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Abstract. Time series forecasting is a fundamental task in various do-
mains, including environmental monitoring, finance, and healthcare. State-
of-the-art forecasting models typically assume that time series are uni-
formly sampled. However, in real-world scenarios, data is often collected
at irregular intervals and with missing values, due to sensor failures or
network issues. This makes traditional forecasting approaches unsuitable.
In this paper, we introduce ISTF (Irregular Sequence Transformer Fore-
casting), a novel transformer-based architecture designed for forecasting
irregularly sampled multivariate time series (MTS). ISTF leverages ex-
ogenous variables as contextual information to enhance the prediction of
a single target variable. The architecture first regularizes the MTS on a
fixed temporal scale, keeping track of missing values. Then, a dedicated
embedding strategy, based on a local and global attention mechanism,
aims at capturing dependencies between timestamps, sources and miss-
ing values. We evaluate ISTF on two real-world datasets, FrenchPiezo and
USHCN. The experimental results demonstrate that ISTF outperforms
competing approaches in forecasting accuracy while remaining compu-
tationally efficient.

1 Introduction

A wide range of real-world phenomena across various domains, such as envi-
ronmental monitoring, finance, and healthcare, can be naturally represented as
time series. Advances in sensor technology, big data collection, data cleaning,
and the Internet of Things have made it increasingly accessible for practitioners
to acquire and manage such data. In particular, multivariate time series (MTS)
are commonly used to consolidate temporal data from multiple sources, captur-
ing different aspects of the same phenomenon (e.g., measurements from diverse
sensors or the inclusion of exogenous variables).

The availability of many reliable datasets describing such real-world scenar-
ios has also been the driver of technological innovations in the field of time-series
analytics. Many approaches have been proposed as recently published surveys
demonstrate [9, 18]. In particular, forecasting has been the recent focus of many
innovations (e.g., see [9, 7, 15]) thanks to the application of the results achieved
in the field of Machine Learning and Deep Learning. The resulting state-of-the-
art approaches can accurately describe temporal information and incorporate



2 R. Benassi et al.

t1 t2 t3 t4 t5 t6 t7
Timestamps

22
23
24
25
26
27
28

Station 373
Max Temp

(a) Max temperature at Station 373.

t1 t2 t3 t4 t5 t6 t7
Timestamps

0
0.5

1
1.5

2
2.5

3
Station 373

Precipitation
Snowfall
Snow Depth

(b) Exogeneous data at Station 373.

Fig. 1: Motivating scenario: time series generated by sensors at Station 373. No-
tice how stations collect data at a different frequency and at different timestamps.

exogenous data to improve the forecast. However, they generally share the same
requirement: time series should represent their observations with regular and
uniform timestamps. Most of the approaches therefore assume that the data is
collected on uniform intervals and that all the time series describing the phe-
nomenon have the same pace. This can definitely be considered as an unrealistic
condition in real-world scenarios, where sensors collect data with different inter-
vals, paces and values may be missing in some timestamps due to failures of the
network or the devices.

Motivating Scenario. Let us suppose that we need to forecast the maximum
temperature recorded at monitoring station 373. The station has sensors that
record both the time series of the maximum temperature (Figure 1a) and other
exogenous data (Figure 1b). The goal is to forecast the maximum temperature
of the next timestamps. We observe that the stations collect data with different
frequencies and in different intervals, making it impossible to directly apply
traditional forecasting techniques to this scenario.

Forecasting techniques for irregular time series broadly fall into two cate-
gories. The first relies on data imputation during preprocessing, to regularize
the series before applying standard models.The second includes models natively
designed for irregular data, which recognize irregularities and missing values and
treat them as additional information [12, 2, 5, 17].

In this paper, we propose ISTF (Irregular Sequence Transformer Forecasting),
an innovative architecture for the forecasting of irregularly sampled MTS that
relies on contextual knowledge, provided by (1) other time stamps in the MTS;
and (2) exogenous data sources. The architecture, described in Section 3, is built
upon four main components: the Input Generator, responsible for extracting the
relevant time series from the dataset; the Embedder and the Encoder, which gen-
erate embeddings for both the target and exogenous series; and the Forecaster,
which produces the final predictions.

The approach has been experimentally evaluated against the real scenarios
offered by the FrenchPiezo and USHCN datasets, regarding the water piezo-
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metric levels in France and climate data in the USA respectively. The results
demonstrate that ISTF outperforms competing approaches in effectiveness while
remaining computationally feasible. In particular, training time is higher than
the baselines, reaching up to an order of magnitude more, but remains manage-
able, with a maximum of six hours in the slowest configuration. Serving time,
however, is in line with the baselines. The main contributions of the approach
are: 1) the design of a transformer-based encoder architecture for forecasting
that can manage forms of contributions in the prediction from exogeneity neigh-
boring; 2) the experimentation of an technique that masks irregularly sampled
MTS; 3) a deep experimentation on two large datasets. The code of ISTF and
the experiments presented in the paper are available in the project GitHub1.

2 Background

2.1 Related Work

Forecasting in time series is a long-standing research problem [6]. Traditional
approaches are based on probability and statistics. More recently, approaches
based on machine learning and deep learning have demonstrated to achieve great
accuracy levels [9]. In particular, several works have successfully applied and
extended transformers-based architecture to deal with time series analytic. [18]
reviews the proposed variants of transformers for modeling time series data.
The main modifications include enhancement in the positional encoding, in the
attention module and in the architecture.

The majority of existing forecasting techniques cannot deal with irregular
time series. Typically, data preprocessing is required before of their application
[9]. The field of irregular time series forecasting has experienced significant ad-
vancements in recent years, with researchers exploring a variety of methodologies
to handle missing values and irregular sampling intervals.

Usually, missing values in time series are addressed through heuristic or unsu-
pervised imputation methods. Common practices [16] include omitting missing
data, smoothing, interpolation, and spline methods. However, these techniques
often fail to capture variable correlations and complex patterns, leading to sub-
optimal performance, especially in cases with high rates of missing data [4].

A paradigm shift occurred with [8], where absence is treated as a feature
rather than an artifact to be corrected. The paper demonstrates that this kind
of strategy significantly enhances predictive performance, particularly in classi-
fying diagnoses with clinical time series data. Several approaches proposing a
similar idea have been proposed. Among them, we selected GRU-D [2], mTAN
[14], InterpNet [13], and PrimeNet [3] as representative approaches to be used as
baselines in the evaluation of our proposal. GRU-D is a deep learning approach
that effectively utilizes missing patterns in time series data. By incorporating
masking and time intervals into a Gated Recurrent Unit (GRU) framework,

1 https://github.com/softlab-unimore/ISTF
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GRU-D is able to capture long-term temporal dependencies and utilize informa-
tive absence patterns for improving prediction accuracy. ISTF relies on masking
and positional encoding to deal with irregularity, too. The main difference is the
model architecture, a variant of a transformer-based model for ISTF. mTAN is
based on a transformer architecture[14]. The key innovation here is using time
embedding as both queries and keys in the attention mechanism, allowing the
model to attend to observations at different time points. ISTF differs from mTAN
at the architecture level. They are both based on a transformer, but ISTF relies
on three modules to manage the contribution of exogenous data.

Other interesting DL-based approaches are InterpNet [13] and PrimeNet [3].
InterpNet is a deep learning architecture that combines a semi-parametric inter-
polation network with a prediction network, allowing information sharing across
multiple dimensions during the interpolation stage. PrimeNet is a self-supervised
learning framework that utilizes time-sensitive contrastive learning and data re-
construction task.

In summary, irregular time series forecasting has evolved from simple impu-
tation methods to sophisticated deep learning models that effectively leverage
the information in absence patterns and irregular sampling intervals.

2.2 Problem Definition

Let us start from the formalization in [17], where D = {m1,m2, . . . ,mN} is
a dataset of N MTS. Each MTS is defined as a sequence of observations col-
lected over time, called features or variables, in the form of irregularly sam-
pled univariate time series mi = {mi,1,mi,2, . . . ,mi,Fi

}, with Fi the dimen-
sion of the MTS mi. We denote with Nij as the number of data of the j-th
univariate time series of mi. The univariate time series can be represented as
mi,j = [(ti,j,1, xi,j,1), (ti,j,2, xi,j,2), . . . , (ti,j,Ni,j

, xi,j,Ni,j
)], where xi,j,k is the value

observed at time step k (i.e., at time ti,j,k) of the j-th univariate time series of
mi. Since we are dealing with irregularly sampled MTS, different univariate time
series may include a different number of observations collected in different times.
This means that Ni,j ̸= Ni,z for j ̸= z and ti,j,a ̸= ti,z,a ∀a, j ̸= z. We define as
the target series the time series mi,j , which represents the variable the user
aims to forecast.
Finding Exogenous time series. We assume the existence of a function findEx
for the target series mi,j that selects from the MTS in the dataset D the exoge-
neous time series E = {e1, . . . , ee}, where each ek is a univariate time series:

E = findEx(mi,j ,D)

Forecasting. ISTF predicts the values of a given time series at time step t + n
using its past data and the exogenous time series.

ŷt+n = f(mi,j,1,mi,j,2, . . . ,mi,j,t, e1,1, . . . , e1,t′ , ee,1, . . . , ee,t′) (1)

where the mi,j,t, and eu,t′ points are the historical data points for the target
and the exogeneous series. We recall that time step t corresponds to the actual
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timestamp ti,j,t of the univariate time series mi,j . Since the timestamps of the
series can correspond to different steps, we denote by t′ all time steps associated
with timestamps preceding t in the target series. To simplify the notation, we
assume that all MTS have the same number of features (Fi = F,∀i), and that the
time steps are “normalized” for the MTS in the collection D. This means that, the
features of a MTS can assume the null value for the time steps that correspond
to timestamps which are not sampled in the non-normalized series. Given a MTS
mi, we indicate with Mi(t) the sequences of values for all the features composing
mi for the time steps 1, 2, . . . , t. The same notation is applied to exogenous (E(t))
series. With this simplification, Equation 1 can be reformulated in:

ŷt+n = f(mi,j(t), e1(t), . . . , ee(t))

2.3 Overview

The architecture of ISTF is designed around two key considerations: (1) real-
world time series data is often irregular, with missing values and various sam-
pling rates; and (2) real-world phenomena are typically described by multiple
interdependent variables, such as temperature, humidity, and precipitation. As
highlighted in Figure 2, ISTF expects two inputs: the target time series, which
represents the phenomenon under investigation and whose future values need
to be predicted, and a set of MTS exogenous series, which provide contextual
environmental data.

The role of the Embedder component is to construct vector representations
of the input time series. These embeddings provide a uniform representation of
each timestamp of each variable as a fixed-size array, combining its value with in-
formation about its position in the series and its sampling date. ISTF implemen-
tation of the ISTF Encoder component enriches the representation provided by
the embedder by incorporating knowledge of the interdependencies between the
input time series. The ISTF Encoder extends the transformer encoder architec-
ture with a local and global attention mechanism. In particular, local attention
is the self-attention applied to each series separately, whereas global attention
considers all points across all series. This way, the forecasting model (ISTF re-
lies on a GRU model followed by a linear layer) can capture both series-specific
patterns and inter-series relationships, which are crucial for accurate forecasting.

3 The ISTF Model

ISTF is conceived as a transformer model based architecture composed of 4 main
components as represented in Figure 2: the Input Generator (in Section 3.1), the
Embedder (in Section 3.2), the Encoder (in Section 3.3) and the Forecaster (in
Section 3.4).
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Fig. 2: ISTF Architecture

3.1 The Input Generator

The goal of the Input Generator component is to construct the input elements
for ISTF from a target univariate time series and a multivariate dataset. The
component consists of two modules: Finder implements the function findEx,
which returns the n univariate time series in D that influence the forecasting
of the target series t. Providing an implementation for findEx is beyond the
scope of this paper. A straightforward implementation is to select as exogenous
series all signals in the MTS except for the target series. Moreover, domain
knowledge can be used to identify which of these signals are actually relevant
for the problem at hand. The preprocessor handles the irregular sampling of
both the target and exogenous time series of interest. In particular, it addresses
irregularities by aligning all series to the timestamps of the series with the highest
granularity. One possible strategy to impute the missing values, which arise when
aligning coarser time series to the finest resolution, is to use the last observed
value prior to the missing timestamp. However, the approach is agnostic to the
specific imputation method adopted. The component keeps track of the steps
containing imputed values through a dedicated Mask matrix and also maps the
temporal features used by the original selected series into the ones with the
highest granularity through the F matrix.

Finally, the Input Generator component computes three output matrices,
considering the time window of interest W specified by the user. In particular:

– T ∈ R(N+1)×W represents the values of the target series (indexed by T [0])
and the exogenous series (indexed by T [1 : N ]) within the given time window.

– F ∈ RK×W contains the K temporal features extracted from the original
N + 1 univariate series.

– Mask ∈ R(N+1)×W is a boolean matrix indicating the imputed values (set
to 1) during the “regularization” process of the series.
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3.2 The Embedder

The goal of the ISTF Embedder is to standardize the heterogeneity of irregu-
larly sampled input time series by generating a uniform embedding for each of
them temb ∈ Temb, with Temb ∈ R(N+1)×W×D, where, according to the previous
formalization, N + 1 is the set of time series, W is the time window, and D is
the dimension of the embedding, hyper-parameter of the approach.

The ISTF Embedder performs two main operations. Firstly, a Convolutional
Neural Network (CNN) is applied to each series i ∈ I to create an embedding
vector iemb ∈ Rw×d. Then, two kinds of positional encodings are added to the
embeddings. The first, PE(P), with P the relative position associated to the
time steps of i, is the positional encodings usually adopted in Transformer-based
approaches. It assumes the form of Equation 2:

PE(pos,2i) = sin
( pos

100002i/D

)
, PE(pos,2i+1) = cos

( pos

100002i/D

)
, (2)

where pos is the relative position in the time series and D the dimension of
the embedding. The second positional encoding is the variation introduced in
[18, 21, 19] to incorporate the timestamp features (such as day, month, week,
year, etc.), thus acknowledging the sequential and possible cyclical nature of
the series. We call this PE(F), where F represents the timestamps (day, week,
year,...) associated to the time steps of i through the matrix F .

The final results is the multi-faceted embedding Temb ∈ R(N+1)×W×D that
encapsulates both the values of the time series and the temporal dynamics dic-
tated by irregular sampling and missing values.

3.3 The Encoder

As in [5], the ISTF Encoder extends a vanilla transformer encoder with local
attention, which captures intra-series relationships, and global attention, which
models dependencies between target and exogenous series. The encoder is com-
posed of a stack of identical layers, of which we describe a single one.
Local Attention. The intra-temporal dynamics of time series data are often
complex, requiring advanced models to effectively capture the underlying pat-
terns. The local attention mechanism is designed to learn these dynamics by
generating embeddings for each time series independently, focusing exclusively
on non-null values. This is achieved through the Mask matrix, which identifies
missing values in the series, ensuring they are skipped during the self-attention
computation. Lines 1–4 in Algorithm 1 describe the behavior of the local atten-
tion module, which applies a multi-head attention layer to the embeddings of
each time series, properly masked.
Global Attention. ISTF computes new embeddings that represent inter-relations
between the series, starting from the embeddings generated by the Local Atten-
tion component. Lines 5–9 in Algorithm 1 describe the procedure. First, the
mask and the embeddings are reshaped to represent a bidimensional matrix,
with time steps for each series in the rows and the embeddings in the columns.
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Algorithm 1 The Encoder
Input: Temb ∈ R(N+1)×W×D

Output: Tenc ∈ R(N+1)×W×D

// Local attention
1: for i ∈ [0, ..., n] do
2: I[i, :] = MultiHeadAttention(Q = Temb[i],K = Temb[i], V = Temb[i],Mask =

Mask[i])
3: end for
4: Tlocal = norm(Tlocal + Temb)

// Global attention
5: Mask_global = reshape(Mask, (N + 1,W ) → (N + 1×W )
6: Tlocal = reshape(Tlocal, (N + 1,W,D) → (N + 1×W,D))
7: Tlocal = MultiHeadAttention(Q = Tlocal,K = Tlocal, V = Tlocal,mask =

Mask_global)
8: Tglobal = norm(Tglobal + Tlocal)
9: Tglobal = reshape(Tglobal, (V ×W,D) → (V,W,D))

// Feedforward
10: for i ∈ [0, ..., n] do
11: Tenc[i, :] = FF(Tglobal[i])
12: end for
13: Tenc = norm(Tenc + Tglobal) =0

Then, a Multi-Head Attention layer is applied to this data structure to generate
the global attention embeddings.

Finally, the output embedding is obtained by applying a Feed-Forward layer
to each embedding generated by the global attention module (lines 10–12), fol-
lowed by a normalization layer that sums the global attention embeddings as
residual components (line 13).

3.4 The Forecaster

The Encoder from the previous step generates an embedding for each times-
tamp of both the target series and the exogenous series, where each embedding
has been related to the others. We preserve only the embeddings of the target
series, which are then passed to a unidirectional GRU to obtain an aggregated
representation of the embeddings:

fE = GRU(Tenc[0, :]) (3)

This is followed by a FeedForward Layer that computes the prediction

Prediction = FF (fE) (4)

4 Experimental Evaluation

The goal of the experimental evaluation is to answer the following research ques-
tions:
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Table 1: Statistics about the Datasets used in the experiments.

Dataset MTS Points Signals Avg
lenght

NaN
percentage

Target NaN
percentage

USHCN 1201 1744720 6 1453 3.97% 4.94%
FrenchPiezo 2664 6385608 4 2397 5.25% 12.1%

RQ1. Effectiveness. How accurate is ISTF architecture in making forecasts
in scenarios with irregularly sampled time series data? (Section 4.2)

RQ2. Ablation. Are all components of ISTF architecture necessary, or can
its complexity be reduced without sacrificing forecasting accuracy?
(Section 4.3)

RQ3. Robustness. How sensitive is ISTF architecture to hyperparameter
choices? (Section 4.4)

RQ4. Efficiency. How efficient is the ISTF architecture in terms of time
performance? (Section 4.5)

4.1 Experimental Settings

Settings. The experiments have been performed on a Workstation with an NVI-
DIA L40S GPU with 48 GB of VRAM, 256 GB of RAM, and a dual AMD EPYC
9254 24-Core Processor. According to the literature in the field, the predictions
are computed via single point regression [3]. Moreover, we used the hyperpa-
rameters defined for each baseline model as indicated in the original papers. For
ISTF, we conducted experiments with the following configuration selected via a
search on the validation set: a maximum of 100 training epochs combined with
an early stopping patience of 20 epochs, a learning rate of 3 ∗ 10−4, L2 regu-
larization set to 10−2, an embedding dimension of 32, 2 encoder layers and 4
attention heads. In all experiments, we employed the straightforward implemen-
tation of FindEx, which selects all signals in the MTS except for the target
series as exogenous series. Each experiment was run three times with different
random seeds, and the results were aggregated.

Datasets. We conducted experiments on two real MTS datasets, FrenchPiezo
[10] and USHCN [11], which consist of irregularly sampled time series. Table 1
provides key statistics, including the number of MTS in each dataset, the total
number of timestamps across all series, the number of signals in the MTS, the
average series length, and the percentage of missing values in the dataset and in
the target time series.

FrenchPiezo is a multivariate time series dataset from mainland France that
monitors groundwater levels, also known as piezometric levels. It comprises 1,026
multivariate time series, each consisting of three dimensions: piezometric level
(p), precipitation (tp), and evapotranspiration (e). Each series is associated with
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a unique identifier (bss) corresponding to the piezometer that measures the piezo-
metric level. The data, sampled daily from January 2015 to January 2021, span
2,221 days. The training period covers data from January 1, 2015, to January 1,
2020, and testing is conducted on data from January 1, 2020, to December 31,
2021. The objective is to forecast the piezometric levels.

The United States Historical Climatology Network (USHCN ) dataset in-
cludes daily records from 1,218 weather stations across the US, capturing six
variables: precipitation, snowfall, snow depth, minimum temperature, maximum
temperature, and average temperature. Each time series (TS) features irregu-
lar time intervals ranging from one to seven days, with varying sampling rates
among them. The specific goal is to accurately forecast the average temperature
for New York in the following days. Utilizing the cleaning procedure described
in [1], we selected a subset of 1,168 meteorological stations, focusing on data
spanning four years (1990 - 1993). The training dataset encompasses the years
1990 to 1992, and testing is performed on the year 1993 [12].

Baselines. We selected four approaches for irregular time series forecasting.
GRU-D [2] is the common reference baseline, one of the earliest deep-learning
approaches that handles missing data patterns. We also compare against more
recent approaches: InterpNet [13], mTAN [14], and PrimeNet [3], which have
achieved the highest results with irregular time series. Moreover, we include
DLinear [20] as a representative of traditional forecasting approaches, which has
also shown strong performance in regular time series tasks.

4.2 Forecasting accuracy

To evaluate the accuracy of ISTF, we performed multiple experiments using
both the original datasets and modified versions where we artificially introduced
missing values at rates of 20%, 50%, and 70% of the total data points. We then
assessed its performance across different forecast horizons of 7, 30, and 60 days,
using a fixed lookback window of 48 time steps. Figure 3 shows the results of the
experiments: darker colors in the heatmap are associated to lower mean absolute
error (MAE). Note that the Figure includes an experiment with 0% of missing
value inserted. In this case the datasets still contain missing values as reported
in Table 1. Table 2 reports the standard deviation only for the MAE due to
space constraints, but similar trends are observed for the MSE.

Discussion. The analysis of the results highlights two main aspects: (1) ISTF
typically exhibits a lower error than other approaches. Figure 3 shows that our
approach is the most effective for the majority of the dataset configurations
in terms of both MAE and MSE. ISTF also tends to show a lower standard
deviation compared to the other methods. (2) The error typically increases as
the percentage of missing values and the forecasting horizon grow. While this
trend holds for all approaches, the increase is less marked for ISTF, in particular
in the USHCN dataset. (3) The standard deviation of ISTF is generally lower
than that of the baselines, as reported in Table 2.
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Fig. 3: Forecasting error measured using MAE and MSE. Darker colors in the
heatmap indicate lower error. In the x-axis, the percentage represents the amount
of inserted missing values and and hrz the forecast horizon.
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Table 2: Standard deviation of MAE (similar for MSE).
0%

hrz 7
0%

hrz 30
0%

hrz 60
20%
hrz 7

20%
hrz 30

20%
hrz 60

50%
hrz 7

50%
hrz 30

50%
hrz 60

70%
hrz 7

70%
hrz 30

70%
hrz 60

InterpNet 0.018 0.008 0.018 0.014 0.010 0.037 0.018 0.014 0.025 0.012 0.012 0.009
mTAN 0.006 0.010 0.005 0.018 0.010 0.019 0.014 0.033 0.035 0.006 0.013 0.014
GRU-D 0.012 0.020 0.024 0.005 0.010 0.015 0.004 0.007 0.022 0.004 0.007 0.016
PrimeNet 0.005 0.006 0.013 0.002 0.005 0.009 0.006 0.019 0.027 0.010 0.011 0.010
DLinear 0.006 0.007 0.011 0.003 0.007 0.006 0.007 0.013 0.021 0.002 0.010 0.008
ISTF 0.004 0.004 0.006 0.006 0.005 0.018 0.014 0.016 0.017 0.013 0.013 0.008

(a) FrenchPiezo (MAE)

0%
hrz 7

0%
hrz 30

0%
hrz 60

20%
hrz 7

20%
hrz 30

20%
hrz 60

50%
hrz 7

50%
hrz 30

50%
hrz 60

70%
hrz 7

70%
hrz 30

70%
hrz 60

InterpNet 0.332 0.562 0.441 0.165 0.228 0.268 0.164 0.111 0.063 0.241 0.173 0.129
mTAN 0.330 0.386 0.430 0.166 0.181 0.272 0.068 0.118 0.041 0.236 0.216 0.115
GRU-D 0.368 0.415 0.487 0.210 0.242 0.321 0.031 0.126 0.085 0.206 0.170 0.095
PrimeNet 0.303 0.433 0.646 0.145 0.288 0.482 0.098 0.054 0.371 0.256 0.128 0.042
DLinear 0.293 0.346 0.437 0.137 0.221 0.285 0.093 0.029 0.040 0.259 0.204 0.104
ISTF 0.353 0.417 0.390 0.149 0.239 0.265 0.040 0.069 0.009 0.233 0.205 0.140

(b) USHCN (MAE)

Lesson learned. ISTF consistently outperforms other baselines across all experi-
ments, demonstrating both superior forecasting accuracy and greater robustness
to increasing missing values and longer forecasting horizons.

4.3 Ablation study

To evaluate the contribution of each component in the ISTF architecture, we
performed an ablation study by systematically removing individual modules and
analyzing their impact on forecasting accuracy. The complete model, without any
modifications, serves as a baseline to assess the necessity of each component. The
following ablation settings were considered:

1. w/o Embedder: The Embedder and positional encoder are removed, and
the irregular time series are fed directly into the Encoder.

2. w/o Local & Global Attention: The attention mechanisms are replaced
with a standard Transformer Encoder.
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Fig. 4: Ablation study results. The rows represent the full model and its ablated
versions; the columns correspond to different percentages of missing values for
the FrenchPiezo and USHCN datasets. The cells report the error in terms of
MAE and MSE.

3. w/o GRU: The Encoder output is directly used for forecasting, bypassing
the GRU component.

Figure 4 presents the MAE and MSE errors for both datasets, considering
missing value rates of 0%, 20%, 50% and 70%, and future horizon of 30 days.
Table 3 shows the percentage error increase due to ablations.
Discussion. The experimental results clearly indicate that the primary contribu-
tor to error reduction is the Embedder. In particular, its removal leads to a 16%
increase in MAE, averaged across missing value configurations for the French-
Piezo dataset (8% for USHCN), whereas the removal of other components results
in a more modest error increase of 3% (7% for USHCN). Similar considerations
hold when evaluating the error using MSE.
Lesson learned. The results show that all components contribute to the model
performance, but the Embedder is crucial for error reduction.

4.4 Robustness

To evaluate the sensitivity of ISTF to key hyperparameter changes and to identify
the optimal configuration, we conducted four types of experiments on both the
USHCN and FrenchPiezo datasets, as shown in Figure 5. We experimented with
a missing value percentage of 0%, 20%, 50% and 50%, a prediction horizon of 30
days, and a look-back window of 48 time steps, varying the following parameters:
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FrenchPiezo USHCN

Model 0% 20% 50% 70% Mean 0% 20% 50% 70% Mean

w/o embedder 13.31% 11.91% 22.07% 15.66% 15.74% 12.62% 6.54% 10.79% 3.54% 8.37%
w/o local-global -0.47% 1.47% 5.90% 2.23% 2.28% 6.68% 6.02% 1.78% 5.99% 5.11%
w/o GRU 1.38% 3.67% 4.49% 4.99% 3.63% 17.22% 9.07% 5.29% 5.75% 9.33%

(a) MAE

FrenchPiezo USHCN

Model 0% 20% 50% 70% Mean 0% 20% 50% 70% Mean

w/o embedder 23.13%21.07%38.60%29.97%28.10%30.45%11.34%12.88%6.69%15.34%
w/o local-global -0.35% -0.44% 5.40% -7.97% -0.84% 16.59% 8.36% 4.12% 1.89% 7.74%
w/o GRU 2.26% 2.91% 5.01% -3.93% 1.56% 38.93%15.55% 7.19% 5.12%16.70%

(b) MSE

Table 3: Error increase due to ablations.

1. Attention Heads: we tested configurations with 2, 4 (default), and 8 heads
to analyze the impact of the attention mechanisms.

2. Embedding Dimension: we examined embedding sizes of 16, 32 (default),
and 64 dimensions to assess their effect on representation capacity. The GRU
hidden size was set to match the embedding dimension in each respective
configuration.

3. Encoder Layers: we explored architectures with 1, 2 (default), and 3 trans-
former encoder layers to measure the effect of depth on performance.

4. Feed-Forward internal dimension: we varied the internal dimension of
the feed-forward network within each encoder layer, exploring values of 32,
64 (default), and 128.

Discussion. All experiments confirm that the selected hyperparameters minimize
the error in both datasets. Moreover, the Figure shows that variations around
the chosen values do not produce significant changes in forecasting accuracy,
highlighting the robustness of the model to parameter tuning.

Lesson learned. ISTF shows robustness to hyperparameter variations, with min-
imal impact on performance.

4.5 Time Performance

We assessed the evaluation by measuring the time needed to train the datasets
with 50% missing values. Table 4 shows the time required for training the
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Fig. 5: Robustness to variations in hyperparameters. The x-axis represents the
hyperparameter configurations; the y-axis the forecasting error (MAE and MSE).

datasets, reporting the total time, the time required to complete an epoch and
a batch of 64 records.

Discussion. The experimental results show that ISTF is generally less efficient
than the fastest baselines. However, its efficiency is comparable to GRU-D, and
overall training times remain manageable, not hindering ISTF applicability in
real-world scenarios. The longest training time is observed for the FrenchPiezo
dataset, reaching two hours, close to the time recorded by InterpNet and slightly
less than GRU-D, the slowest baseline overall. For the USHCN dataset, training
takes slightly less than an hour, which is marginally slower than GRU-D, the
least efficient baseline on this dataset. It is also worth noting that the time
required to process a batch, which is relevant to assessing the serving time of
ISTF, is limited and in line with the average of the other baselines.

Lesson learned. ISTF trades efficiency in training for improved accuracy, but
training times remain feasible for real-world applications.
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Table 4: Training time (seconds): total, per epoch, per batch.

Model
FrenchPiezo USHCN

total epoch batch total epoch batch

InterpNet 5304.155 160.732 0.022 1412.895 64.223 0.023
mTAN 4585.016 127.362 0.017 1505.682 48.57 0.018
GRU-D 8202.501 356.63 0.048 3166.397 143.927 0.052
PrimeNet 3963.591 74.785 0.010 869.753 28.992 0.010
DLinear 1037.824 24.710 0.003 464.587 9.481 0.003
ISTF 7461.781 226.115 0.030 3489.839 94.32 0.034

5 Conclusions

We proposed ISTF, a transformer-based model designed to handle irregularly
sampled multivariate time series by integrating local and global attention mech-
anisms. Experimental results on two real-world datasets show that ISTF achieves
superior forecasting accuracy compared to existing approaches. This improve-
ment comes with higher computational time, but the overall cost remains man-
ageable for real-world applications. The ablation study highlights the importance
of every architecture component, confirming its role in reducing prediction er-
rors. Future work will focus on optimizing efficiency and extending the model to
broader forecasting scenarios.
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