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Abstract. Engineering diagrams are vital documents in many indus-
tries. Historically stored as image data, conversion of such diagrams into
modern formats is required for further use and adaptation. Therefore,
research towards automated digitization has gained traction. To recog-
nize symbols in the diagrams, recent studies rely on supervised learning,
but large labeled datasets are difficult to acquire in industry settings.
In this paper, we present a self-supervised approach towards automated
recognition of engineering diagram symbols. We validate the method on
diagrams from the building sector, where they are used for technical plant
planning, installation, and monitoring. The method makes use of diagram
legends, which show prototypical examples of the symbols occurring in
the diagram. As the legend entries are unique, they can be used to learn
embeddings through contrastive learning for a self-supervised classifica-
tion of diagram symbols. The method circumvents most of the labeling
efforts: all symbols are extracted from the set of diagrams with a symbol
region detector trained on a synthetic dataset. Then, we train a symbol
encoder by contrasting the symbols found inside the legends with each
other. The encoder is subsequently used in a matching procedure that
classifies unknown diagram symbols by comparing them to the legend
examples. Furthermore, it can recognize when symbols do not appear
in the legend at all. Generalizing beyond variations in diagram drawing
style, this matching procedure achieves over 80% accuracy. The results
demonstrate the potential of legends for engineering diagram digitization
without the need to invest in labeled datasets.

Keywords: Engineering Diagram · Building Services · Heating, Venti-
lation and Air Conditioning · Contrastive Learning

1 Introduction

The operation of buildings, specifically heating and cooling systems, contributes
significantly to carbon emissions, causing an estimated 26% of global emissions
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Fig. 1. Exemplary engineering diagrams with different style, coloring and symbols.

related to energy [11]. Therefore, steps towards renovation or operational op-
timization of heating, ventilation, and air conditioning (HVAC) systems must
be taken promptly. However, much effort goes into planning such steps: Before
deriving retrofit or optimization measures, existing systems are thoroughly ana-
lyzed by reviewing building data and transferring the often decades-old data into
a modern CAD format. This entails high workloads for engineers and technicians.

An integral part of building data are engineering diagrams, which illustrate a
system’s components, using symbols, and its topology. Similar diagrams are used
in other industry sectors such as process engineering or electrical engineering.
The diagrams may also contain text, tables, or a legend explaining the symbols.
Despite existing norms, their style and qualities vary strongly depending on
age and source, as shown in Fig. 1. Diagrams may be hand-drawn, scanned
or photographed from a print, or provided as a PDF file. In most cases, they
therefore do not contain any semantic machine-readable information.

Though considerable advances have been made towards automated recogni-
tion and digitization of engineering diagrams, creating a solution that is robust
to variation in depiction styles is difficult, especially in regard to diagram sym-
bols. A lack of public and labeled datasets in the domain makes the training of
machine learning models for this purpose additionally challenging.

We propose a novel pipeline for the recognition of symbols in engineering
diagrams that aims to address these challenges. Instead of attempting to learn
all-encompassing representations for a large number of symbols in a supervised
manner, we leverage the diagram legends to train a symbol encoder. Our method
allows for the recognition of symbols with just one reference example and without
the need to predefine classes of symbols to recognize. Furthermore, the method
is indifferent to variation in symbol depictions across diagrams, as long as each
symbol looks distinguishable from other symbols within the same image.

The approach is a three-step procedure that works without annotations, ex-
cept for the legend location: First, we generate synthetic data with the aim of
representing the gist of what the diagrams look like. Then, we train a gener-
alized symbol detector on the synthetic data, which extracts symbols from the
diagrams and corresponding legends. We employ a self-supervised contrastive
learning framework to subsequently train an encoder which learns symbol rep-
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resentations based on the legends. The representations produced by the encoder
are used to classify symbols in the diagrams by determining the nearest-neighbor
legend symbol embedding for each diagram symbol embedding. To identify sym-
bols that are not represented in the legend, we define an embedding distance
threshold which adapts to each individual diagram.

Summarized, our contributions are:

– A pipeline for legend-based symbol recognition without symbol annotations
– A diagram symbol detection method, trained entirely on synthetic data
– An encoder model computing symbol embeddings, trained with legend sym-

bols and contrastive learning
– A matching procedure selecting corresponding legend symbols for symbols

in the diagrams, and rejecting symbols not present in the legend

2 Related Work

2.1 Engineering Diagram Digitization

Digitization of engineering and architectural diagrams, such as, for example,
P&ID, chemical process flow and circuit diagrams, or floor plans, has been an
active research area since at least the 1990s [19]. In recent years, diagram digitiza-
tion research has increasingly shifted from hand-crafted features towards neural
networks and deep learning. Extensive literature reviews have been comprised
by Moreno-García et al. [19] and Jamieson et al. [12].

Alongside a variety of other relevant data, like text and lines, one essential
structure to identify in diagrams are symbols, which require a recognition ap-
proach specialized to the data at hand. Recently, mostly supervised learning has
been applied to locate and recognize diagram symbols, often with popular object
detectors [31] [34] [14], and occasionally with segmentation networks [24] or a
two-step pipeline, where a localization module is followed by classification [21]
[35]. Various studies have demonstrated high precision and recall; however, for a
practical application setting, we identify some drawbacks of this approach. The
training needs extensive amounts of data, which has to be labeled by experts.
In fact, even finding enough and varied data can be a challenge, where possible
solutions include mining images from other scientific publications [32], gathering
data via web search [31] or simulation with synthetic data [21]. Aside from this
roadblock, strong class imbalance has been identified as another issue in training
symbol identification models [5].

Few contributions have attempted to classify symbols without a large training
dataset. Paliwal et al. [22] represent symbols as graphs and create embeddings of
both the graph and the visual representation. Their method recognizes 25 classes
of symbols based on just one example each and still performs comparably to other
work. One inherent limitation that remains for this method as described, and
in general for supervised learning methods, is that all relevant symbols must be
predefined. For each class, sufficiently varied samples must be found which cover
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the expected distribution, as diagrams in the field show many different variations
of the same component types.

While, nowadays, the classification aspect of the symbols is almost always
addressed with supervised deep learning, the detection of symbol locations is
still sometimes tackled with traditional computer vision techniques [22] [35].
This methodology has the advantage of not requiring large amounts of training
data, and in that sense, being unsupervised. However, human-engineered feature
extractors have the downside of being vulnerable to data variations that were
not explicitly addressed in the design of the method.

Few works explore using the diagram legend for symbol identification. In
the domain of map digitization, Samet et al. [28] have studied legends for the
identification of symbols with traditional template matching. In the engineering
drawing domain, Joy and Mounsef [13] used legend symbols to create training
data for an object detector. Sarkar et al. [29] used the legend to classify symbols,
testing both SIFT [18] descriptors and a convolutional neural network trained
with labeled symbols, in which SIFT achieved better results. Symbol localization
was performed with a Faster R-CNN [26] that learned from annotated data.
In this work, we also utilize a Faster R-CNN for detection, but trained with
synthetic data, bypassing the need for symbol annotation. Similarly, we classify
the symbols using the legend, but use a self-supervised learning approach to
train a symbol encoder.

Newly, foundation models such as large language models (LLMs) have been
on the rise, showing an impressive body of knowledge that can be readily ap-
plied to many domains. While we are not aware of any publications using LLMs
to digitize complex engineering diagrams, the application of such models may
seem intuitive. For this scenario, we however see some challenges: First, many
diagram images have thousands of pixels on both axes, but cannot be downsized
without rendering small symbols unrecognizable. Therefore, an LLM would have
to process a diagram in many small excerpts, which is costly due to the models’
complexity. Further, an LLM would need to return accurate symbol locations
to allow for subsequent reconstruction of the full diagram, which current mod-
els are not specifically trained for. In a pre-test run by us with GPT 4-o [20],
we also found that the model’s knowledge without finetuning is not sufficient
to recognize symbols beyond common types. The model also tends to overlook
symbols and to produce false results rather than admitting uncertainty. For these
reasons, while engineering diagram recognition with LLMs does not seem out of
reach with proper model finetuning and appropriate prompts to address these
hindrances, we explore a more lightweight approach in this work.

2.2 Non-supervised Representation Learning

Unsupervised, semi-supervised and self-supervised learning advance steadily, in
part motivated by the effort and cost of data labeling. While semi-supervised
learning still makes use of a small set of labeled data, unsupervised and self-
supervised methods aim at utilizing data without any labels. A popular technique
is representation learning. The goal of representation learning is to distill data
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Fig. 2. Legend depicting different kinds of symbols (left) and an excerpt of the diagram
in which the legend is placed (right).

into a less complex set of features preserving the key identifiers of each data
point, allowing for comparison of data points with simple computations.

Generative models are one popular branch of representation learning which
synthesize data similar to a given distribution [23]. To do so, the models im-
plicitly learn to embed the key features of the data, allowing for the use of the
embeddings in tasks such as classification. Well-known models include Genera-
tive Adversarial Networks (GANs) [6] and autoencoders.

Another field in representation learning is contrastive learning, where the
model is instructed on which points in the data are similar and which are dif-
ferent. The data points are passed through a twin network [16] of identical ar-
chitecture and weights. Similar data points then ought to produce similar em-
beddings, and dissimilar points different embeddings. This is enforced by, for
example, using a contrastive loss [7] or triplet loss [30], which we also use in
our approach. Without labels, samples “similar” to a reference data point can be
created with augmentation. In recent years, the contrastive learning framework
has been adapted for more complex and data-intensive scenarios, e.g. through
facilitating the use of many dissimilar pairings with momentum contrast [9] and
memory banks [33] or by embedding the input images in a patch-wise manner [2]
[8]. For industrial anomaly detection, it has also been shown that patch embed-
dings can be taken from intermediate layers of pre-trained networks, presenting
an alternative to training a specialized network on labeled domain data [27].

3 Legend-Informed Symbol Recognition

3.1 Properties of Engineering Diagrams and Legends

Legends are present in many engineering diagrams and provide useful informa-
tion regarding the component symbols in the diagram. As seen in the examples
in Fig. 1, legends are table-like structures that are usually provided on the side
of the diagrams. For simplicity, we will call symbols found inside the bounds of
the legend legend symbols, and the symbols outside the legend diagram symbols.

Fig. 2 shows an exemplary legend and an excerpt of the corresponding dia-
gram, taken from the same image file. Within one diagram, legend symbols often
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share similarities in drawing style and coloring. One legend may contain multiple
visually similar symbols showing variations of the same component.

From the excerpt, it is evident that matching the diagram symbols to the
legend symbols is not trivial: Although the legend contains all symbols in the
excerpt and is intuitively usable to human readers, the diagram symbols are
not drawn in the exact same way as they appear in the legend. Aside from ro-
tation and scaling differences, outlines may be thicker, thinner, or blurry, and
the appearance is additionally changed by the lines connecting the symbols. This
challenges more traditional computer vision methods like template matching. As
the symbols contain a lot of whitespace and only a few lines, we are also wary
of using autoencoders or patch embeddings - even minor image transformations,
such as translation or scaling, could be punished strongly in a classical autoen-
coder setting, and small patches of the images may not always be meaningful.

However, we observe the following properties of legends that make contrastive
learning an interesting option for this data:

(1) Each symbol is unique within the legend
(2) Diagram symbols (mostly) appear in the legend

Property (1) can be exploited to mine positive and negative pairings out of
the given data, and property (2) can subsequently be used to find labels for
the diagram symbols. It is important to note that while, in our observation,
property (1) is nearly always true, there are exceptions to (2). Real-life data is
imperfect; many legends are indeed incomplete and additional objects appear in
the diagrams. However, we find that most legends do represent the majority of
diagram symbols, such that applying the method will nevertheless considerably
decrease the effort needed for digitizing the documents.

3.2 Method Overview

The proposed legend-informed symbol recognition pipeline is summarized in
Fig. 3 and consists of three main parts: First, synthetic data emulating the
symbols and diagrams is created using simple drawing functions and random-
ization. Then, symbols in the diagrams are detected using a generalized symbol
region detector, i.e. an object detection neural network that is indifferent to the
specific classes of the symbols. After symbol detection, an embedding encoder
is trained on the legend symbols with contrastive learning. Finally, we compute
embeddings for all symbols with this encoder, which enables for comparison of
diagram symbols and the legend counterparts.

Crucially, the method can be trained with minimal annotation effort: The
symbol detector is trained entirely on synthetic data, whose creation requires
only superficial knowledge of the diagrams’ appearance. The embedding encoder
also needs knowledge of only two things: (1) the locations of all symbols in the
diagram - which can be determined using the detector - and (2) the location
of the legend itself, to group the symbols into diagram and legend symbols.
Therefore, the only annotations we use are those of the legend locations. Even
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Fig. 3. Overview of the pipeline. Data is shown in orange, basic algorithms in gray and
the neural networks in pink boxes. The method’s steps are written along the arrows.

Fig. 4. Synthetic data symbols (left) and an exemplary synthetic diagram excerpt with
symbols highlighted in yellow (right).

this can likely be determined automatically, e.g. with a table detection method.
Given the low effort needed to point out the legend and the immediate tradeoff
in method stability, we however assume here that the legend location is known.

3.3 Synthetic Data Creation

Symbol Creation: For the symbol detector training, we first create a set of
symbol-like illustrations using randomized drawing algorithms. The synthetic
data is designed to simulate various component types without representing spe-
cific symbols. Rather than focusing on the details, the detector is encouraged to
recognize what symbols generally look like and in which contexts they appear.
Examples can be viewed in Fig. 4 (left). Each image follows one of three basic
shape types which imitate the symbol shapes typically seen in the diagrams. This
main shape is drawn first and is either a combination of triangles (top row), a
circle (middle row) or a rectangle (bottom row). Straight and zig-zag lines or
other basic geometric shapes are randomly added to the symbols. Circle and
rectangle components may also include letters. Parameters like line strength,
gray value, font scale and size are all randomized within pre-set bounds.
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Diagram Creation: A diagram is synthesized by placing a number of syn-
thetic symbols on an invisible grid on a square canvas. We then connect the
bounding boxes of random, but most often spatially close, symbols with lines of
different thicknesses and shades, some of which are dashed like in real diagrams.
Additionally, randomly generated rectangles, some with cross-hatching, and ran-
dom text fragments are placed on the canvas to simulate other common parts
of the diagrams to be ignored by the detector. Fig 4 (right) shows an exemplary
synthetic diagram excerpt.

3.4 Symbol Localization

To find the symbols, we use an off-the-shelf object detector, such as Faster R-
CNN [26] or a detector from the YOLO series [25]. The network only knows one
foreground class and is trained exclusively on the synthetic diagrams. During
inference on real data, we first detect text elements in the diagram with the
CRAFT text detector [1] and remove them. Due to the large size of the diagrams,
the networks cannot process them as one. Instead, we employ a sliding window
approach, in which square excerpts are taken from the diagram and evaluated by
the detectors one by one. Since the diagrams often contain a lot of whitespace,
the approach skips excerpts which contain only one unique gray value, and as
such appear empty, to avoid unnecessary forward passes and speed up processing.

3.5 Diagram-to-Legend Symbol Matching

To learn an embedding function which can be used to match diagram symbols to
the legend symbols, we employ a contrastive learning framework using the legend,
and a lightweight convolutional encoder, described in the following subsections.

Contrastive Learning on Legend Symbols: Property (1) as given in Sec-
tion 3.1 is the backbone for the training of our method. Knowing that legend
symbols are unique allows for the design of a self-supervised method which learns
to find similarities between different augmentations of the same legend symbol,
and differences between one legend symbol and others. Specifically, we use a
triplet loss [30], in which each triplet is drawn from the legends in the dataset.
The loss function is

L(a, p, n) = max(0, d(a, p)− d(a, n) +m) (1)

where a denotes the embedding of an anchor symbol, p and n respectively
denote embeddings of “positive”/“negative” symbols that match/do not match
the anchor, d(x, y) refers to the Euclidean distance between two embeddings x
and y, and m is a predefined margin that is sought to be enforced between the
distances of positive pairs and negative pairs.

To form a triplet, a random legend symbol is retrieved from the dataset
to serve as the anchor, then augmented and embedded using the encoder. The
same symbol with different augmentations is used for the positive, matching,
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symbol. For the negative example, another symbol from the same legend is taken
and augmented. As we are dealing with data points that would be considered
highly similar in a broader image classification task, the encoder must learn to
distinguish small details. Therefore, instead of retrieving the negative symbol
randomly, we first embed all other symbols within the anchor’s legend, and
then pick a random symbol within the three closest matches. This is to ensure
that the algorithm drives apart the most similar symbols, without getting stuck
contrasting against the same neighbor over and over.

Augmentations are crucial for successful contrastive training [3]. Our ap-
proach particularly relies on extensive augmentation, since the anchor and the
positive sample are based on the same symbol. To reflect all the potential differ-
ences in depiction between legend and diagram symbols described in Section 3.1,
a variety of augmentations are randomly applied, such as rotation, erosion and
dilation, padding and cropping, addition of lines, color shade changes, and noise.

Encoder Network: The encoder is a lightweight neural network with three
convolutional layers (using a 7×7 kernel in the first layer and 3×3 kernels after),
with ReLU activation functions and 2D Max Pooling placed in between. The
block of convolutional layers is followed by a linear layer, which is then nor-
malized to a unit vector, becoming the symbol’s embedding. The normalization
step ensures that the maximal distance between two embeddings is known and
a reasonable margin for the triplet loss function can be chosen.

Matching Procedure: Diagram symbols are matched to the legend symbols
with the smallest Euclidean distance in the embedding space. To recognize false-
positive symbol detections and symbols not represented in the legend, we add a
threshold to our embedding matching method. If no legend symbol embedding
is within this distance, the diagram symbol is rejected. Depending on diagram
style and quality, the legend symbols may be more or less similar to the diagram
symbols. To account for this, the threshold t adapts to each diagram, s.t.

t = m+ min
q∈Q;l∈L

(d(q, l)) (2)

where m is the margin used in the triplet loss training, d(q, l) is the Euclidean
distance between symbol embeddings q and l, Q is the set of diagram (query)
symbols embeddings, and L is the set of legend symbol embeddings within the
diagram. In other words, the threshold is the sum of the desired minimal em-
bedding distance between different symbols, and the smallest distance between
any diagram and legend symbol embeddings in the respective diagram.
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4 Experiments

4.1 Experimental Setup

Data: Our dataset consists of 141 diagrams, acquired from industrial partners3.
The diagrams were converted from PDF format to grayscale images with 300 dpi
to preserve detail. This results in image sizes of around 2300-7900 pixels on the
smaller axis and 3300-27,500 pixels on the larger axis, with a median of around
30 MP in total. The diagrams contain five to 800 symbols, with a median of 105.

A test set of 21 diagrams was created to reflect diagrams that are likely
encountered in daily use. Due to the sliding window processing, this amounted
to over 8000 input patches for the symbol detection, excluding the ignored white-
space excerpts.

We selected the test diagrams manually to ensure that various drawing styles,
symbols, qualities and complexities were covered. Some diagrams have the same
source and were thus drawn with similar templates. The full dataset contains
around 20 different drawing styles, but is imbalanced regarding their prevalence.
For example, one template was highly common with 57% of diagrams drawn
in this style, while other styles only occurred once or twice. Random test data
selection would therefore likely favor styles that happened to be common in
our data, while not every dataset may contain such imbalances. Note that two
diagrams being drawn with the same template does not necessarily entail that
the set of symbols used in both diagrams or their legends is the same.

We evaluate multiple scenarios designed to reflect different use cases: (1) As
the symbol matching is self-supervised, we test its effectiveness on the data it
was bootstrapped on, by testing on seven diagrams whose legends were also used
in training. This models a case in which the method is trained to digitize one set
of diagrams without considering future use on unseen data. (2) Another third
of the test diagrams was excluded from training, but follows similar templates
as training diagrams. This models a case where the symbol recognition method
is already trained and a user wants to apply it on new incoming data made
with the same software or templates as training diagrams. (3) The final third
of the test set were neither used in training, nor drawn with a known template,
therefore representing a case where a user wants to use the pre-trained method
on entirely new incoming diagrams, e.g., from a different building project, made
by a collaborator who uses a different template, or which are hand-drawn.

In the human annotations created with the VGG Image Annotator [4] for
evaluation purposes, the test diagram legends contain three to 35 symbols, the
diagrams themselves between 34 and 484 symbols. Note that in the full pipeline,
with bounding boxes generated by the detector, these values may differ due to
detection errors.

Detector: As the symbol region detector, we use a Faster R-CNN with Mobile-
NetV3-Large [10] backbone, pre-trained on the COCO dataset [17]. 10,000 fake
3 Due to industrial restrictions, the dataset and code for this project can not be

published at this time.
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symbols were created for each of the three types - triangles, circle and rectangle
- as basis for the synthetic diagrams. The synthetic diagrams are created on-the-
fly during training. We use around 34,000 synthetic samples with a batch size
of 16, therefore training for around 2125 steps. We train with Adam Optimizer
[15] and evaluate precision and recall.

Encoder and Matching: The encoder transforms 64 × 64 grayscale images
into a 15-dimensional embedding vector. We parameterize the triplet loss with
margin m = 0.5 and train with Adam Optimizer and a batch size of 64. Training
stops when the symbol-to-legend assignments in the test set have changed less
than 3% per epoch, averaged over the last 50 epochs. For evaluation, we build
a confusion matrix of all symbol-to-legend assignments. Symbols not appearing
in the legend, which are therefore not to be matched, are classified as a special
symbol type which we call rejects, and considered separately in the statistics. The
results are quantified in classification accuracy, precision and recall, both over
the entire test dataset and averaged over the individual diagrams. To separate
the performance of the symbol matching procedure from that of the detector, our
evaluation considers two cases: One, where near-perfect detections are assumed,
using manually annotated bounding boxes, and one for the entire pipeline, using
detections made by the object detector.

The results are compared to those of a SIFT matching procedure imple-
mented as proposed in [29]. This baseline approach matches symbols by com-
puting a similarity score between 0 and 1 for each potential diagram-legend
match. We enable for rejections by setting a threshold for this similarity. Here,
we assume a hypothetical optimal thresholding method, and use the threshold
yielding the best accuracy for each individual diagram, which we determine ex-
perimentally. For an additional baseline comparison that is not influenced by
the rejections, we ignore all reject symbols, remove the rejection mechanisms
and report the symbol matching accuracy in the absence of a negative class.

4.2 Experimental Results

Detector: Qualitative and quantitative detection results can be viewed in
Fig. 5. The detector achieves up to around 72% precision and recall when
the necessary IoU to match a detected box to the ground truth is 0.5. The
precision-recall curves show that the metrics are strongly affected by changes in
this threshold. False positive detections typically occur at text fragments that
were not found by the text detector, and line crossings. Symbols that are not
detected are most often very large or small, or drawn in a style that differs from
the average symbol, for example more intricate drawings with little whitespace.

Encoder and Matching: Table 1 shows quantitative results of our symbol en-
coding and the matching algorithm, and of the baseline SIFT approach, on the
full test set. With accurate symbol detections, sourced from human annotations,
our procedure for matching/rejection achieves an overall accuracy of 83.7%, with
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Fig. 5. Symbol region detection results, highlighted in yellow, on (a) a legend and (b)
a diagram excerpt (a text detector is used to remove text beforehand, but the origi-
nal image is displayed here for readibility), and (c) the precision-recall curves on the
test set. Each curve shows the precision and recall values modulated by the confidence
threshold that is used to filter detections. The diagram shows curves for multiple Inter-
section over Union (IoU) thresholds, influencing which boxes are considered a match
to a ground truth box.

precision and recall of 94.6% and 82.7% for the symbols which are represented in
the legend. The precision and recall of rejects are 59.3% and 87.4%. Notably, pre-
cision is therefore much higher for symbols listed in the legends compared to the
reject symbols. Averaged over the diagrams instead of over all symbols, the num-
bers are similar, but the sample standard deviations indicate strong differences
across the diagrams: On some diagrams, near-perfect accuracy is reached, and
around 70% on others. Our method thereby considerably outperforms the SIFT
approach on all markers with this data, achieving over 20pp higher accuracy.

Using the symbol detections of our object detector, the overall accuracy is
slightly lower at 80.9%. In this scenario, the precision discrepancy between the
true positive symbols and rejects was much smaller. Upon visual inspection, this
is because false positive symbol detections - which are not present in the human
annotations - are rejected very reliably, raising the average performance on the
reject group of symbols. However, both precision and recall for the symbols listed
in the legend are about 10% lower than in the reference case, and detections
with inaccurate bounding boxes can cause errors. Our proposed method again
achieves higher scores than the SIFT method, with over 18pp higher accuracy.
A visual result of the entire inference pipeline with both symbol detection and
matching is displayed in Fig. 6.

If the need for rejections is removed, our method correctly matches 93.3%
(annotation bounding boxes) and 86.0% (detector bounding boxes) of the sym-
bols, more than SIFT with 66.4% and 56.3%, respectively.

Table 2 shows exemplary success and failure cases. Evidently, the symbols
are rarely confused with each other and most errors stem from the rejection
mechanism. For example, symbols are falsely rejected if their diagram represen-
tation diverges strongly from the legend representation, e.g. due to lower quality
or alterations in drawing style. Outside of the legend, most symbol types are
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Table 1. Quantitative symbol matching results with our method and a baseline SIFT
approach. Column 1 states whether the symbol bounding boxes used for training and
evaluation were sourced from human annotations or from the object detector. Column
2 states whether the metrics were averaged over all symbol types in the test set, or
averaged over the diagrams, and whether rejects were left out from the statistic.
Acc. = accuracy, PS/RS = precision/recall of symbols matching one of the legend
symbols, PR/RR = precision/recall of rejects.

BBoxes Statistic Acc. PS RS PR RR

Proposed Method

Annotation overall 83.7% 94.6% 82.7% 59.3% 87.4%

Annotation diagram average
(±stddev)

83.4%
(±10.5pp)

95.2%
(±6.2pp)

81.9%
(±11.5pp)

57.0%
(±29.1pp)

83.7%
(±21.4pp)

Detector overall 80.9% 85.1% 71.4% 77.5% 91.8%

Detector diagram average
(±stddev)

81.0%
(±8.2pp)

84.4%
(±11.2pp)

71.4%
(±12.4pp)

77.3%
(±12.9pp)

90.2%
(±12.5pp)

Annotation overall, no rejects 93.3% - - - -

Detector overall, no rejects 86.0% - - - -

SIFT-based Method [29] (Baseline)

Annotation overall 62.0% 63.8% 62.7% 55.7% 59.4%

Annotation diagram average
(±stddev)

63.2%
(±15.6pp)

67.6%
(±16.4pp)

59.8%
(±22.3pp)

58.5%
(±24.3pp)

52.4%
(±32.4pp)

Detector overall 61.7% 50.3% 44.0% 71.8% 82.2%

Detector diagram average
(±stddev)

62.3%
(±16.0pp)

52.7%
(±18.5pp)

42.8%
(±25.2pp)

71.0%
(±16.8pp)

82.6%
(±11.6pp)

Annotation overall, no rejects 66.4% - - - -

Detector overall, no rejects 56.3% - - - -

represented with coherent drawing styles, such that in this case, a number of
instances of the same symbol type may be misclassified. Therefore, errors are
not evenly distributed across symbols, but focus on specific types. Conversely,
reject symbols are most likely falsely matched if a similar symbol is listed in the
legend. However, the perceived general intra-diagram symbol similarity did not
inherently cause issues: For example, one diagram contained exclusively rect-
angular symbols with little variation, which were matched with 97% accuracy.
Regarding the three potential use cases reflected in the test data as described
in Section 4.1, we do not observe a clear trend outside the inter-diagram stan-
dard deviation: On diagrams also seen in training (case 1), the method achieved
an average accuracy of 82.1% / 83.8% using the annotated/detector bounding
boxes, respectively. On diagrams with similar templates to those seen in train-
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Table 2. Exemplary symbol matching success and failure cases. Each column, top to
bottom, shows a query (diagram) symbol, the legend match chosen by our method,
and the correct match in the legend. “-” indicate rejections, where no legend symbol
was found within threshold distance / the symbol type was not listed in the legend.

success cases failure cases

query symbol

matched symbol - - - -

correct symbol -

Fig. 6. Result of entire detection and matching pipeline on a diagram excerpt and the
corresponding legend. Diagram symbols are marked in the color of the matched legend
symbols. Gray boxes indicate detections which were not matched to any legend symbol.

ing (case 2), accuracy was 87.5% / 79.2%. On test diagrams with a style fully
unknown to the model (case 3), accuracy was 80.5% / 78.7%.

5 Discussion

Our symbol detector demonstrates promising results on complex data, despite
having been trained only on synthetic data that was created based on superficial
observation of the diagrams’ properties. However, the bounding box locations
appear to be inaccurate, as seen by the influence of the IoU threshold on the
precision-recall curve. Detecting and removing text elements was essential, as
the symbol detector did not reliably ignore leftover text, despite seeing text in
the training data. Failure to detect very large or small symbols may be explained
by limitations of the object detector or the sliding window detection method.
However, the detector also struggled with symbols of uncommon style, indicating
that it may rely on the look of the symbols rather than their context, such as
lines. On the other hand, legend symbols, which appear without this context,
were therefore detected as reliably as the diagram symbols. This is important
because missing a legend symbol could lead to many diagram symbols not being
matched. To this end, high detection recall is also preferred over precision, since
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false positives can still be removed in the matching process. In general, our
symbol detection strategy serves as a proof of concept for a scenario where
labeled data cannot be obtained at all. Notable improvements are likely possible
if, for example, datasets similar to the application area are available, the data
is less diverse, or labeling a small amount of data is feasible. Finetuning of the
text detection component to technical documentation texts and diagram data
could also be explored to improve text removal results and, consequently, those
of the following pipeline steps.

The symbol-to-legend matching trained with contrastive learning correctly
assigns a majority of symbols with little confusion between symbols on both
the diagrams used in training and diagrams that were not available at training
time, where we observed no clear trend comparing various test scenarios. On
our data, the method outperforms a SIFT approach as used in previous litera-
ture addressing the challenge of recognizing diagram symbols with a legend in
a non-supervised manner. In many difficult cases, such as low-quality symbols,
hand-drawn symbols or accidentally cropped symbols due to bounding box de-
tection errors, the correct match is still found with sufficient confidence. If those
difficulties are even more pronounced, errors are however more likely to occur.
One thing to keep in mind is that this promising performance is likely dependent
on the number and diversity of diagrams available for the initial training.

We find that the main challenge is identifying rejects, i.e. symbols not listed
in the legend, without causing too many false rejections in the process. As seen
in the results of an experiment case where the rejects are removed, over 90%
accuracy may be possible when the rejection mechanism becomes unnecessary.
While in our scenario, our thresholding method has shown good success, the
results varied strongly depending on the diagram and factors such as the ratio
between the amount of symbols represented in the legend and those which were
not. Overall, the method tended to reject more symbols than necessary.

We also find that the matching and rejection procedure should be able to
adapt to each diagram and that a universal threshold is likely unsuited: Depen-
dent on factors such as the difference between the legend depictions and those
used in the actual diagrams, the actual embedding distances varied and did not
always adhere to the triplet loss margin.

An inherent challenge is posed by compound symbols. In our data, this kind
of symbol is not consistently depicted in the legends: Sometimes, a compound
symbol is given its own legend explanation; an example can be seen in Fig. 2,
where the symbol valve with actor is a compound of the stop valve and a motor
symbol. In other cases, often even within the same legend, compound symbols
are explained only through their separate building blocks. As a result, the same
building block may appear in a legend multiple times, softening the uniqueness
property of the legend symbols. However, we find that our data did not contain
enough such cases to strongly disturb the training. For these reasons, we decide
against attempting to merge compound symbols automatically, which the detec-
tor usually identifies as separate entities. Having the user indicate which symbols



16 A. Hain et al.

should be merged after the recognition process would be a practical solution to
this challenge and can likely be done with reasonable effort.

Overall, the results show that the method can be highly beneficial for users
in the field despite the mentioned shortcomings. Manual labeling of the diagram
symbols is tedious, error-prone, and takes twenty to thirty minutes per diagram
in our data, while our method processed the test diagrams in an average of
less than fifteen seconds on a machine equipped with a NVIDIA Quadro RTX
8000 (48GB) GPU. If the legend is highly incomplete or there is none at all, the
encoder embeddings could instead be used to cluster symbols and, thereby, recog-
nize which symbols show the same component. In a practical setting, a user could
be presented with each recognized symbol along with the corresponding original
excerpts of the diagram image, which can facilitate cross-checking of the results
and correction of errors. The user could also manually add missing symbols to
the legend, which are likely common symbols known to experts in the field, and
may have therefore been omitted. Because the encoder is very lightweight, the
matching could be recalculated with an adapted legend almost instantly. An-
other possible avenue for expansion and improvement of the method may be to
subsequently integrate an adequate human-in-the-loop approach which finetunes
the recognition based on such user feedback.

6 Conclusion and Outlook

We presented a pipeline for automated symbol recognition in engineering dia-
grams, based on diagram symbol legends. Our method needs minimal labeling
and delivered promising results on real diagrams from the building sector, where
data is often proprietary and labeling is costly. We found that most symbols can
be localized with a model trained only on synthetic data, and that the unique-
ness of symbols in a legend can be utilized for a contrastive learning approach
for symbol embeddings. This subsequently enabled us to identify symbols by
matching them to the legend. The approach successfully recognized symbols on
test diagrams even of unseen drawing style, and is not limited to a predefined
set of symbol classes. For a practical setting, this means that the method could
be applied to new diagrams outside of the distribution available for training.
Therefore, we demonstrated the potential to achieve a notable decrease in the
effort needed for diagram digitization. Future research could explore alternative
symbol region detection strategies or symbol matching algorithms, with a focus
on reliable separation between the symbols represented in the legend from those
which are not. In practice, the method will be validated by HVAC engineers in
a web-based application that we developed, providing functionalities to digitize,
modify, and complete diagrams.

Although we designed our method for the building sector, similar problems
could conceivably be addressed in other fields with a similar approach. We there-
fore believe that the methodology can be valuable in any field facing high work-
load with digitization of schematics and diagrams, if the data contains legends.
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