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Abstract. Embeddings generated from navigation data unlock valuable
insights and provide strong baselines for a wide range of applications. How-
ever, the dynamic and evolving nature of financial applications presents
significant challenges for the stability and adaptability of embedding
models, particularly when these embeddings are used as inputs to down-
stream analytical models. In this paper, an alternative approach for a
real-world constraints environment is proposed to address constantly
changing vocabularies and dependencies across downstream systems. In
order to ensure seamless integration of new elements into an established
vector space, and using data from BBVA’s application as a case study,
a methodology is developed by combining Word2Vec-based embeddings
with a two-step pipeline: Embedding Matcher and Space Mirroring. The
former is an alignment mechanism that assigns new pages to existing
embeddings using Levenshtein distance and cosine similarity. The latter
is a technique for embedding projection into the original vector space
in which multiple transformation techniques, including SVD, dense lay-
ers, ResNet, and GRU-based models, have been compared. The results
obtained highlight the effectiveness of preserving semantic integrity and
reducing the impact of updates on downstream models while minimizing
computational overhead. The proposed approach is applicable to any
context that involves dynamic vocabulary data.
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1 Introduction

Since the introduction of the embedding concept [14], its use has become
widespread due to its simplicity of application and its potential to be adapted
for subsequent tasks [24]. However, the representation of non-textual entities has
proven to be a key part of the business of many large companies. For example, in
music recommendation, Spotify employs embeddings for the representation of its
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customers [12]. Uber! also uses embeddings to represent both its customers and
establishments, and then offers appropriate recommendations. Netflix? represents
its titles as embeddings based on different features of the movie so that other
models can then feed on this useful information. These examples showcase the
utility of embeddings to link products, regardless of typology and customers [3].

Embeddings have also found application in banking and finance: stock repre-
sentation [10], transactions [20], using news for recommendation systems; [23]
even to represent customers [4] [8], where these representations are presented
as an opportunity to better understand the context around the customer [27].
Within a financial institution, a large amount of data is generated with a structure
that is difficult to represent using traditional machine learning methodologies,
such as transactions or user navigation in the application. Specifically in a bank
like BBVA, with an App that is a fundamental pillar for the customer, navigation
is of great importance 3.

Among the navigation we find key data [29], such as the pages the customers
visit, the way they navigate and the time spent on each page, among others.
When represented as an embedding, this data allows to carry out quantitative
analysis such as identifying browsing patterns or performing clustering to identify
similar customers® [7] [19]. In other words, in addition to providing direct value,
embeddings can be considered as baselines and new input features for many other
tasks, such as product recommendation systems, pricing or personalization of the
users’ own browsing experience. By using embeddings, we could reduce feature
generation and data mining tasks, which can be very costly with complex and
large volumes of data.

However, using embeddings as input to downstream models generates a direct
dependency. Although continuously retraining the embedding models can ensure
that the representation is updated, this process can alter the structure of the
vector space and affect the performance of downstream models and applications
that rely on those embeddings. This presents a unique challenge due to the
highly dynamic characteristics of the web navigation data, where new pages could
constantly emerge, user-interaction patterns evolve thus embeddings should be
adjusted accordingly.

2 Problem Definition

Typically, embeddings are learned for a specific purpose, such as the representation
of banking products [5]. This approach ensures alignment between the embedding
and its purpose, simplifying updates, as embedding retraining occurs without
extra dependencies. However, such embeddings are not easily generalizable to
other tasks.

! Uber - Two tower embeddings

2 Netflix - Supporting content decision makers

3 BBVA - Spanish banking app with the best reviews on Google
4 Instacart - Embeddings to improve search relevance
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In contrast, foundational models often learn embeddings for generic purposes,
such as understanding semantic language relationships. These embeddings can be
convenient baselines for various use cases, allowing to take advantage of potential
features without worrying about the high computational demand required for
their development. The embeddings can also be adapted for specific tasks [11]
[30], leveraging prior learning. Yet, they depend on some sort of foundational
model’s invariability, because updates in the embedding can degrade the results
of specific tasks, which may lead to a need to retrain or readjust the specific use
case’s models.

This paper presents an approach to foundational models using BBVA navi-
gation data, addressing challenges related to dynamic navigation patterns and
the introduction of new app sections. Navigation data in this context includes
user sessions, which can be defined as a sequence of visited pages in the App
hierarchically organized (i.e., operative:functionality:detail). For example,
a session that includes a query to the home page, where a money transfer is
made, could be coded as follows:

global position

operations:index

payments:index

payments:operations payment:index
payments:operations payment:index:savedcontacts
payments:operations payment:conditions
payments:operations payment:confirmation
payments:index

global position:logout

Despite a well-defined taxonomy, campaigns, which follow market trends, and
custom offers frequently expand the number of pages, introducing challenges
in embedding stability, as adding these pages to the vocabulary would require
constant retraining of the model. Figure 1 illustrates monthly trends in new pages
and campaign-related additions. While new campaign pages constitute a minor
percentage of total new pages (~5%), significant changes in operations or page
structures can alter user behavior, impacting the page embeddings. Detecting
such changes requires studying embedding drift, which causes updates to the
foundational model that involve cascading modifications to downstream models.

3 Dependencies and Restrictions

BBVA’s app produces more than 5 million daily navigation sessions, with more
than 20 thousand different pages. Preprocessing in state of the art natural
language processing models implies many different steps, such as data cleaning,
tokenization and padding. Given the large volume of data, these analytical
solutions to generate embeddings from scratch are generally very computationally
demanding and difficult to be applied when memory and execution times are
limited and security and regulatory filters exist. Alternatively, using data subsets
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Fig. 1: [Dark Blue|] Number of pages appearing for the first time compared to the
previous month. [Cyan] Number of pages that are new campaigns each month.

is an option, but they are hard to make representative and would underutilize
BBVA’s vast data resources.

For this reason, we chose PySpark’s Word2Vec as the framework to develop
the embedding models presented in the following sections, encoding each page as
a vocabulary token. Spark is a technology that allows us to perform distributed
cluster computing to speed up the process and handle the entire data volume
without having to use subsets. One significant drawback of PySpark’s Word2Vec is
its inability to resume training from a previous state, which hinders its flexibility
in scenarios requiring incremental learning or continuous model updates.

There is an additional alternative of extending the embeddings matrix within
the model and freezing the weights corresponding to the pages previously trained,
resuming the training from there and preserving the original structure of the vector
space [25]. However, within the bank platform, we face the limitations discussed
previously, which prevent us from implementing this solution directly. On the other
hand, from the embeddings we could try to self-implement the Word2Vec model
(keeping the parameters, the hyperparameters and the architecture fixed) and take
control of the whole training. Nevertheless, it is a tedious and computationally
very expensive process, so it is not feasible in the current situation (but it is not
ruled out in the future in higher-resource scenarios).

All these limitations and restrictions make it necessary to create a method that
can keep page embedding stable over a period of time, ensuring that information
from new pages entering the app can be incorporated in a useful and secure way
for embedding-dependent systems.

4 Methodology

The first step of our methodology consists of generating an embedding through
the model e for each of the unique pages visited by users at the moment, P; =
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{Pa,---piph P 5 Vi € R™, being V; the initial vector space. This process,
as mentioned in Section 3, uses a Word2Vec model implemented in PySpark to
handle the large volume of data processed. To build this vector space, we take
as a reference the pages that appear at least ten times in the sessions recorded
during a one-year interval, avoiding the use of excessively residual pages to the
algorithm and with the aim of capturing representative interaction patterns while
minimizing possible seasonal effects within the same year.

A second model, g, is then trained using the same parameters as the initial
model but incorporating all newly added pages from the elapsed time since the
initial training. This model will generate a new vector space, V5, where the entire
set of pages is denoted as P» = {pa2,1,...p2.k}; P2 £ V, C R™. For example,
if we have detected that the number of pages increases substantially every 3
months, we will train again a model of page embeddings with a time window
of one year shifted by 3 months from the time of the initial model training.
This model (g) captures all new pages ¢ € P, \ P;; P, \ P # & that have
appeared in this time window, as well as many pages that do not change over
time,TélePQ;lePQ#Q.

reEP NP,

q EP,\P,

Fig. 2: Set representation of pages in P; and P;.

The next steps aim to integrate the new pages within the previously defined
vector space through a function f : Vo — V. This will allow us to update
the model with new information and enrich the number of embeddings for
all dependent models, avoiding the cascade update of all processes that use
embeddings as input, by keeping the original vector space. To achieve this, the
process is divided into two complementary stages. Each of them implements its
own function:

1. Embedding Matcher (fgar): Each new page is compared to existing
ones using the Levenshtein distance to identify similarities in page names.
Subsequently, the cosine similarity between the corresponding vectors is
calculated, allowing us to match pages based on semantic similarity.
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2. Space Mirroring (fsas): To incorporate the new pages into the original
vector space, a projection of their vectors into the existing space is performed.
This process ensures the semantic coherence of the space by allowing the new
embeddings to align with the already established representations.

Once completed, the new page embeddings are projected and adjusted to the
original vector space. The projection of new embeddings into the original vector
space is performed periodically, dynamically incorporating new interactions, and
preserving the overall semantic structure of the vector space over time.

4.1 Embedding Matcher

The first step in the flow to keep the vector space as stable as possible is the
Embedding Matcher, a component developed within Mercury [6], an inner-course
library used in the development of BBVA’s analytical processes. As mentioned
above, there are pages or campaigns that change monthly, such as the offer of a
loan that each month you are granted a different amount, with this amount, or
the month of the offer, included in the name of the page for design convenience
(i.e., campaignclick:00000001-this-month-will-be-1600-euros). This is the
reason why all monthly campaigns of this nature could be represented with the
same embedding, as they are similar entities, representing the same concept.
This process allows for this association of new campaigns and pages that do not
yet have a representation but can be matched to an existing embedding in the
existing vector space. This is done in a two-step process.

First, the normalized Levenshtein distance (lev) of a new page (g,,) is cal-
culated with the names of pages already existing (Py), saving the set of pages
whose distance is lower than one threshold (6;).

Ny, ={n; € Py : lev(gm,ni) < 61} 1)
N, NN,N...NN,, #@

Next, we calculate the cosine similarity (Sc) between the embeddings of all
pages in N, _ .

Sgm = 15¢(vi, v5) : (vi,v5) € e(Ng,,) X e(Ng,, )1 < j} (2)

If the average cosine similarity exceeds another threshold (S, > 62), we
assign the mean embedding of all pages in N, to the new page ¢,.

ow
vEe(Ng,, )
— (3)
| Nq

To select the threshold values, 6 is adjusted by taking the maximum threshold
(01 = 0) and increasing it until some false positive samples are seen. Then, choosing
0 becomes more straightforward, as most of the pages with high Levenshtein
distance have a close cosine similarity. This statement can be seen in Figure 3,

fEM(Qm) =

m |
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where as the value of lev (X-axis) increases, the value of Sc (Y-axis) decreases,
concentrating the pages that we will take as a reference for our inference in the
upper left corner.

Based on this analysis, the thresholds selected for our use case are 6; = 0.1
and 6, = 0.75.

0.8 1

0.7 A

0.6

0.5 4

0.4 1

Cosine similarity (Sc)

0.3 4

0.2 4

T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Normalized Levenshtein distance {fev)

Fig. 3: The X-axis shows the normalization of the discretized Levenshtein distance.
The Y-axis shows the average cosine similarity for each discretized value of the
Levenshtein distance. The interval around the line refers to the standard deviation
for each X-axis value.

Despite the strong correlation between lev and Sc, both thresholds are neces-
sary because there are outliers with low values for both lev and Se¢. Thus, by using
0>, we discard these pages and provide a more precious inference through the
Embedding Matcher. Considering that BBVA’s app includes multiple frequently
asked questions, many of them exhibit high syntactic similarity—mainly due
to standardized string formats such as ’faq:1’, 'faq:2’, 'faq:3’, etc. However, this
similarity does not necessarily reflect semantic relatedness. Therefore, the use of
f> becomes essential to capture deeper content distinctions.

As an example of how the pipeline works (shown in Table 1), consider a
new page introduced in November 2023: campaignclick-loan-month-nov-2023.
First, the Levenshtein distance of the page name is performed with all the names
already existing in the vector space of the model. Then, the pages falling behind
the threshold #; = 0.1 are chosen.

Next, the cosine  similarity @ between  the embedding of
campaignclick-loan-month-nov-2023 and the other pages is calculated.
Then, if the average of all the cosine similarities is above the second threshold
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Page name Levenshtein Cosine similarity
campaignclick-loan-month-jul-2023 0.0909 0.92356
campaignclick-loan-month-sep-2023 0.0909 0.91534
campaignclick-loan-month-oct-2023 0.0607 0.89583
campaignclick-mortgagge-month-oct-2023 0.1831 0.69375

Table 1: Levenshtein and cosine similarity examples for

campaignclick-loan-month-nov-2023.

05 = 0.75, the page is fully matched assigning the embedding of the highest
cosine similarity or the mean embedding of all the previous pages.

After completing this process, some pages will be successfully matched with
previously existing pages, while others will remain unmatched moving on to the
next step: Space Mirroring.

4.2 Space Mirroring

The objective of this stage is to map the unmatched new pages to the original
vector space. We have two different vector spaces: the original vector space V;
composed of the initial pages, and a second vector space Vo composed of the
combination of pages present in both spaces, r, and new pages, ¢. Since vector
spaces are learned using different models, r is represented by different vectors.

With the previously defined functions e and g as Py = {p11,...p1}; P1 N
Vi CR" and Po = {p21,...02k}; P2 LN Vo C R™, our goal is to learn a function
fsa that maps ¢ into the original vector space V;. We will take advantage of r
in order to minimize a specific loss L trying to learn the following function:

fsm = arglmin Lle(r), l(g(r))] (4)

Combining the Embedding Matcher and the Space Mirroring, the final function
would be:

) fenm(q) for S, >0,
fra= {fSM(g(q)) 0.w. (5)

4.3 Linear approach

We initially explored the possibility of using a Singular Value Decomposition
(SVD) approach [18] to map the embeddings from the vector space V5 to the
original vector space V;. The objective was to identify a linear transformation that
projects the embeddings from the updated space to the original space. However,
for interspace reconstruction and transformation, this approach only captures
linear relationships between the dimensions of the matrices.

As expected, this approach proved to be somewhat ineffective due to the
non-linear nature of the relationships between the embeddings of the two spaces.
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The projected SVD transformation did not achieve the expected results and,
therefore, led us to opt for more sophisticated approaches.

4.4 Non-linear approach

To explore non-linear solutions, we tested various architectures and loss functions
on a neural network, with the aim of finding the best mapping from one space to
another.

In the case of the loss function, the choices were between Mean Square
Error (MSE) [16] and cosine distance. The former because our goal was to have
f(P2) vectors close to Vp; the latter because it may be desirable to maintain the
orientation or angle between the output and target vectors.

At the architectural level, and with the assumption that there were no linear
relationships between the two spaces, the following configurations are tested and
their results are shown in Section 5: architectures (ResNet [13], Self-attention
[28] and GRU [9]), regularization (Dropout [15]), activation (ReLU [1]) and
optimizer (Adam [21]).

4.5 Validation

Measuring the effectiveness of the Embedding Matcher, and thus the value of
each threshold, is critical. During calibration, multiple values of each threshold
were evaluated through an empirical analysis based on representative examples
from different pages and domains. This process allows identifying a balance point
where the system minimizes false positives (mismatches) and false negatives
(unmatched words), optimizing the performance of the matcher in real scenarios.
Although it is possible to automate this selection using optimization algorithms
or supervised techniques, the manual approach provides the flexibility to adapt
to specific contexts, taking advantage of expert knowledge during development
and evaluation iterations.

The Space Mirroring evaluation is carried out in two different ways. First,
using only the pages that are common in the initial and updated vector space, a
K-Means [2] is trained with the embeddings of the original vector space. Then,
an inference is performed with the embeddings of the pages mapped through
the mirror function. If the pages with the transformed embedding fall in the
same cluster as the original embedding, the transformation is assumed to be
accurate since they are very close, and the decision boundaries of the K-Means
are maintained in this transformed space (Figure 4). It effectively measures the
consistency of cluster mappings between the two spaces, providing insight into
how well the transformations preserve the clustering structure across different
vector representations. To make the process more reliable, an iterative process is
performed in which the number of clusters (K) increases. The higher the value of
K, the more challenging the validation.

Unfortunately, this method is not perfect, as pages that are quite close to a
K-Means cluster boundary could have the embedding transformed very close to
the original and belong to different clusters, generating a false negative in the
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&

Fig. 4: [Left] K-Means on the original vector space. [Right] K-Means inference on
the transformed updated vector space.

metrics. This is why we use a second type of manual validation to complement
this first method. It consists of searching by cosine similarity close pages to
one taken as a reference in the original vector space and in the transformed
vector space. Thus, pages that were previously close should remain close and not
have moved away, or at least the uppermost of close pages should be the same,
maintaining the isometry. That is, bounding the subset of common pages (r):
the vectors in V; and the representations of their vectors of V5 in Vi (f(g(r)))
should be close. The results of these validations are presented in Section 5.

5 Results

In this section, the theoretical information previously presented will be validated
through the results obtained in the experiments carried out. To do so, we can
start by comparing different methodologies applicable to the transformation
function from one dimensional space to another.

As shown in Table 2, the existence of non-linear relationships between the
two vector spaces makes the SVD results one of the worst. Although it does seem
to keep the points close since for K=2 the results are quite good, when we take
higher K, the results deteriorate. This is why the best architecture consists of
a GRU maintaining the previously learned residuals (GRU + Residuals) which
manages to maintain a high accuracy for numerous clusters, and even keeps
getting good results with higher K values (for K=30 it remains at 0.8449).
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. . K-Means Metric
Architecture Min. MSE ) K= K=10 k=15
SVD 0.24971 0.93187  [0.86273 |0.78838  |0.76032
Dense Layer 0.06450 0.94735 0.89819 [0.85135  |0.83822
ResNet 0.06000 0.94249  [0.89320 |0.85146  |0.84115
Self-attention 0.16750 0.78529  |0.39715 0.14127  |0.14070
GRU + Residuals 0.05060 0.94631 0.91128 [0.87517 |0.87517

Table 2: Results of different architectures based on the training of a large set of
common pages between the vector spaces V and W.

On the other hand, in manual validation, if we look at an example® that is in
both vector spaces (Table 3), we find that the distance between pages remains
fairly constant, although a new page sneaks into the top of the close ones.

Reference page |Vector space|Most similar pages Cosine similarity
expenses:index:subcategory 0.99516
Original expenses:index:category2 0.93397
expenses:index:daily 0.87933
expenses:index expenses:index:subcategory 0.99566
ey expenses:index:category2 0.94884
expenses:index:modalfeedback |0.92237
expenses:index:daily 0.90876

Table 3: Most similar pages to expenses:index in the original and new vector
space embedding.

It is important to remember that the mirror function, despite being trained
with the common pages in the original and the updated vector spaces, will only be
applied to those new pages that appear in the vocabulary, so the representation
of the previous pages would maintain the original embedding.

The example presented in Table 3 compares the page expenses:index with
the most similar pages in both the original (V;) and transformed (V) vector
space embeddings. Here, expenses:index already exists in the original vector
space, and we observe how its nearest neighbors are mapped in both spaces.

In contrast, Table 4 focus on the page financial health rules:index,
which is a new page being projected into the original vector space. These ta-
bles compare financial health rules:index’s most similar pages in both the
original and transformed vector spaces. Despite the change in the vector space pro-
jection, we find that the closest pages to both expenses:index and financial

5 Both examples maintain the structure discussed in the introduction, in which
operative:functionality:detail is established as the basis for the pages of the
app. Thus, the closest pages within an operative will be functionalities of it, with
different details.
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Reference page |Vector space|Most similar pages Cosine similarity
financial health rules:index: [0.91669
. . Original modalmodalSuccess
financial financial health 0.91379
health. rules:index:modallList
rules:index financial health 0.89919
rules:index:modelCreate
financial health 0.92165
New rules:index:modalSuccess
financial health 0.83532
rules:index:modalCreate
financial health 0.80786

rules:index:modalList
Table 4: Most similar pages to financial health rules:index in the original
and new vector space embedding.

health rules:index remain the same, demonstrating that the relative prox-
imity of the nearest neighbors is preserved, even though their spatial positions
within the vector spaces have changed.

5.1 Downstream Validation

In order to select candidate models and to ensure that the output embeddings can
be used in other downstream tasks, it is necessary to continuously evaluate the
procedures performed. For this purpose, an embeddings benchmark module has
been developed in the aforementioned BBVA inner-source library, Mercury [6].
This benchmark, based on the MTEB [22], seeks to test them in different specific
tasks, assuming that a better result in all tasks globally implies a better quality
of the basic embedding. Although the embeddings trained in this document are
page embeddings, as discussed above, most of the tasks for which these will be
used are directly related to clients, so the benchmark will look at that level of
granularity. To achieve the client embeddings, different aggregation methods have
been applied to the page embeddings: Mean Pooling, Time Weighted Mean
Pooling and VLAD [17].

For the evaluation, a representative sample of customers is used. An embedding
of the client data is generated for each customer and a classifier or regressor is
trained (depending on the benchmark problem) receiving the embedding as the
only input. Through this approach, the variation in the results will correspond
uniquely to the embedding model and the chosen aggregation method.

The estimator must be able to successfully predict different variables, such
as customer movements, engagement levels, or financial behavior, from this
embedding. If the estimator performs well, we can be confident that the embedding
encodes the information accurately. The studied evaluators assess diverse aspects
of customer data, so if a pooling method consistently outperforms others across
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different evaluators, it will be selected as the preferred aggregation approach.
Some of the used evaluators are:

— Employed: the objective is to discern between the employed and those who
are not actively working.
— Engagement: multi-class problem where a label is identified to represent

the transactionality and connection a customer has with BBVA Bank.

— Expertise: multi-class problem in which the taxonomy of labels refers to
the level of usage that a customer has when navigating the app.

. . . Employed Engagement Expertise
Aggregation Type Dimension AUC i i
Random 40 0.50038 0.22230 0.14750
Mean Pooling 40 0.73951 0.65945 0.41465
Time Weighted 40 0.73340 0.65198 0.39851
VLAD (K=3) 120 0.77404 0.66929 0.47368
VLAD (K=5) 200 0.78943 0.69396 0.48591
VLAD (K=10) 400 0.79829 0.71038 0.52093

Table 5: Benchmark evaluators applied to different types of aggregation to
generate client embedding. All for a 365-day window.

According to Table 5, the random baseline exhibits the lowest performance
across all metrics, as expected, with an AUC of 0.5004 for Employed and F1
scores of 0.2223 and 0.1475 for Engagement and Expertise, respectively. Mean
Pooling and Time Weighted techniques, both with a dimension of 40, significantly
improve the results, achieving AUC values of 0.7395 and 0.7334 for Employed, and
higher F1 scores for Engagement (0.6594 and 0.6520) and Expertise (0.4147 and
0.3985). Among the VLAD approaches, performance improves as the number of
clusters (K) and dimension increase. VLAD (K=10) achieves the highest results,
with an AUC of 0.7983 for Employed, and F1 scores of 0.7104 and 0.5209 for
Engagement and Expertise, respectively, demonstrating the effectiveness of larger,
more expressive embeddings.

The previously presented results include pages that have been projected back
into the original space using the analytical methodology proposed in this work.
We observed no variation in the metrics across the different evaluators, indicating
that no degradation occurs when employing the pipeline in downstream tasks.

6 Future Work

The restrictions that revolve around the platform, the implementation time, and
costs affect this work significantly. Once its effectiveness has been demonstrated
and the informative capacity of embeddings as input for other processes has
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also been proved, the model could be improved. Currently, using a Word2Vec
allows us to generate a functional, fast and simple solution. In order to improve
it, different alternatives have been identified. Each page is treated independently
of the others, but we know that there are operational relationships between
them. For example, the hierarchy of pages, where the operation is listed first,
followed by details of the operation, can provide a lot of information as they have
a significant relationship. Alternatively to Word2Vec, to account for sequence
order, any auto-regressive model could be explored.

An interesting technique to take advantage of the capabilities of existing
LLMs is the one mentioned by Tan [26]. At its core, navigation could be seen
as a graph of interconnected pages. Applying the above methodology, we could
use connectors to convert the graph into a set of texts and then represent each
of the sessions through an LLM. The complexity of the taxonomy of the pages
themselves may require a fine-tuning of the model.

Another potential direction for future work could explore implementing
continuous drift detection mechanisms within the BBVA’s application to track
changes in data distribution over time. This would enable a more targeted
response to pipeline obsolescence, reducing reliance on costly full embedding
retraining.

7 Conclusions

On several occasions, real problems bring with them restrictions that make it
impossible to apply state-of-the-art solutions, so it is necessary to be able to find
alternatives. This project presents an architecture that allows updating the em-
beddings of a constantly changing vocabulary, without altering the original vector
space, as it is used as a foundational model that generates many dependencies
with subsequent analytical processes.

In the performed tests, it was shown that the proposed method works effec-
tively when dealing with dynamic vocabularies. Firstly, the use of the Embedding
Matcher provides a key value by allowing the rapid identification and clustering
of similar words based on a threshold that can be parameterized according to the
use case. Subsequently, the implementation of Space Mirroring ensures that new
words are not only integrated into the existing vector space, but also that they
do so while respecting its coherence and minimizing the impact on subsequent
analytical dependencies. Finally, automated validation using techniques such as
K-Means allow to consistently measure the quality of the fit of the new vectors,
ensuring a smooth transition without compromising the stability of the model.
Consequently, this approach has been adopted within BBVA’s production-ready
environment to ensure scalable and reliable embedding updates.

This approach is not only useful in natural language processing contexts with
highly dynamic vocabularies, such as the one discussed in this paper, but could
also be extended to other domains. For example, applications in recommendation
systems that need to constantly adapt to new products or categories, or in the
generation of custom embeddings for specific technical domains, such as constantly
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evolving medical or legal terms. This presents a versatile framework that balances
adaptability and stability, offering practical solutions to the challenges of changing
vocabularies.
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