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Abstract. Time series data powers sensor systems in health, cities, and
beyond, demanding robust analysis for real-world impact. While deep
learning models excel in this field, their performance degrades in new en-
vironments due to data distribution shifts. Domain generalization (DG)
aims to enhance model performance in new environments, but current
methods primarily focus on discrete data, assuming a discrete, fixed la-
bel space, and addressing distribution shifts by extracting common fea-
tures from inputs across all source domains. However, sensor-based tasks
involve real-valued data with diverse input and label spaces. Existing
approaches overlook the continuity between data and labels, mapping
input data with similar labels to scattered feature spaces, making mod-
els susceptible to distribution shifts. Additionally, variations in the label
space cause predictive features to change across domains, complicating
the identification of stable, generalizable features. This work introduces
a new DG framework tailored for sensor-based tasks, operating without
access to target domain data or post-deployment adjustments. Our ap-
proach learns Ordinal-Aligned Task-Specific (OATS) features that cap-
ture stable relationships between continuous labels and input features
while maintaining domain independency under input and label space
shift. This enables the model to make accurate predictions across unseen
domains and continuous label spaces. Experiments on multiple real-world
time series regression datasets show that our method outperforms 14
baselines, reducing prediction error by 13% on average.

Keywords: Domain Generalization, · Time Series Regression, · Ordinal
Alignment, · Label Space Shift.

1 Introduction

Time series analysis is crucial for understanding and predicting sequential data
in sensor-based systems, with applications in smart grids [3], environmental mon-
itoring [28], and healthcare [7]. Deep neural networks excel in capturing complex
patterns in such data [27][15]. However, building these models requires large, la-
beled datasets [14], which are costly and impractical to collect in all deployment
environments. Traditional model-building process assumes that the training and
testing data share the same statistical distributions, called independent and iden-
tically distributed (i.i.d.) data [3]. Under this assumption, the trained models
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can generalize to new, unseen data in new environments. In practice, sensor
data vary across geographic locations and environments due to factors like sen-
sor configurations and environmental conditions [13], forming distinct domains.
For example, seismic sensor data in one area forms a domain, while data col-
lected in a different area forms another domain. These variations lead to shifts in
both input and the label distributions, known as domain shifts [33]. As a result,
models trained on training (source) domains may perform poorly on new, unseen
(target) domains, leading to a significant drop in predictive accuracy and lim-
iting the model’s reliability in real-world applications. To mitigate distribution
shifts, transfer learning [24] and domain adaptation [8] have been proposed, but
they require auxiliary data from target domains for model adjustment before
or after deployment, which is impractical in time-sensitive and resource-limited
sensor settings such as earthquake monitoring and emergency health monitoring
[15].

Domain generalization (DG) [39] offers a solution that enables models to
learn knowledge from multiple source domains that generalize well to unseen do-
mains without requiring auxiliary data or post-deployment adjustments [2][33].
While DG has shown promise in sensor-based classification tasks like activity
recognition and fault diagnosis, its application to regression remains underex-
plored. Classification tasks typically have a fixed label space where all domains
share the same discrete labels. Many DG methods primarily address distribu-
tion shifts in the input space, learning domain-invariant features by identifying
stable predictive patterns across source domains. However, many sensor-based
applications, such as environmental monitoring, energy management, and health
assessment, have real-valued data with diverse continuous input and label spaces
across domains, leading to label space shifts. This variability affects model gen-
eralization in two ways. First, it complicates the identification of stable predic-
tive features, as label space shifts alter the distribution of predictive patterns
across domains. Crucial label-associated features may only appear in certain do-
mains. For example, seismic activity in low-intensity regions lacks high-intensity
earthquake signatures. This challenges DG methods that assume a shared pre-
dictive structure across all domains. In extreme cases, label space shifts create
domain-exclusive label ranges, preventing label overlap and hindering the extrac-
tion of stable, transferable patterns. As a result, learning informative features
while eliminating domain dependencies becomes difficult. Second, the target do-
main may contain unseen labels with no corresponding features in the source
domain, making accurate predictions in the new label space difficult. Existing
DG methods are often ineffective under these conditions, leading to inaccurate
or suboptimal features for generalization. Furthermore, they overlook the con-
tinuous nature of label spaces and the subtle relationships between labels and
input patterns. In regression tasks, small changes in labels correspond to grad-
ual, continuous changes in input patterns. Methods designed for discrete labels
fail to capture these relationships, mapping continuous patterns into discrete
features [34]. This limitation becomes particularly problematic under domain
shifts, where small variations in input features can cause large prediction devia-
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tions, making models that learn fragmented features highly sensitive to domain
shifts.

To address these challenges, we propose a new DG framework for time se-
ries regression tasks in sensor-based applications. Our approach learns Ordinal
Aligned Task Specific (OATS) to enhance generalization across unseen domains
by learning stable features aligned with labels while remaining independent of
domain variations. Ordinal aligned ensures that features capture continuous la-
bel relationships, reflecting smooth, gradual changes in regression tasks. Task-
specific removes domain-dependent information, enabling models to generalize
effectively across different environments. Together, these properties improve ro-
bustness to distribution shifts and allow extrapolation to unseen domains. Our
framework leverages contrastive learning [37], which helps the model distinguish
relevant features without additional annotation by contrasting similar and dis-
similar examples. We extract two key feature types using regression labels as a
reference: (1) Ordinal aligned features, which consistently correspond with labels
across domains and capture continuous variations as labels change. We encourage
an ordered and consistent alignment by enforcing signal pairs with closer regres-
sion labels to have higher similarity across domains. This structured alignment
improves robustness to distribution shifts and helps the model discern which fea-
tures are truly associated with label variations and how changes in feature space
correspond to label variations, and vice versa. Using this relationship, the model
can recognize patterns in unseen label ranges that lie near or between famil-
iar patterns from training by extrapolating from learned continuous structures.
(2) Domain-dependent features, which encode domain variations unrelated to
the regression task by contrasting pairs of signal from same domain with differ-
ent labels. These features help eliminate domain dependencies from the ordinal
aligned features, ensuring task specificity through a loss function designed to ex-
plicitly minimize the mutual information between ordinal aligned features and
domain-dependent features. This approach addresses the challenge of removing
domain-dependent information from predictive representations when label space
shifts occur. The contributions of this paper are summarized as follows:

1. We propose a new DG framework for sensor-based time series regression that
aligns features with the ordinal nature of continuous labels, moving beyond
the distributional assumptions of existing methods.

2. Our framework learns OATS features that capture essential predictive in-
formation while stable with respect to labels and independent of domain
variations, enhancing generalization across domains.

3. We conducted extensive experiments on four real-world sensor applications,
comparing our approach with 14 DG methods. The results demonstrate that
our framework outperforms SOTA approaches, achieving improved perfor-
mance and reliability under domain shifts.
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2 Preliminaries and Problem Setting

2.1 Domain Generalization

DG is a subfield of transfer learning that aims to develop models capable of
performing well on unseen domains with distinct data distributions from the
training domain [33]. Unlike domain adaptation [3][35], DG does not rely on
target domain information during training, making it particularly challenging.
Initially prominent in computer vision, DG now gains traction in time-series and
signal processing, such as human activity recognition [25], industrial automation
[22], and healthcare [7]. Existing DG methods fall into three categories [33].
1) Data augmentation approaches, such as Mixup and GAN-based techniques
[13][11] generate synthetic data to improve generalization. 2) Learning strategies
include meta-learning [18][22], which simulates domain shifts by splitting source
tasks to enhance adaptability, invariant risk minimization (IRM) [10], which
encourages consistent predictive rules across varying domains , and distribu-
tionally robust optimization (DRO) [9], which optimizes model performance in
worst-case scenarios. 3) Representation learning seeks domain-invariant features
through distribution alignment methods by reducing maximum mean discrep-
ancy(MMD) [13] or correlation [1], domain-adversarial learning(DANN) [15] [16],
and feature disentanglement [2][4][25] to separate domain-specific factors from
robust, transferable representations. Despite these advances, most DG methods
assume discrete, consistent label spaces and focus primarily on classification.
This limits their effectiveness in time-series regression, where label space shifts
introduce challenges that disrupt stable predictive patterns across domains. As a
result, existing approaches often degrade when label distributions vary between
source and target domains. Some recent studies have explored regression, [16]
tackles time-series forecasting with temporal shifts where distributions evolve
within a single domain but do not address domain shifts across environments.
[8][14][30][35] tackle regression task under label drift, they rely on extra target-
domain information, such as unlabeled samples, do not strictly conform to the
DG setting where the target domain is entirely unknown. As a result, developing
robust regression models that handle continuously shifting label distributions in
unseen domains remains an open and pressing challenge in DG research. In Ap-
pendix A, we further discuss the limitations of DG methods in regression with
continuous label space shifts. Propositions 1 and 2 show that domain-invariant
feature extraction can lose critical predictive information and fail to remove
domain dependency.

2.2 Problem Setting of DG Regression

Let X ⊆ RM×T be the input space and Y ⊆ R be the label space of real
numbers. where T represents the length of the time series, and M is the number
of dimensions in each input sample. A domain is defined over the product space
X × Y and is represented by a joint probability distribution P(X,Y ). For each
domain d, we have a set of data samples Dd = {(xd

i , y
d
i )}

Nd
i=1, where each sample
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Fig. 1: The overview of our proposed framework

(xd
i , y

d
i ) is drawn from the distribution Pd(X,Y ). Here, Nd is the number of

samples in domain d. We use Xd and Yd to represent the input set and label
set, respectively, in domain d. To represent multiple source domains, we define
a set S = {1, . . . , S}, where each element corresponds to a source domain with
its joint distribution Ps(X,Y ). Let DS represent the combined data from all
source domains, with XS and YS denoting the full set of inputs and labels across
these domains. The unseen target domain, where we will evaluate the model’s
generalization ability, is represented by a separate distribution, Pt(X,Y ). Label
space shift may exist between domains, which is defined as occurring between
domains j and k when the possible values or ranges of their label distributions,
denoted as P(Yj) and P(Yk), differ. This shift is characterized by the inequality
of their support sets, SYj

̸= SYk
. To measure the generalization capability of a

model f : X → Y, we calculate its empirical risk on a given domain d, defined
as:

R(f,P(X,Y )) = Ex,y∼P(X,Y )∥y − f(x)∥22 (1)

This risk measure calculates the average Mean Squared Error (MSE) loss be-
tween the model’s predictions f(x) and the actual labels y for samples from do-
main d. The goal of DG is to train a model f using data from the source domains
that minimizes the risk in the unseen target domain, denoted R(f,Pt(X,Y )).

3 Our Approach

We propose a framework for time series regression that learns Ordinal Aligned,
Task-Specific (OATS) features by extracting both ordinal-aligned features and
domain-dependent features, and minimizing the mutual information between
them to enforce task specificity. Figure 1 provides an overview of our frame-
work, which includes three main components: an ordinal-aligned feature encoder
gY , a domain-dependent feature encoder gD, and a regressor f . Both encoders,
gY and gD, share the same network architecture but are trained to extract dif-
ferent feature representations from the input data x. Specifically, gY extracts
ordinal-aligned features zY = gY (x) that align with the labels in an ordinal way,



6 Y. Shi et al.

capturing information directly related to the regression task. In contrast, the
domain-dependent encoder gD extracts features zD = gD(x) that capture unique
characteristics of each domain and assist gY in filtering out domain-dependent
influences. We use ZD to denote the set of domain-dependent features, and ZY to
denote the set of domain-dependent features. Zi

D and Zi
Y represent the subsets

of domain-dependent and ordinal-aligned features for the domain i, respectively.
The ordinal-aligned features ZY are then inputted into the regressor f , which
outputs the final prediction ŷ = f(ZY ). See Appendix B for the pseudocode of
training and inference. Below, we formally define ordinal aligned features and
domain dependent features:

Definition 1. Ordinal Aligned Features: Let xi, xj , xk be three data samples
from different source domains, with labels yi, yj , jk satisfying |yi − yj | < |yi −
yk|, indicating that yi is closer to yj than to yk. Ordinal aligned features are
zi, zj , zk ∈ ZY consistent across domain given label and satisfying sim(zi, zj) <
sim(zi, zk), where sim(·, ·) represents a similarity measure between two features
(i.e. euclidean distance or cosine similarity).

These features encode the smooth, gradual relationships inherent in regression
tasks. For instance, in seismic analysis, waveform characteristics change gradu-
ally from a magnitude 3 to a magnitude 6 earthquake. A waveform for magnitude
4 falls between those for magnitudes 3 and 6 but more closely resembles mag-
nitude 3. Similarly, in clinical pain assessments, physiological signals respond
gradually as pain levels increase. Moving from "no pain" to "severe pain" in-
volves intermediate stages like "mild pain" and "moderate pain," with each
stage marked by subtle changes in physiological signals. Such gradual shifts in
labels produce a smooth, continuous effect on the associated features. This or-
dinal continuity implies that inputs contain features reflecting a progression of
label values, where adjacent labels are associated with more similar features.
By identifying these features, the model captures representations that encode
the stable relationship between labels and feature variations across domains, ef-
fectively modeling this relationship based on label distances. This enables the
model to approximate and align features smoothly across neighboring labels, im-
proving generalization to unseen label ranges by leveraging the learned similarity
structure among features. To remove domain-dependency from ordinal aligned
features while preserving task specificity, we identify these features from each
domain that remain stable even as labels change, formally defined as follows:

Definition 2. Domain Dependent Features: Let xi, xj be two data samples
from the same domain Xd with different labels yi, yj, and let xk be a sample
from a different domain Xd′ . The Domain Dependent Features zi, zj , zk ∈ ZD

capture domain-specific variations while remaining independent of the labels by
maximizing the similarity between zi and zj, while minimizing their similarity
to zk from other domains and the ordinal aligned features zy ∈ ZY .

To extract these features effectively, our framework uses contrastive learning
[4][37] to identifies shared patterns in data. We design contrastive objectives for
both encoders, gY and gD, helping them specialize in their respective roles. As
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shown in Figure 1 (bottom right), our framework organizes the feature space by
separating ordinal-aligned features ZY from domain-dependent features ZD and
aligning ZY features according to label values to form an ordinal structure.

3.1 Ordinal Aligned Feature for Regression

To achieve ordinal alignment of features, as defined in Definition 1, we aim to
train the ordinal-aligned encoder gY to prioritize similarity between feature pairs
based on the closeness of their labels. Specifically, for any two features gY (xi)
and gY (xj) with labels yi and yj , we aim for their similarity to be greater than
that of any pair gY (xi) and gY (xk), where |yi − yj | < |yi − yk|. This approach
adapts recent advances in learning features through contrastive learning [37]
to address the unique challenges of multi-domain generalization with shifting
continuous label spaces. To guide gY in learning these ordinal aligned features,
we introduce a loss function LOA, which increases the similarity between features
with closer labels. The loss function is defined as:

LOA = − 1

N

∑
xi,xj∈XS ,i̸=j

log
esim(gY (xi),gY (xj))/τOA∑

xk∈Φ(i,j) e
sim(gY (xi),gY (xk))/τOA

(2)

In this setup, we evaluate all pairs of input features in the source domain. For
each pair xi and xj , the numerator measures the similarity between their en-
coded features, while the denominator sums similarities between gY (xi) and all
features xk in Φ(i, j). Here, Φ(i, j) = {xk ∈ XS | |yi − yj | < |yi − yk|} includes
features with label distances to yi greater than the distance between yi and yj ,
ensuring closer labels are prioritized. The temperature parameter τoa adjusts the
sensitivity to similarity: lower values sharpen the focus on more similar pairs,
while higher values smooth the distribution. The exponential scaling further em-
phasizes pairs with higher similarity scores, amplifying their influence on the loss
function. By minimizing LOA, the encoder is encouraged to produce feature pairs
with smaller label distances that are more similar than pairs with larger label
distances. This optimization enforces ordinal alignment across the feature space,
helping the encoder capture the continuous nature of the labels. Additionally,
this objective aligns features with similar labels from different domains, allow-
ing the model to learn consistent patterns in diverse environments. By focusing
on stable, label-consistent features, our approach enhances generalization across
domains by capturing elements that remain invariant despite domain variations.

3.2 Minimizing Domain Dependency

To address the presence of non-overlapping label ranges that may exist exclu-
sively in a single source domain, and to ensure that the ordinal-aligned en-
coder gY learns features free from domain-dependent information, we introduce
a domain-dependent encoder, gD, along with two contrastive loss functions. The
domain-dependent encoder captures label unrelated characteristics unique to
each domain, allowing us to remove these features from the ordinal-aligned ones,
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enforcing task-specificity. The encoder gD is designed to ensure that features with
different labels from the same domain are similar, maximizing their intra-domain
similarity. Specifically, for two data points xs

i and xs
j from the same domain s, we

aim to maximize their similarity in the feature space. Conversely, for data points
xs and xt from different domains s and t, we minimize their similarity. To encour-
age the removal of domain-dependent features from ordinal-aligned feature, we
also minimize the similarity between the features generated by ordinal-aligned
encoder gY and domain-dependent encoder gD. These optimization objectives
are collectively achieved through a contrastive loss function, LDD. In this set-
ting, ZY , the features extracted by gY , represent one category, while Zs

D, the
domain-dependent features extracted by gD for each domain s, form separate
categories. The aim is to ensure high similarity within each category and low
similarity across categories. The contrastive loss function is defined as:

LDD = −
∑

zi∈ZY ∪ZD

1

|P̊ (zi)|

∑
zj∈P̊ (zi)

log
esim(zi,zj)/τDD∑

zk∈N̊(zi)
esim(zi,zk)/τDD (3)

P̊ (zi) = {zj ∈ ZY ∪ ZD | category(zj) = category(zi), zj ̸= zi denotes features
from the same category as zi, and N̊(zi) = {zk ∈ ZY ∪ ZD | category(zk) ̸=
category(zi)} denotes features from different category. The temperature param-
eter τDD controls the sensitivity to similarity differences. Minimizing LDD pro-
motes high similarity among features within the same category (numerator)
while reducing similarity among features from different categories (denomina-
tor). This encourages gD to identify domain-dependent features within each
domain. However, there remains a possibility that ZY and ZD may still be
correlated. We aim to minimize their mutual information to remove their de-
pendency: I(ZY , ZD) = DKL(P(ZY , ZD) ∥ P(ZY )P (ZD)). Minimizing mutual
information is equivalent to minimizing the Kullback-Leibler (KL) divergence
between the joint probability distribution P(ZY , ZD) and the product of the
marginal distributions P(ZY )P(ZD) by definition. However, directly computing
the KL divergence between high-dimensional distributions is challenging due to
its intractability. To address this challenge, we propose an contrastive objective
and a discriminating head h to approximate the KL divergence with feature sim-
ilarity. We construct a set of feature pairs {(ZY , ZD)} by concatenating ordinal-
aligned and domain-dependent feature along the feature dimension to represent
joint distribution P(ZY , ZD). Additionally, we create another set of feature pairs
{(ZY , Z

′
D)}, where Z ′

D is obtained by shuffling the indices of ZD, ensuring inde-
pendence between concatenated ordinal-aligned and domain-dependent features
to simulate samples from the product of the marginals P(ZY )P(ZD). The dis-
criminating head h is a network designed to project {(zY , zD)} and {(zY , z′D)}
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into distinct feature spaces. The proposed objective function is defined as:

LMI = − 1

N

∑
zi,zj∈ZJ ,i̸=j

log
esim(h(GRL(zi)),h(zj))/τMI∑
z′
k∈ZM

esim(h(zi),h(z′
k))/τMI

− 1

N

∑
z′
i,z

′
j∈ZM ,i̸=j

log
esim(h(z′

i),h(z
′
j))/τMI∑

zk∈ZJ
esim(h(z′

i),h(zk))/τMI

(4)

Here, ZJ represent the set of features drawn from the joint distribution P(ZY , ZD),
and ZM represent the set of features drawn from the marginal distribution
P(ZY )P(ZD). Minimizing this objective function encourages the discriminative
head h to map feature pairs from the same distribution to be closer together
while pushing apart those from different distributions, enable h effectively distin-
guish between concatenated feature pairs drawn from the joint versus marginal
distributions, thus assessing the similarity between the two distributions and ap-
proximating the KL divergence. To minimize the KL divergence and reduce the
mutual information, we employ adversarial learning by applying a gradient rever-
sal layer (GRL) to ZY before it is passed to h. This approach reverse the gradient
sign been prepackaged, guiding the encoder to learn patterns that make h unable
to differentiate the features belonging to the joint distribution or the marginal
distributions, thereby minimizing the KL divergence and reducing their mutual
information. By integrating these strategies, we ensure that the ordinal-aligned
encoder gY focuses on learning features pertinent to the task while being robust
to domain-dependent variations, thus enhancing generalization across domains.

3.3 Selection of Similarity Measurements

The choice of similarity measurements is critical to optimizing our framework.
Specifically, LOA aims for ordinal-aligned features to be more similar when con-
ditioned on their corresponding labels, while LDD seeks to minimize the simi-
larity between ordinal-aligned dependent and domain-dependent features from
each domain. This setup introduces a potential conflict in contrasting ordinal-
aligned features, as they are simultaneously pushed to align closely with each
other and to diverge from domain-dependent features. To resolve this potential
conflict, we employ distinct similarity metrics for each objective: L2 distance for
LOA and cosine similarity for LDD. This strategic choice positions the ordinal-
aligned features in different orientations within a high-dimensional space relative
to domain-dependent features, while aligning the ordinal-aligned features along
a similar axis but at varying positions (see Figure 1 - bottom right).

3.4 Overall Loss Function

The overall objective function for training the model is:

LALL = Ex,y∼Ps(X,Y )∥y − f(gY (x))∥22 + λ1LOA + λ2LDD + λ3LMI (5)
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The first term represents the mean squared error between the predicted out-
puts and the actual labels. The remaining terms are weighted components of
the loss function that manage domain-dependent and ordinal label aligned rep-
resentation constraints. The parameters λ1, λ2, λ3 are regularization weights
that balance the influence of constraints relative to the primary regression task.
By jointly optimizing these losses, the model learns to extract OATS features
that align with label order while simultaneously removing domain-dependent
characteristics. This enables the model to generalize effectively across different
domains and make accurate predictions for the regression task. Our general-
ization method operates solely during training, using f , gY and gD with their
respective loss functions to guide learning. During inference, only the ordinal-
aligned encoder gY and regressor f are used to make predictions on unseen data.
A few more discussions on our design can be found in Appendix C.

4 Experiments

4.1 Datasets and Setup

We tested our method on real-world time series data from biomedical, seismol-
ogy, and energy systems with distribution shifts. The Pain Assessment dataset
(BioVid) [32] predicts pain intensity levels using physiological sensor data col-
lected from 87 subjects in response to heat-induced pain. Pain intensity includes
levels ranging from 0 (no pain) to 4 (severe pain). Each subject was treated
as a distinct domain due to individual biological and psychological variations
that affect data distribution, following established practices [36]. This setup al-
lowed us to evaluate the ability of the model to generalize to new patients. To
assess the impact of label space shifts, we modified the original dataset, which
features uniformly distributed labels, by randomly removal some range of la-
bels from each subject’s label distribution. These conditions tested the robust-
ness of our method and other DG approaches under varying degrees of label
space shift. The Air Quality Prediction dataset (PRSA) [5], consists of hourly
air pollution index measurements and meteorological data collected from mul-
tiple air monitoring stations in Beijing. The objective is to predict future air
pollution index variations based on meteorological data. The Earthquake De-
tection dataset (LEN-DB) [21], contains three-component seismic data captured
along vertical, north-south, and east-west axes. Each recording is labeled with
earthquake magnitude. Data from ten countries were treated as separate do-
mains. The magnitude distributions vary across stations due to geological and
geographical factors. This dataset includes 22,207 sequences, providing a diverse
evaluation setting for domain generalization under label space shifts. The Energy
Disaggregation dataset (REFIT) [23] records household energy use at 8-second
intervals over two years. The data includes whole-house aggregate consumption
and individual appliance loads. Our task involves short-term Non-Intrusive Load
Monitoring (NILM), where the goal is to predict the power consumption of a
target appliance at the midpoint of a sequence based on the overall household
energy usage. We selected eight houses and targeted four appliances: washing
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machines, microwaves, fridges, and dishwashers. Each appliance is treated as a
distinct regression task, and data from each house represents a unique domain.
Each appliance-specific dataset includes 64,000 sequences. For a comprehensive
description of the used datasets, refer to Appendix D. In our experiments, we
employed a Leave-One-Domain-Out (LODO) strategy to evaluate our method.
Under this approach, one domain was held out as the target domain while the re-
maining domains were used for training. Each domain was sequentially excluded,
ensuring that all domains were evaluated as target domains. We conducted 15
trials per experiment, averaging the results to ensure a robust evaluation. Ap-
pendix E gives details on implementation and hyperparameter settings. The code
is available at https://github.com/yshi22/OATSDG.

4.2 Baselines

We evaluated our model against 14 recent and widely used DG approaches for
sensor-based data to assess its effectiveness comprehensively. Empirical Risk
Minimization (ERM)[31] serves as a baseline, representing conventional training
by minimizing loss on source domains without additional generalization strate-
gies. We compared our model with widely adopted DG methods, including Coral
[29], MMD[26], DANN[6], MLDG[12], DRO[9], and Mixup[38], which have been
applied to many time series tasks [1][13][15][18]. Additionally, we included re-
cent methods that perform well in image-based applications but remain un-
derexplored for time series data. VREx [10] applies variance regularization to
stabilize performance across diverse environments, improving domain resilience.
mDSDI[2] combines meta-learning with feature disentanglement, and CDDG[4]
incorporates contrastive learning to learn invariant features. We also evaluated
recent approaches that address time series data. Diversify[16] leverages domain
adversarial learning to extract domain-invariant features from time sequences.
GILE[25] employs feature disentanglement to identify stable components in sen-
sor signals. Fixed[17] enhances generalization by augmenting stable features,
with evaluations conducted explicitly on time series data. MAMR[19] applies
weighted meta-learning tailored for regression tasks.

4.3 Results

The experiments evaluated the robustness and effectiveness of our DG frame-
work across the datasets, with a particular focus on the challenges posed by
domain shifts in regression tasks. As detailed in Table 1, our framework out-
performs others, achieving the lowest Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) in most target domains. For Biovid tests, exist-
ing domain-invariant representation learning methods, MMD, Coral, DANN and
Diversify outperformed ERM when label spaces are consistent across domains
(reduced generalization errors). However, their performance degraded signifi-
cantly under label space shifts, consistent with our Proposition 1. In some cases,
their performance was even worse than ERM. This is likely because ERM, while
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Biovid REFIT
No LSS Under LSS Microwave Washing Machine

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
ERM[31] 1.132±0.004 1.569±0.004 1.136±0.010 1.585±0.010 34.56±01.50 158.26±03.25 41.16±02.03 184.03±05.19
MMD[26] 1.127±0.014 1.540±0.012 1.143±0.001 1.558±0.002 44.65±00.89 158.32±01.52 52.64±01.33 188.15±02.98
Coral[29] 1.131±0.016 1.541±0.017 1.139±0.008 1.560±0.006 32.53±00.31 159.73±00.94 42.65±00.73 191.19±02.45
DANN[6] 1.147±0.004 1.560±0.003 1.178±0.010 1.598±0.013 30.74±02.91 143.31±05.84 58.52±04.18 193.51±09.66
Mixup[38] 1.116±0.009 1.533±0.013 1.135±0.013 1.557±0.012 33.15±01.50 156.26±03.69 40.00±02.31 181.10±07.02
MLDG[12] 1.152±0.010 1.577±0.029 1.167±0.010 1.600±0.012 49.12±13.34 150.66±13.94 48.48±18.40 176.69±23.35

DRO[9] 1.120±0.005 1.515±0.004 1.167±0.018 1.799±0.020 41.18±02.21 171.46±05.09 44.60±01.85 192.65±06.02
VREx[10] 1.130±0.011 1.544±0.012 1.136±0.012 1.558±0.013 35.97±01.64 160.82±04.03 41.71±01.63 187.17±04.98
mDSDI[2] 1.116±0.006 1.527±0.007 1.126±0.006 1.543±0.009 32.45±01.79 146.85±04.99 42.36±02.81 179.92±06.49
GILE[25] 1.228±0.008 1.606±0.009 1.251±0.013 1.637±0.016 39.64±09.19 157.06±10.42 47.68±11.18 185.75±25.20
Fixed[17] 1.172±0.007 1.588±0.005 1.193±0.013 1.618±0.010 31.00±01.85 143.63±01.55 55.43±01.92 190.61±05.49

MAMR[19] 1.183±0.012 1.618±0.019 1.182±0.013 1.612±0.012 43.50±09.14 150.18±12.04 53.70±14.54 179.62±16.91
Diversify[16] 1.124±0.004 1.532±0.005 1.138±0.011 1.550±0.014 31.27±02.58 152.69±03.74 43.53±03.78 176.06±03.55

CDDG[4] 1.129±0.005 1.547±0.007 1.158±0.003 1.575±0.005 38.07±01.97 158.88±04.33 41.08±01.58 180.61±05.48
Ours 1.107±0.008 1.504±0.009 1.123±0.002 1.540±0.004 29.26±02.90 146.71±05.16 35.78±02.91 174.43±07.13

LENDB PRSA REFIT
Fridge Dishwasher

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
ERM[31] 0.422±0.035 0.707±0.046 30.79±4.05 45.97±5.21 37.97±00.84 50.66±00.86 36.99±01.40 202.27±04.16
MMD[26] 0.449±0.037 0.698±0.047 30.40±1.15 45.57±1.19 39.67±00.20 50.32±00.25 47.06±00.49 194.53±01.41
Coral[29] 0.489±0.008 0.744±0.009 31.48±0.09 45.77±0.20 36.94±00.26 58.38±00.18 51.31±00.33 197.34±00.77
DANN[6] 0.455±0.024 0.706±0.032 33.85±1.62 48.92±2.54 41.90±00.64 53.72±07.80 37.06±02.18 193.21±05.85
Mixup[38] 0.464±0.028 0.710±0.036 38.47±1.39 56.19±1.96 37.84±00.72 50.40±00.72 36.67±01.04 201.47±02.23
MLDG[12] 0.506±0.109 0.794±0.120 31.45±1.59 46.85±2.41 37.56±02.14 56.46±02.32 51.58±13.85 196.57±11.88

DRO[9] 0.480±0.029 0.730±0.034 31.11±2.37 45.53±2.97 41.93±00.98 57.74±01.40 39.88±01.39 207.55±03.41
VREx[10] 0.474±0.035 0.720±0.043 31.14±2.67 45.84±2.88 38.20±00.88 51.03±00.94 38.30±01.67 204.39±04.03
mDSDI[2] 0.415±0.025 0.697±0.032 31.04±4.49 46.02±5.41 39.90±01.37 49.98±01.17 39.73±02.20 201.73±04.78
GILE[25] 0.440±0.029 0.695±0.036 30.55±1.32 44.35±1.99 41.52±00.81 49.89±00.85 39.11±05.18 199.68±09.19
Fixed[17] 0.492±0.047 0.747±0.056 38.81±0.80 56.70±1.40 41.67±00.30 51.03±03.36 37.68±01.93 193.36±05.44

MAMR[19] 0.542±0.102 0.824±0.116 38.47±4.15 55.19±5.96 42.44±03.77 53.34±04.36 51.46±17.26 193.05±18.63
Diversify[16] 0.457±0.050 0.698±0.054 30.81±0.85 46.55±2.03 39.69±01.17 52.46±05.15 36.59±03.36 205.30±01.32

CDDG[4] 0.423±0.031 0.707±0.041 33.34±7.90 49.10±9.73 38.03±01.01 50.97±01.11 39.42±01.38 204.59±03.93
Ours 0.386±0.025 0.666±0.032 28.98±0.72 43.72±1.37 38.35±01.48 49.84±01.12 35.83±00.61 202.86±01.34

Table 1: The performance comparison of various DG methods on BioVid, LEN-
DB, PRSA and REFIT datasets using LODO testing. The table shows average
MAE and RMSE across all target domains for each method (mean ± standard
deviation). Results are in bold if our model has the best performance.

retaining some domain-dependent noise, also preserves essential predictive fea-
tures of different label spaces. Conversely, mDSDI, which attempts to adapt
domain-specific information after learning domain-invariant features, preserve
more label-related information, making it less susceptible to label shifts com-
pared to other baselines. However, it struggles to align features from different
domains with labels and fails to capture continuous relationships between fea-
tures and labels, resulting in lower performance than our approach. Our frame-
work shows robust, stable performance under label shifts, with consistently low
standard deviations. It also outperforms across most metrics on the LEN-DB,
PRSA and REFIT datasets. MLDG, MAMR, DRO, and VREx, while different
in their treatment of domain shifts, struggle to meet the diverse predictive chal-
lenges across different labels within domains. Their performance is limited under
variable domain conditions, impacted by the distinct prediction difficulties and
variances among labels. Data augmentation techniques also fail to bridge the do-
main gap effectively, largely due to the inherent noise and discrepancies present
in time-series data across domains. These results demonstrate the effectiveness
of our framework in handling the complexities of domain generalization in re-
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Fig. 2: t-SNE visualization of features extracted by our approach.

source
target

(a) w.r.t. DS/DT (b) w.r.t. label

source
target

(c) w.r.t. DS/DT (d) w.r.t. label

Fig. 3: t-SNE visualization of features extracted by ERM (a,b) and Domain-
Invariant Feature Learning (c,d)

gression tasks, particularly its ability to adapt to diverse real-world scenarios.
See Appendix F for the significance analysis and detailed results of each method
across the leave-out domains for each dataset.

4.4 Visualization of Extracted Features

We used t-SNE[20] to visualize the extracted features and validate the effective-
ness of ordinal alignment. Figures 2a and 2b showcase the alignment of ordinal-
aligned features with label values (blue for lower, yellow for higher) and between
source and target domains (purple and red, respectively). The visualizations
highlight our ability to maintain a correct ordinal relationship with respect to
label values (monotonous blue-to-yellow gradient), and the overlapping colors in
Figure 2b indicate successful domain generalization. Figure 2c demonstrates ef-
fective learning of domain-dependent features, with each domain represented by
distinct colors and clear separation, without overlap. Figure 2d and 2e validates
the effectiveness of minimizing domain-dependency in Section 3.2, shows the mu-
tual information between ordinal-aligned and domain dependent features via dis-
tributional divergence between P(ZY , ZD)(purple points) and P(ZY )P(ZD)(red
points) before and after applying LMI . Before applying LMI (Figure 2d), a large
distance between samples of P(ZY , ZD) and P(ZY )P(ZD) indicates high KL di-
vergence, suggesting considerable mutual information between ordinal-aligned
and domain-dependent features. After applying LMI (Figure 2e), the distribu-
tions are aligned, indicating a lower KL divergence and reduced mutual informa-
tion between the ordinal-aligned and domain-dependent features. We also pro-
vide visualization results of features learned through ERM and domain-invariant
feature learning methods. Figure 3a and 3b shows the alignment results for ERM,
where target domain features (red points) do not align well with source domain
features (purple points), as indicated by a significant number of red points (tar-
get) located outside the purple points (source). This indicates that ERM fails
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REFIT Biovid LEN-DB PRSA
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

ERM 37.67±01.44 148.77±03.37 1.136±0.010 1.585±0.010 0.422±0.035 0.707±0.046 30.79±4.05 45.97±5.21
LOA 35.34±01.29 145.79±03.67 1.133±0.008 1.549±0.007 0.391±0.034 0.670±0.018 30.04±1.21 44.98±1.78
LALL 34.71±01.91 143.33±03.78 1.126±0.005 1.536±0.006 0.386±0.025 0.666±0.032 28.98±0.72 43.72±1.37
Cosine 35.71±02.17 144.42±04.48 1.129±0.005 1.545±0.007 0.392±0.027 0.676±0.032 29.69±1.41 44.56±1.83
L2 35.90±02.18 145.22±04.15 1.130±0.006 1.549±0.006 0.389±0.024 0.674±0.027 29.06±0.92 43.86±1.65

Table 2: Ablation study showing the effect of different loss components and
distance metrics across four datasets.

to learn features that generalize across domains. Additionally, the learned fea-
tures do not capture the ordinal relationships between labels, as the distribution
of label values around the features does not show a gradient transition (label
values are indicated by color). Figure 3c and 3d shows the alignment results
using DANN [6]. The target and source domain distributions align, with red
points mostly covered by purple areas. However, the features still fail to capture
the ordinal relationships between labels, and label relationships are incorrectly
learned. This issue is observed in areas with smaller label values (darker points),
where unexpectedly high label values (brighter points) appear. These t-SNE vi-
sualizations support the effectiveness and robust generalization capabilities of
our approach. More visualization results and comparisons with different DG
approaches are given in Appendix G.

4.5 Ablation Study

Our ablation study examines the contributions of different components in our
framework, as shown in Table 2. The baseline ERM model (without DG), shows
high MAE and RMSE, indicating its poor generalization. Each additional com-
ponent in our framework progressively improves the model’s ability to gener-
alize. The inclusion of ordinal alignment LOA shows a definite improvement in
performance, and combining LDD and LMI to minimize domain-dependency
further enhances performance (Lall in the table). These results demonstrate the
effectiveness of our method. We also analyzed the effect of different distance
metrics, Cosine and L2, used within the contrastive objectives LDD and LOA.
We compared separate uses of each metric, as well as a hybrid approach: Co-
sine similarity for LDD and L2 distance for LOA. The hybrid approach (Lall in
the table) achieved the best performance and stability. It effectively resolves po-
tential conflicts between metrics and positions ordinal-aligned features optimally
within the feature space. This ensures that while these features are aligned, their
magnitudes can vary, ultimately leading to improved model generalization.

5 Discussion

Our framework is broadly applicable to various sensor-based applications, in-
cluding environmental monitoring, medical diagnostics, and industrial process
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control. Importantly, it introduces no additional computational cost during in-
ference. The latency, memory footprint, and overall complexity of the deployed
model remain identical to a model with the same architecture trained using
conventional methods. The only added overhead arises during training, where
the gD requires one additional forward pass, and the contrastive losses require
pairwise feature similarity computations, leading to quadratic complexity with
respect to batch size. In practice, this burden is mitigated by performing train-
ing on dedicated high-performance machines, while deployment is carried out on
resource-constrained edge or embedded devices. A key assumption of the frame-
work is the existence of stable label-aligned features across domains. In cases
where label-feature relationships vary significantly, such as when similar labels
correspond to distinct sensor reading patterns due to concept drift, or when non-
linear or non-monotonic dependencies violate the assumption of gradual label
transitions, the effectiveness of ordinal alignment may be reduced.

6 Conclusion and Future Work

This paper presented a new framework for improving domain generalization
in time-series regression by learning ordinal-aligned, task-specific features. Our
method aligns representations with label order while explicitly disentangling
domain-dependent variations. Extensive experiments across diverse real-world
sensor datasets demonstrate that the framework reliably models subtle varia-
tions in sensor readings, preserves ordinal continuity across domains, and con-
sistently outperforms existing approaches. For future work, we plan to conduct
pilot studies in real-world deployment settings to further evaluate and refine the
framework’s performance. A key objective is to extend the method to accom-
modate complex, non-linear, and non-monotonic relationships between features
and labels, which may violate the assumption of gradual label–feature alignment.
We will also optimize the model architecture and training pipeline for improved
efficiency, introduce a more compact loss formulation to simplify hyperparam-
eter tuning, and adapt the framework to multi-dimensional regression targets.
These developments will expand its applicability across a broader range of sensor
reading characteristics and label distributions, advancing robust domain gener-
alization for complex regression tasks in dynamic, real-world environments.
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