil-
ities of our approach, with enhanced robustness to different scrap material
sizes observed for the first time during inference.

2 Related Work

We present an overview of key advancements in real-time image segmentation,
object detection, and neural network pruning, with a specific emphasis on their
applications in the recycling industry and steel scrap classification.

2.1 Real-Time Image Segmentation & Object Detection

Real-time image segmentation and object detection are crucial tasks in com-
puter vision, with applications ranging from autonomous driving to medical
imaging and industrial automation like in the recycling industry. In the con-
text of recycling, these techniques enable efficient material classification and
sorting. Traditional object detection methods, such as R-CNN [9] and Fast R-
CNN [8], achieved strong accuracy but were computationally expensive, limiting
their real-time applicability. The introduction of Mask R-CNN [13] improved
instance segmentation by generating precise pixel-wise object masks. However,
these models remained slow and required significant computational resources.
To address the speed limitations of these models, the YOLO (You Only Look
Once) [29] series was developed, significantly improving detection efficiency while
maintaining high accuracy. Recent versions, such as YOLOv11 [16], further en-
hance performance by integrating object segmentation, detection, and classifica-
tion into a single framework, making it suitable for recycling applications. De-
spite these advancements, deploying these models in industrial settings remains
challenging due to resource constraints and real-time processing demands.

2.2 Visual Computing in Steel Scrap Recycling

The use of deep learning for scrap material classification has gained traction in
recent years. Previous studies [34] have demonstrated the effectiveness of convo-
lutional neural networks (CNNs) in intelligent waste recognition, leading to im-
provements in classification, sorting, and recycling efficiency. Some approaches,
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such as the system introduced in [35], leverage machine vision for steel scrap
quality inspection, while others, like ConvoWaste [26], apply image processing
techniques to classify various waste types. However, several challenges hinder the
development of robust machine learning solutions for steel scrap classification.
Unlike well-researched categories such as vehicles or human faces, steel scrap re-
mains an underexplored domain with limited publicly available datasets [30]. Ex-
isting datasets focus on landfill waste or non-shredded scrap [2], making them less
suitable for training deep learning models tailored to shredded steel scrap [27].

Additionally, variations in shredded scrap output across different industrial
shredders introduce further complexities [1]. The configuration, blade design,
and operational parameters of each shredder influence the final output, making
it difficult to create standardized datasets that generalize across different recy-
cling plants. These factors highlight the need for adaptable and efficient machine
learning models capable of handling diverse scrap materials.

2.3 Neural Network Pruning

Pruning neural networks is a widely explored technique for reducing model
complexity while preserving performance [11]. Seminal works, such as Optimal
Brain Damage [19] and Optimal Brain Surgeon [12], introduced structured prun-
ing strategies by identifying and removing less critical weights. State-of-the-art
methods, such as global magnitude-based pruning (GMP) [11], single-shot net-
work pruning (SNIP) [20], pruning considering pre-training (PCPT) [18] and
Taylor expansion criterion based pruning [24], refine this concept by estimating
the importance of individual weights or filters and eliminating redundant com-
ponents in a single-shot. Recent works extended these with novel criteria on how
importance scores are derived [4,10,28,31].

In segmentation tasks, pruning has been successfully applied to models like
U-Net [21] to achieve significant reductions in model size and floating point oper-
ations (FLOPs) while maintaining accuracy. Filter pruning techniques in CNN-
based segmentation models have shown promising results in reducing compu-
tational complexity without degrading segmentation performance. In [22] they
focus on dynamic pruning in region-merging-based segmentation, significantly
reducing computational complexity while maintaining segmentation accuracy,
enabling large-scale applications in remote sensing. Another work [14] introduces
context-aware pruning for deep neural networks, leveraging inter-channel depen-
dencies to sparsify models while preserving performance, demonstrating effec-
tiveness across various segmentation architectures. Despite these advancements,
existing pruning methods often overlook task-specific importance measures, par-
ticularly in industrial recycling applications. We introduce a novel pruning con-
cept based on instance-based importance scores, tailored to instance segmenta-
tion models (e.g., YOLO [16]) for steel scrap classification.
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Table 1: Detailed breakdown of the steel and copper scrap material allocation
in the prepared datasets, including the material sizes, weights and quantities.

; Material Allocation
Material Size Weight Quantity
[ke] Dataset 1 Dataset 2 Dataset 3
Large 9 45 v v v
Steel Medium-Large 20 95 v v v
g tee Medium 9 72 v v
crap Small-Medium 6 80 v
Small 2.5 104 v
c Large 15 17 v 4 v
S"pper Medium 8.5 47 v v
crap Small 1 37 v
Total 46.5 497

3 Industrial Steel Scrap Recycling Dataset

We focus on the recycling process of steel scrap derived from end-of-life ve-
hicles and electrical appliances, which are shredded to produce the E40 scrap
fraction [25]. Despite initial pre-sorting using magnetic separators, the result-
ing material still contains a significant proportion of unwanted contaminants,
like copper objects. We address real time detection and segmentation of these
undesirable particles with deep learning based instance segmentation models.

Due to the absence of publicly available labeled segmentation datasets for
steel scrap, we developed a custom dataset tailored to our application. Specifi-
cally, our dataset encompasses a diverse range of objects varying in size, with a
particular focus on components containing copper, such as cables and embedded
wiring. The collected material is classified into two primary categories: steel scrap
(considered acceptable) and copper scrap (considered contaminants). Steel scrap
consists of particles that are entirely free from copper inclusions, while copper
scrap includes both visibly contaminated pieces and those with concealed copper
elements. The dataset composition and material quantities used in our simula-
tions are detailed in Table 1. To maintain a hierarchically structured dataset
and facilitate effective model training, the scrap particles were carefully sorted
by size, ensuring balanced representation and manageable data complexity.

3.1 Data Recording

We collected three datasets by parsing video recordings of a conveyor belt from
top view, where materials were manually positioned to ensure controlled condi-
tions. Each dataset was recorded over five iterations, with slight adjustments to
the positioning of the particles in each run. To enhance variability and general-
ization, we maintained a consistent distance between particles, while capturing
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(a) Sample from Dataset 1 (b) Sample from Dataset 2 (c) Sample from Dataset 3

Fig. 1: Materials represented in the datasets vary in terms of object size, quantity,
and the spacing between them. Objects segmented in red belong to the steel scrap
objects category, while those segmented in green represent copper scrap objects.

them from different angles using a GoPro Hero 11 camera configured with opti-
mized settings. The camera recorded at 100 frames per second, ensuring smooth
and detailed footage. The conveyor belt operated at a speed of approximately
0.4 to 0.5 m/sec during recordings. A shutter speed of 1/100 was selected to
balance exposure and motion clarity, while the sharpness setting was adjusted
to high to enhance the visibility of fine details. These settings were chosen to
maximize image quality and facilitate accurate segmentation and classification.

We extracted individual frames from these videos to create our datasets. To
ensure sufficient variation between frames while avoiding excessive redundancy,
we selected every second frame from the recordings. The full dataset was then
labeled by human experts using an automated segmentation tool [27] to ensure
accuracy and reliability. The complexity of the datasets varies based on factors
such as the number, size, and spatial distribution of the particles. Our datasets
(shown in Figure 1) were designed to support both model training and evalu-
ation. Dataset 1 comprises 5,694 images, which were split into three subsets:
67% (3,831 images) for training, 16% (907 images) for validation, and 17% (956
images) for testing. In contrast, Dataset 2 (1,187 images) and Dataset 3 (1,599
images) were exclusively designated as test sets to assess generalization capa-
bilities. This partitioning strategy ensures rigorous evaluations, with Dataset 1
serving as both training/validation and testing, while Datasets 2 and 3 provide
insights into the model’s performance on unseen data.

Table 1 provides an overview of the dataset composition and material distri-
bution. Dataset 1 primarily features larger steel and copper scrap particles, with
additional variations introduced in subsequent datasets. The datasets also differ
in object density per frame, reflecting increasing complexity. Dataset 1 contains
approximately 30-40 objects per frame, ensuring a structured yet moderately
challenging environment for initial training and validation. Dataset 2 increases
the density to 40-50 objects per frame, introducing greater variation in object
positioning while maintaining a manageable level of overlap. Dataset 3 presents
the highest complexity, with up to 70 objects per frame, better representing
real-world industrial scenarios with a diverse mix of particle sizes and spacing.
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(a) Example input frame x with various in- (b) Example image & without instances
stances to be segmented, used to compute to be segmented, used to compute
Vo L(f(x, w),y) for each parameter. Vo L(f(Z,w),0) for each parameter.

Fig.2: Example image frames from our training set Diyain, which is used to
estimate the importance scores necessary to prune our neural network models.

4 Pruning Segmentation Models via Instance-based
Importance Scores (IBIS)

We propose a novel pruning method, instance-based importance scores (IBIS),
that leverages gradient information from multiple sources to evaluate the signifi-
cance of model weights. We calculate averaged gradients across standard training
images (as in Figure 2a), while also incorporating gradients obtained from images
without any objects or labels (Figure 2b). By analyzing the difference between
these two gradient distributions, we derive an importance score that effectively
identifies less critical weights. This strategy offers a more refined assessment of
weight importance, leading to an efficient and effective pruning process.

Importance Score Calculation: Given a model f(z;w) and a training set
Dirain, We denote the training set as consisting of pairs {(z;,y;)}Y,, where z;
is the input image, y; is the corresponding label, and N is the total number
of training samples. In neural network pruning, we aim to optimize a global
binary pruning mask m € {0,1}", with n being the number of parameters.
We obtain a new model f(z;m @ w’) with ||m © w'|[[p < (1 = R) - n, where
the symbol ® denotes element-wise multiplication and R € [0, 1) represents the
pruning ratio (e.g., when R = 0.85, our model sparsity is 85%). The finetuning
process updates the model parameters from w to w’. We define a non-binary,
continuous-valued parameter importance vector s and determine the binary mask
values as: m; = 1[s; —§,], Vj € {1,..n}, where v = (1 —R)-n and § =
SortDescending(s), so that 5, is the y-largest element in s, and 1[.] denotes the
indicator function. For a selected model instance j, an importance score S}BIS is
computed as follows,

IBIS _
s; 0 =

¢ = B p)mDorain [V, L (25w),9)] = Vo, L(f (23 w), 0)] . (2)

|wj| - [1 —exp(—c)], where (1)
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is the variable which denotes the absolute difference between the two gradients.
Here, 7 represents a background image (shown in Figure 2b), and the absence
of segmentation labels is denoted by 0.

Design Intuition: Here, the term 1 —exp (—c) controls how much of the weight
magnitude |w,| contributes to the parameter importance score, with ¢ € [0, c0)
acting as a tuning parameter that determines the degree of attenuation. This
tuning parameter enforces the importance scores to be bounded within [0, |w,]),
where larger values of ¢ (indicating greater differences between the two gradi-
ents) result in a stronger influence of parameter magnitudes on the score sﬁBIS.
To the contrary, for small values of ¢ (i.e., very little difference between the
gradient terms regardless of the presence of instance to be segmented), the pa-
rameter importance score would approach zero. This formulation differs from
Global Magnitude Pruning (GMP), which ranks weights solely by their abso-
lute magnitudes, pruning the smallest ones without considering gradient-based
significance. Unlike SNIP, which multiplies weights by their gradients without
distinguishing whether the gradients are influenced by objects in the image, our
approach leverages ¢, capturing the difference between the standard gradient and
the gradient from an image without objects (i.e., without labels). This results in
a more refined pruning criterion that prioritizes weights based on their relevance
to object regions rather than treating all gradients uniformly.

In our implementation of IBIS, we apply the pruning ratio R globally to the
model, thus the per-layer unstructured sparsity rates can vary. It is important
to note that our pruning method has only a single hyperparameter, the pruning
ratio R, which simplifies the utility of the method.

5 Experimental Setup

We evaluate the effectiveness of our pruning criterion by comparing it to state-of-
the-art importance score estimation techniques. For each method, we prune the
same pre-trained baseline YOLO11n-seg model [16] and finetune for the same
duration, then assess performance on an unseen test set.

5.1 Baseline Pruning Methods

Global Magnitude Pruning (GMP) [11] is a common pruning technique.
Its main goal is to shrink the model by eliminating less critical parameters, like
weights, while maintaining its performance. MP calculates the importance of
each parameter by evaluating its magnitude, and it prunes the parameters with
the smallest values, which are considered less influential to the model’s overall
performance. The importance score for GMP pruning is computed as:

sy =yl (3)

where, in contrast to IBIS, only the absolute magnitudes of the weights are
considered, ignoring the gradient information.
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Single-shot Network Pruning (SNIP) [20] is a technique that simplifies
the process by identifying and eliminating less important connections in a single
step. SNIP assesses the significance of each weight by calculating the gradient of
the loss with respect to the weight. This score assesses the importance of each
weight by computing the product of its magnitude and the expected gradient
of the loss and prunes those that have the least impact on the overall network
performance, via the score:

SJSNIP — |wj “Ez,y)~Dirain [ijﬁ(f(sc;w)a y)] ’ : (4)

Here, differently than the GMP importance score, both the weights and the
gradients are utilized for calculating the score.

Pruning Considering Pre-Training (PCPT) [18] is a pruning method that
distinguishes between two types of parameters: (a) stable, large-value parameters
that change little during fine-tuning, and (b) unstable, small-value parameters
that change chaotically. Parameters of type (a) are pruned based on their mag-
nitude, while type (b) parameters are pruned using the SNIP method, which
captures changes due to downstream task optimization. The score defined as:

s?CPT = |wj . E(Qf,y)NDtl'aixl [vw7£(f(xa ’lU), y)] | ta- wﬂz’ (5)

depicts that PCPT extends the original SNIP importance score by introducing
a parameter «, which is multiplied by the square of the weights.

5.2 Model Training Configurations

For the initial training, we used the following key configurations. The model
architecture was based on the yolol1n-seg.yaml file from the Ultralytics [17]
library. The training process was set to run for 20 epochs with a batch size of 32
and an image size of 640x640 pixels. A single NVIDIA GeForce RTX 4090 GPU
was utilized for simulations. The optimizer used was Adam, with a learning rate
of 0.01, and weight decay applied at 0.0005 to reduce the risk of overfitting. The
training included a warmup period of 3 epochs, where the learning rate increased
gradually, and the momentum started at 0.8. To optimize training efficiency,
automatic mixed precision [23] was enabled, allowing for faster computations
while maintaining model accuracy. The training also involved validation, using
a separate validation set from our dataset. These configurations were selected
to balance model performance and training efficiency. For the pruning baseline
method PCPT, we selected o = 0.001 through cross-validation.

Fine-tuning the model weights was conducted over 10 epochs, with early
stopping was activated 2 epochs of no improvement. During this phase, we used
a learning rate of 0.001 as opposed to the initial training configuration. Both the
training and validation sets were utilized for fine-tuning, while the test set was
reserved for evaluation at the end of the process to assess the final model perfor-
mance. In our experiments, the sparsity ratio for R concerns the convolutional
layers. The total network sparsity can slightly vary in our simulations.
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Table 2: Comparison of object segmentation performance mAP50-95 (%) across
different sparsity levels with various pruning criteria. Accuracies are averaged
over 3 random seeds. Values in parentheses indicate standard deviations.

Segmentation mAP50-95 (%)
Random  GMP [11] SNIP [20] PCPT [18] IBIS (Ours)
Dense 2835153 10.36 76.80 (0.0)

#params  GFLOPs

Sparse (25%) 2104061 9.68 13.87 (14.3)  74.50 (0.6)  74.57 (0.4)  74.60 (0.4) 74.60 (0.7)
Sparse (50%) 1402138 9.08 15.60 (14.3) 74.77 (04) 74.23 (1.4)  74.50 (0.4) 74.43 (0.5)
Sparse (75%) 699 097 6.65 0.43 (04)  75.03 (0.9)  74.97 (06)  75.37 (10 76.10 (1.0)
Sparse (85%) 421458 4.76 11.83 (202)  74.9 (1.4) 76.07 (200  76.63 (1.7) 76.73 (1.9)
Sparse (90%) 281036 3.62 0.47 (0.4) 75.13 (15)  74.50 (15)  74.07 (1.2) 77.43 (1.4)
Sparse (95%) 140457 2.37 0.03 (0.1) 75.97 (0.7)  73.63 (0.8)  73.77 (1.0) 76.23 (1.4)

5.3 Evaluation Metrics

We assess performance and efficiency in the context of segmentation and bound-
ing box tasks mainly based on the mAP50-95 (Mean Average Precision at Inter-
section over Union (IoU) thresholds from 50% to 90%) metrics [17].

Segmentation mAP50-95: This metric evaluates segmentation quality across
IoU thresholds (50-95%). The model optimizes segmentation performance using
multiple losses, including Mask Loss for mask alignment, binary cross-entropy
loss for pixel-wise classification, and dice loss for improved mask overlap. Addi-
tional consistency losses may enhance smoothness in predictions [16].

Bounding Box mAP50-95: This metric evaluates object detection perfor-
mance across IoU thresholds from 50% to 95%. The model optimizes detection
using multiple losses, including classification loss, Bounding Box Loss, IoU Loss
and objectness loss, which collectively enhance detection accuracy [16].

Efficiency Metrics: In addition to accuracy, the number of non-zero parame-
ters (#params) is tracked to assess the model’s size and complexity. This metric
provides insight into storage and computational requirements, which is crucial
for deploying the model on resource-constrained devices. We also estimate the
number of FLOPs (floating point operations) to evaluate the computational
complexity of the model during forward pass operations at inference time.

6 Experimental Results

In this section, we present the results of applying our pruning method. After
pruning, all models undergo the same fine-tuning phase, during which they are
trained on a combined training and validation set to recover any performance
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Fig. 3: Segmentation mAP50-95 (%) across different sparsity levels and pruning
methods. Average over three seeds with increasing complexity of the validation
set. The red cross marks the evaluation result of the dense model.

loss introduced by the pruning process. Subsequently, we evaluated the models
on the test set to assess their generalization performance.

We compare our method to existing approaches, followed by an evaluation
of its performance on out-of-distribution segmentation tasks. Next, we investi-
gate the trade-off between model performance and size. Finally, we conduct an
ablation study to evaluate the effectiveness of different instance-based methods.

6.1 Comparisons with Existing Methods

Table 2 presents a comparison of segmentation performance (mAP50-90) across
various sparsity levels and pruning methods, including GMP, SNIP, and our pro-
posed approach, IBIS. The table illustrates the reduction in model parameters
and computational cost (GFLOPs) as the sparsity level increases, with results
are averaged over three random seeds. At 0% sparsity (dense model), the model
achieves a high mAP50-90 of 76.80% (first row in Table 2). As the sparsity
increases from 25% to 95%, the parameter count decreases significantly, and
the performance varies across different pruning methods. Notably, our method,
IBIS, consistently outperforms the other methods for sparsity levels greater than
or equal to 75%, albeit by a small margin. While no clear second-best method
emerges, IBIS remains the top choice overall. Furthermore, the table compares
the GFLOPs for each configuration, showing the reduction in computational cost
as the model sparsity increases. Despite the decrease in parameters, IBIS main-
tains high accuracy, demonstrating superior performance under high sparsity.

6.2 Impact of Pruning on OQut-of-Distribution Segmentation

Figure 3 illustrates the impact of different pruning methods on segmentation per-
formance across varying sparsity levels. The results, averaged over three seeds
(denoted by the standard deviation in Table 2), are evaluated on three increas-
ingly complex test sets. The x-axis represents the sparsity percentage, while the
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Fig. 4: Trade-off comparison of different models’ performance and size, averaged
over three seeds. The marker sizes indicate the number of non-zero parameters,
providing a visual representation of model complexity.

y-axis denotes segmentation mAP50-90. The comparison includes global mag-
nitude pruning (GMP), SNIP, and our proposed IBIS method. The findings
demonstrate that our approach (red lines) consistently outperforms other prun-
ing techniques at higher sparsity levels, even on more complex datasets. Notably,
while other methods experience a decline in segmentation accuracy as sparsity
increases, our IBIS-based pruning retains or even enhances performance, indi-
cating better robustness to out-of-distribution variations in the dataset.

The red cross (‘x’) in each plot marks the dense model’s result, serving as a
reference for evaluating pruning strategies. While pruning typically reduces accu-
racy; however, our IBIS method maintains—or even surpasses—the performance
of the dense model at certain sparsity levels. As shown in Figure 3, performance
improves in some cases, likely due to the effects of fine-tuning.

6.3 Trade-Off Between Model Performance and Size

Figure 4 presents a comparative analysis of segmentation and bounding box
mAP50-95 metrics for different pruning strategies. Mainly, our results on the
bounding box metrics follow a similar trend as in the segmentation metric re-
sults from our previous discussions (see red circles appearing towards the top
right of the plots in Figure 4). Additionally, we test out-of-distribution gener-
alization capabilities on Dataset 3, since it has the highest task difficulty. The
x-axis represents segmentation accuracy, while the y-axis denotes bounding box
accuracy. We compare the performance of the dense YOLOv11 model (black)
against pruned variants using GMP (blue) and our IBIS method (red).

Figure 4(a) shows that on Dataset 1, IBIS-pruned models achieve a favor-
able balance between accuracy and sparsity. On Dataset 3, see Figure 4(b), it
is shown that features a more challenging distribution of objects, the advantage
of IBIS pruning becomes even more apparent. While GMP pruning significantly
reduces segmentation accuracy at higher sparsity levels, it shows an accuracy
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(a) Example input = (b) Patterned Masking (c) Gray Box Masking

Fig.5: Comparison of masking strategies used in gradient estimation ablations.

Table 3: Results for segmentation and bounding-box performance under different
masking scenarios. Accuracies are averaged over 3 random seeds.

Segmentation mAP50-95 (%) Bounding-Box mAP50-95 (%)
Patterned  Gray Box Patterned  Gray Box
IBIS Masking Masking IBIS Masking Masking
Sparse (25%) 74.60 74.17 74.50 95.80 95.77 95.83
Sparse (50%) 74.43 74.23 74.77 95.70 96.00 95.93
Sparse (75%) 76.10 75.03 75.03 96.07 95.27 95.37
Sparse (85%) 76.73 75.30 75.13 96.43 96.07 95.93
Sparse (90%) 77.43 75.37 75.33 95.50 96.00 95.67
Sparse (95%) 76.23 75.97 76.00 94.87 95.13 95.10

increase again at 95% sparsity. In contrast, our approach maintains competitive
performance with a significantly reduced parameter count. These results high-
light IBIS’s in optimizing neural networks for real-world recycling applications
while ensuring a favorable trade-off between model size and predictive accuracy.

6.4 Ablation Study with Masking-based Score Estimates

We analyze the impact of different masking strategies during pruning on seg-
mentation and bounding-box performance across various sparsity levels. Table 3
presents the results for segmentation (mAP50-95) and bounding-box (mAP50-
95) under three scenarios: IBIS (Figure 2), Patterned Masking (Figure 5b),
and Gray Box Masking (Figure 5c¢). IBIS computes importance scores us-
ing full-background frames, a lightweight and effective approach requiring only
a background-only image. If such a frame is unavailable, alternative masking
strategies like Patterned and Gray Box Masking could also be considered.

In the Patterned Masking strategy, objects in the images are masked using
background patches. Instead of masking objects with a uniform color, we mask
them with patches extracted from the background of the original frame. This
technique preserves natural scene structure, helping the model learn in a more
contextually realistic manner, but introduces inconsistencies at object bound-
aries. In contrast, Gray Box Masking fully masks objects with solid gray boxes,
forcing the model to rely solely on the surrounding context for importance esti-
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Original Dense (0% Sparsity) IBIS (85% Sparsity)

Dataset 2 Dataset 1

Dataset 3

Fig. 6: Comparison of segmentation results on three different test sets (Dataset
1, Dataset 2, and Dataset 3). Each column corresponds to a different model:
(1) Original, (2) Dense, and (3) IBIS. The leftmost images in each row show
the original ground truth labels, while the middle and right images show the
segmentation results from the Dense model and IBIS method, respectively.

mation. Importance scores in these settings are computed as:

59CC = |w;| - [1 —exp(—c)], where (6)

& = B y)mDirain [V, L (@30),9)] = B gy Dy [V, £ (@50), 9)] | (7)

In IBIS, ¢ (Eq. 2) uses the gradient from a single background image &, while this
method uses ¢, the averaged gradient from masked images Z. Table 3 shows that
all masking strategies perform similarly at lower sparsity levels. However, as spar-
sity increases, differences emerge. For segmentation, Patterned Masking tends
to underperform at higher sparsity levels (90-95%), suggesting that inconsis-
tencies in background patch placement negatively impact model generalization.
Meanwhile, Gray Box Masking remains competitive across all sparsity levels,
achieving comparable or superior results to IBIS in some cases. For bounding-
box detection, all methods perform closely at moderate sparsity levels, but at
extreme sparsity (90-95%), Patterned Masking shows a slight advantage over
IBIS, while Gray Box Masking remains stable. These findings highlight the im-
portance of masking strategy selection in pruning. When full-background frames
are unavailable, Patterned and Gray Box Masking are viable alternatives, with
the latter offering more consistent performance under extreme sparsity.
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7 Conclusion

We introduce IBIS, an instance-based importance scoring method for pruning
segmentation models used in an industrial recycling setting. Unlike traditional
pruning approaches like GMP and SNIP, IBIS leverages gradient-based impor-
tance scores, prioritizing weights based on their relevance to object regions rather
than treating all gradients uniformly. This approach preserves critical features
and maintains high segmentation accuracy, particularly at high sparsity levels.

Our results demonstrate that IBIS not only reduces model size and infer-
ence costs but also enhances generalization, even in out-of-distribution scenarios.
This makes it a viable solution for resource-constrained applications such as real-
time recycling systems. Furthermore, we show that masking strategy selection
influences pruning effectiveness. When full-background frames are unavailable,
Gray Box Masking offers a slight advantage at extreme sparsity, providing a ro-
bust alternative. As shown in Figure 6, IBIS, with 85% sparsity, achieves better
performance than the dense model (0% sparsity), demonstrating its practical
effectiveness and robustness in real-world applications. To support future re-
search and industrial deployment, we plan to publicly release the full annotated
dataset used in this study. Overall, IBIS balances efficiency and accuracy, mak-
ing it a promising approach for scalable industrial deep learning applications
with lightweight neural network models.
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