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Abstract. High-speed video recordings are crucial for investigating drop
dynamics and their interactions with surfaces. Measuring the width of
sliding drops, a key parameter linked to frictional forces, requires addi-
tional equipment like cameras or mirrors, complicating experimental se-
tups and limiting observable areas. This study introduces a novel method
that simplifies the measurement process by employing artificial neural
networks to estimate millimeter-scale drop width directly from side-view
video data. Our approach processes raw video footage to dynamically
identify features most indicative of drop width. By treating drop behavior
as an extrinsic time-series problem, our model effectively captures tempo-
ral dependencies in video sequences. We propose a VGG8-inspired archi-
tecture optimized for small and low information density video datasets.
This architecture is combined with our novel position invariant video pro-
cessing methodology that efficiently removes non-essential regions, reduc-
ing computation time by 84%. We further integrate ConvTran, a state-of-
the-art time-series classification model, with an enhanced Absolute Posi-
tion Encoding, improving the encoding’s dot-product and lowering drop
width estimation errors. Our novel neural network architecture achieved
a root mean square error of 48 µm (1.7% relative error), where each pixel
corresponds to approximately 44 µm. Code and data are open-sourced
at: https://github.com/shumaly/position_invariant_cnn_transformer

Keywords: position invariant video processing · low-dimensional abso-
lute positional encoding · extrinsic time series · spatiotemporal CNN–Transformer

1 Introduction

Video analysis of sliding drops enables quantitative studies of sliding forces and
liquid–solid interfacial properties [1, 2]. Sliding forces depend on drop width [3,
4]. A recent investigation by Li et al. focused on drops sliding down an inclined
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surface, presenting an empirical equation that models the friction force Ff versus
drop velocity U [3]:

Ff = F0 + βwUη (1)

Here, β is a dimensionless friction coefficient, w is the width of the drop while
sliding, η is the viscosity of the liquid, and F0 is the friction force extrapolated
to velocity U = 0. The friction force of drops that just start sliding is described
by the Furmidge equation [5–8]:

F = kγw(cos θr − cos θa) (2)

where γ is the liquid–air surface tension, θa is the advancing contact angle, θr
is the receding contact angle, and k is a geometry factor [4, 9]. The Furmidge
equation also appears to capture frictional forces at low velocities [10]. The
dynamic contact angles vary with velocity and can be easily measured from a
side view.

Friction force is essential for detecting surface inhomogeneities, assessing in-
terfacial stability, monitoring viscoelastic energy dissipation [43], and also is
critical in anti-icing [41] and surface coating quality [42]. However, determining
the drop width during a standard sliding drop experiment remains a challeng-
ing task. Adding cameras for bottom- or top-view measurements is not feasible
since these views show the drop’s central width, not the drop’s contact line
width. The drop’s contact line width is narrower on surfaces with contact angles
> 90◦. Front-view imaging of drops is feasible by installing two mirrors or a
second, time-synchronized high-speed camera [10, 11]. However, it is limited to a
sliding length of only ≈ 1.5 cm, as the drop moves toward the mirror and cannot
stay within the camera’s focus range for an extended period. To address these
limitations, Shumaly et al. recently proposed a deep learning-based multivariate
time-series analysis approach that leverages side-view measurements to estimate
the front-view drop width, eliminating the need to add additional cameras or
devices and without limiting sliding length [12].

Practical significance Previous research has relied on predefined measures ex-
tracted from side-view videos—such as contact angles, drop length, height, and
the velocity of the drop’s center—to estimate drop width. While these features
are deemed important by existing literature, they may not capture all the nu-
anced interactions that occur, especially when drops encounter surface defects.
When a drop moves over a surface with a single defect, its center velocity de-
creases upon encountering a defect and increases after surpassing it (Figure 1,
black line). Meanwhile, the advancing and receding velocities exhibit distinct
behaviors as they interact with surface defects in different ways (Figure 1, red
and blue lines). Monitoring only the center velocity fails to account for these
differences, limiting estimation accuracy. The advancing and receding contact
lines engage with the defect differently, revealing nuanced behaviors that are not
captured when considering only the center velocity.

The gap in knowledge lies in the absence of a comprehensive method that
can autonomously extract and prioritize relevant features from raw video data to
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Fig. 1. Velocity profiles of a sliding drop over a surface defect. The diagram depicts the
velocities at the drop’s center (black), advancing edge (red), and receding edge (blue).
Colors in the plot match the colored points on the schematic. As the drop interacts
with the defect, the center velocity decreases, while the advancing and receding edges
respond differently, revealing nuanced behaviors beyond center velocity analysis. Green
curves indicate potential areas of interest for a more detailed investigation of drop
dynamics.

describe the physics of sliding drops. Current models do not leverage the full po-
tential of video data to identify subtle but important features that could enhance
measurement precision, especially in challenging scenarios involving surface de-
fects. Moreover, if we can automatically extract features, it will open up new
opportunities to explore which segments of the drop contour line are crucial.
For instance, we could investigate whether a combination of pixels in the drop’s
receding section or even the reflections within the drop itself might provide es-
sential information on drop width (Figure 1, green drop curves). Furthermore,
this method enhances estimation accuracy and increase robustness against envi-
ronmental variations, including optical distortions such as minor defocusing and
focus irregularities, motion blur, lighting fluctuations, as well as dust within the
lenses and scattered lights that cause noise in video frames.

1.1 Main contributions

In this study, we introduced a novel deep learning approach for accurately es-
timating the width of sliding drops directly from side-view video data. Key
outcomes and advancements of our work include:

– Position Invariant Video Processing: Our proposed position invariant
video processing method mitigates overfitting due to positional bias while
significantly reducing computational load by approximately 84%. It is appli-
cable to scientific problems involving the motion of small objects of interest,
especially when data availability is limited.

– Low-Dimensional Absolute Position Encoding: Our proposed ldAPE
effectively addresses the anisotropic limitations commonly encountered in
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conventional positional encoding methods for low-dimensional time-series
data. Empirically, it outperforms both tAPE and Sin-APE on 32-dimensional
data, with theoretical advantages extending up to 128 dimensions.

– Optimized CNN-Transformer Architecture: We developed a custom
VGG8-inspired CNN architecture specifically designed for video datasets
characterized by low information density. Coupled with the ConvTran time-
series transformer, our model efficiently captures intricate spatiotemporal
interactions. We achieved an RMSE of 48.4 µm, corresponding to a low
error rate of just 1.7%. This demonstrates a considerable improvement over
previous state-of-the-art models, especially in challenging scenarios involving
surface defects.

– Robustness and Interpretability: Based on Grad-CAM visualizations,
we confirmed that our model robustly identifies critical drop features, in-
cluding subtle edges and reflections. This capability not only improves esti-
mation accuracy but also enhances interpretability, offering insights into the
underlying physics of drop-surface interactions.

– Open Source Contribution: To support future research and foster col-
laboration within the scientific community, we release our comprehensive
sliding drop video dataset and the source code. This contribution enhances
reproducibility, supports model inference, and promotes advancements in
ML-based experimental fluid dynamics research.

2 Related work

2.1 Machine learning and surface science

The integration of machine learning into surface science enhances drop dynam-
ics and contact angle analysis, improving complexity handling. Yancheshme et
al. applied a random forest model to predict the behavior of impacting drops
on hydrophobic and superhydrophobic surfaces [13]. Their goal was to deter-
mine the optimal conditions for inducing bouncing behavior during drop impact.
They analyzed a broad set of predefined measures, including the drops’ physical
properties, kinematic characteristics, and surface attributes. Similarly, Zhang
et al. developed a method to optimize the contact angle on rice leaf surfaces
by comparing artificial neural networks (ANN) and response surface methodol-
ogy (RSM) [14]. They focused on factors such as temperature, humidity, and
pesticide concentration to determine the best conditions for minimizing the con-
tact angle. ANN outperformed RSM in contact angle prediction, with pesticide
concentration as the key factor. Kokalis et al. proposed a method to classify com-
posite insulators into hydrophobicity classes using convolutional neural networks
(CNNs) [15]. They used a spray method to collect images and train CNNs for
insulator classification, removing human subjectivity. In the same way, Roy et al.
introduced a method for detecting the hydrophobicity grade of polymeric insu-
lators using Bi-directional Long Short-Term Memory (Bi-LSTM) classifier [16].
Rabbani et al. employed two deep learning models with fully connected dense
layers to predict contact angles in tomography images of porous materials [17].
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Kabir et al. used ResNet-50 to estimate contact angles, overcoming fitting lim-
itations on hydrophilic surfaces [18]. A recent deep learning study in surface
science developed a method (4S-SROF), enabling systematic analysis of sliding
drops, even when occupying a small image region [19]. Shumaly et al. introduced
a method based on regressions and Recurrent Neural Networks (RNNs) to es-
timate sliding drop width using predefined side-view features [12]. Their Long
Short-Term Memory (LSTM) model demonstrated the best performance, esti-
mating sliding drop width with a low error of 2.4% (67.6 µm RMSE), eliminating
the need for cumbersome equipment while maintaining an unrestricted view of
sliding drops. We now introduce more advanced end-to-end deep learning mod-
els capable of extracting features without relying on predefined physics-based
measurements, enhancing accuracy to estimate sliding drop width.

2.2 Time series extrinsic regression

Time series extrinsic regression (TSER) is a regression task aimed at understand-
ing the relationship between a time series and continuous scalar variables. Al-
though numerous papers are published annually on time series classification [20,
21] and time series forecasting [22–24], time series extrinsic regression has re-
ceived limited attention [25]. In this study, we address a TSER problem, recon-
structing a time series (front-view) from a set of time series (side-view). Our
approach employs a machine learning framework, formulating the task as a re-
gression problem where the input consists of consecutive drop images and the
output is a scalar value. Regression involves predicting a continuous numeric
value based on a set of input features [26]. However, our goal is to estimate
values that may extend the input time series or be indirect to it, without being
restricted to future values.

Similar studies on regression involve estimating heart rate based on data
gathered from accelerometers [27, 28]. Random Convolutional Kernel Transform
(ROCKET) has demonstrated state-of-the-art results in various time series tasks
by leveraging a set of random convolutional kernels to extract informative fea-
tures efficiently [29]. InceptionTime, a deep learning-based approach inspired
by the Inception architecture, enhances feature extraction, making it effective
for capturing both short- and long-term temporal dependencies [30]. Similarly,
Transformer for Time Series (TST) has been proposed as an attention-based
model that excels in capturing intricate relationships within time series data
by leveraging self-attention mechanisms [31]. ConvTran, a convolutional trans-
former model, has recently gained recognition. By combining convolutional fea-
ture extraction with transformer-based sequence modeling, ConvTran achieves
superior performance in handling both local and global dependencies, making it
particularly well-suited for tasks like TSER [32].
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3 Materials and methods

3.1 Data collection

The sliding drop setup consists of a high-speed camera with a telecentric lens to
record drop motion under uniform backlighting. Two parallel mirrors capture the
front view by reflecting the backlight. The entire optical system is mounted on
a rotatable breadboard to maintain alignment. Distilled water drops (32 µl) are
deposited onto a tilted plane using a peristaltic pump connected to a grounded
syringe needle. The technical details and a schematic of the setup and sample
preparation are presented in Supplementary Information (SI) Sections S.1, and
S.2. Installing the mirrors restricted the focus of the front-view camera to the last
≈1.5 cm of the slide path. Data was collected only within this region. Therefore,
defects were fabricated on the last centimeter of the samples. The dataset was
filtered to include videos with 20–250 frames for consistency. The dataset consists
of 235 videos with a resolution of 1280×1024 pixels, containing a total of 11,944
frames. The number of frames per video varies depending on the drop velocity.

3.2 Data augmentation

We applied data augmentation to mimic real-world imaging variations and en-
hance robustness. The techniques included brightness adjustment, Gaussian blur
filtering, and artifact generation. Brightness adjustment varied image intensity
by ±15% to account for ambient fluctuations. Gaussian blur was applied with
randomly selected kernel sizes (1 × 1, 3 × 3, 5 × 5) to simulate defocusing and
motion blur. Image artifacts were introduced as irregular stains and radiance
spots to mimic lens smudges and reflections. Irregular stains were generated
using sinusoidal perturbations on random circular shapes, followed by transfor-
mations such as stretching, rotation, and scaling. Radiance spots were simulated
using Canny edge detection to localize drop edges, followed by circular gradient
overlays. More details and pseudo-codes are provided in SI Section S.3.

3.3 Position invariant video processing methodology

Captured high-speed video frames of sliding drops have a resolution of 1280 ×
1024 pixels. In our dataset, the largest drops reach 216 × 99 pixels. An initial
approach involved cropping frames to 1280×99 pixels, preserving the drop’s hor-
izontal path while removing unnecessary upper and lower portions (Figure 2a).
However, this approach introduced several challenges.

Firstly, the drop occupies only a small fraction of the cropped frame, leaving
extensive empty space. Secondly, the model may overfit by associating drops
with their absolute positions in the image rather than focusing on their shape
and velocity, which are the relevant features. For instance, surface defects are
always located in the last centimeter of the sliding path due to video capture
constraints [12]. This carries the risk that the model becomes too closely adapted
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to the droplet’s dynamic behavior at a specific location, thereby limiting its
ability to generalize to defects appearing at other positions.

To address these challenges, we introduced a 3D sliding window centered on
the drop, which we call the sliding spatiotemporal window (SSW). We set the
window size to 216×99 pixels, matching the maximum observed drop dimensions
(Figure 2b). This window follows the drop’s movement, keeping it centered in
the frame and reducing irrelevant background. The impact of input tensor size
on memory usage and computation time was obtained using a dummy input. It
assesses the general computational footprint of the model’s forward pass. The
total memory usage M and total time T were computed as follows:

M =

n∑
i=1

Si, T =

n∑
i=1

ti, (3)

Here, Si and ti represent the memory usage (in bytes) and time (in milliseconds)
of the i-th operation, respectively. Two experiments were conducted with differ-
ent input tensor sizes: (216 × 99) notated as “SSW”, and (1280 × 99) notated
as “original”. The percentage reduction in memory usage and computation time
was computed as

∆M% =

(
1− Mssw

Moriginal

)
× 100% =

(
1− 1796.8 MB

10153.8 MB

)
× 100% ≈ 82.3%, (4)

∆T% =

(
1− Tssw

Toriginal

)
× 100% =

(
1− 239.5 ms

1518.1 ms

)
× 100% ≈ 84.2%. (5)

These results indicate that reducing the input tensor size led to an approximately
82% decrease in memory usage and an 84% decrease in computation time, while
the number of model parameters remained unchanged.

Capturing temporal dynamics is essential for accurate drop width estimation.
To track the drop’s movement over time, we set the sequence length to 20 frames,
meaning each model input consists of 20 consecutive frames with the drop cen-
tered within the SSW. Studies show that 20-frame sequences effectively capture
key drop dynamics without overloading the model [12]. In general, frames 1 to 9
correspond to the past relative to the target frame (frame 10), whose width we
aim to estimate, while frames 11 to 20 represent its future.

However, centering drop images inadvertently removes the drop’s relative
positional information within the sequence, which carries valuable temporal cues
about its motion. To retain motion cues, we tracked the drop’s center relative
to its start. However, directly including the drop’s center position could lead the
model to overfit to absolute drop locations. To avoid this, we incorporated the
first derivative of the drop’s position with respect to time, which corresponds
to its velocity. We approximated the velocity using a first-order finite difference.
Specifically, we calculated it as vt = (xt − xt−1)/∆t, where xt is the horizontal
position of the drop in frame t, and ∆t is the time interval between frames.
The resulting velocity time series was added as an input to the model. This
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Fig. 2. Data preparation and pipeline for formatting input for the model. a) Initial
approach: Cropping the full sliding path (1280×99) results in extensive empty space and
positional bias due to the drop’s varying location. b) Improved method: Using a SSW of
size 216× 99 pixels, matching the maximum drop dimensions. For demonstration, a 5-
frame sequence is shown, while the model utilizes 20 frames for effective drop analysis.

helped us retain temporal motion cues while removing the risk of overfitting
to absolute drop positions. Incorporating the velocity time series serves two key
purposes. First, velocity is crucial for understanding drop dynamics, as it reflects
frictional forces, surface interactions, and acceleration. Most importantly, with a
fixed frame rate, velocity encodes positional changes and establishes a temporal
link between frames.

Our approach ensures that the model focuses on the drop’s shape and motion
rather than its position. Additionally, it extracts only the drop region (216×99)
from the original frame (1280× 99), achieving an 84% reduction in computation
time. We refer to this approach as position invariant video processing.

3.4 Spatiotemporal model architecture

The model begins with a VGG-style 2D CNN to extract spatial features from
consecutive video frames (Figure 3). The architecture is adapted for smaller
datasets and images with lower informational density. It is inspired by VGG8,
but replaces standard pooling layers with BlurPooling and employs the Gaus-
sian Error Linear Unit (GELU) as the activation function. BlurPooling improves
shift-equivariance, leading to better generalization [36]. It consists of four con-
volutional blocks with 64, 128, 256, and 512 filters, each featuring a 3×3 convo-
lution (padding = 1). We refer to this architecture as BlurVGG8. The extracted
spatial features are reshaped to align with the temporal data. Velocity from the
4S-SROF method [19] is processed through a fully connected layer for dimen-
sional consistency before being integrated element-wise with spatial features.
The position invariant video processing method stacks consecutive drop images,
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Fig. 3. Architecture of the spatiotemporal model. BlurVGG8 extracts spatial features
using four convolutional blocks. Temporal dynamics are preserved by integrating ve-
locity data with spatial features. The ConvTran architecture refines these features with
additional convolutions, position encoding (APE and eRPE), and a Transformer en-
coder to capture long-range dependencies.

but to retain relative positional information, it requires integrating the velocity
to preserve temporal dynamics.

The velocity encoded data is processed by the ConvTran architecture, start-
ing with a spatial convolutional layer that enhances extracted features. The
embedding size is set to 64, followed by temporal convolutional layers that refine
short-term dependencies. Next, position encoding is applied to enhance tempo-
ral awareness. We introduce an improved Absolute Position Encoding (APE),
called Low-Dimensional Absolute Position Encodings (ldAPE), to enhance the
model’s capability. Simultaneously, Efficient Relative Position Encoding (eRPE)
captures relative frame distances. Since transformers process data in parallel, ex-
plicitly encoding temporal order is essential [38]. Next, the transformer encoder
was applied with self-attention to capture long-range dependencies, analyzing
frame interactions and tracking drop behavior. The number of heads was set to
4, and the feed-forward dimension was adjusted to 128 for our specific task.

We set the learning rate to 0.0001, used the AdamW optimizer with a weight
decay of 1 × 10−5, and selected a batch size of 16. We split the dataset into
training, testing, and validation sets with a 60%/20%/20% distribution. The
model was trained to minimize the Mean Squared Error (MSE) loss between
predicted and actual widths. Performance was evaluated using the Root Mean
Squared Error (RMSE) metric on the test set to maintain consistent units. To
mitigate overfitting, the maximum training epochs were set to 400, with early
stopping triggered by validation loss. All experiments were performed on a high-
performance computing system with a single node featuring 36 CPU cores, 250
GB of memory, and an Nvidia A100 GPU.
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3.5 Low-dimensional absolute position encodings

In transformer architectures, the self-attention mechanism alone cannot capture
the natural order of sequential data. However, preserving the order of the se-
quence is crucial for accurate analysis, especially when dealing with time-series
data. To overcome this limitation, transformer-based models introduce positional
encoding, which injects order-related information into the input representation.
The positional encoding ensures that the model can distinguish between differ-
ent positions in the sequence and maintain the relationships. There are different
types of positional encoding such as absolute positional encoding (APE) and
relative positional encoding (RPE) as the most common techniques [39, 40].

In the APE method, absolute position information is directly incorporated
into the input embedding. This is achieved by adding a position-specific encoding
to each input vector, formulated as:

xi = xi + pi (6)

Here, pi ∈ Rdmodel represents the positional embedding corresponding to position
i, and xi denotes the input embedding at that position. dmodel refers to the
dimension of the model’s hidden representations. The positional embedding is
typically defined using sine and cosine functions as follows:

pi(2k) = sin(iωk), pi(2k + 1) = cos(iωk) (7)

where

ωk = 10000−2k/dmodel (8)

While i and k are both indices, i corresponds to the feature dimension, and
k is the index of the frequency components. This method (called Sin-APE) has
been widely used in transformer-based architectures [38]. Sin-APE was originally
proposed for language modeling, where high embedding dimensions such as 512
or 1024 are typically used. However, it exhibits limitations when applied to time
series data. In low embedding dimensions, the dot product between position
encodings does not consistently decrease with increasing positional distance,
leading to the loss of the distance awareness property. To address this issue, time
Absolute Positional Encoding (tAPE) has been introduced [32]. This method
modifies the frequency term to account for both the embedding dimension dmodel
and the sequence length L, ensuring a more balanced frequency distribution:

ωtAPE
k = ωk · dmodel

L
(9)

Here, L is the total length of the time series.
We modified the absolute positional encoding by adjusting the frequency

term to improve accuracy. The new formulation is given by:

ωldAPE
k = 35−2k/dmodel · 2

√
dmodel

L
(10)
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Fig. 4. Comparing different absolute positional embeddings. a) Dot product of absolute
positional embeddings, demonstrating the wider similarity axis coverage in ldAPE with
reduced fluctuations. b–d) Absolute positional encoding curves for positions 2 and 20
in a sequence of length 20 for Sin-APE, tAPE, and ldAPE, respectively, highlighting
the improved position distinguishability in ldAPE.

This adjustment introduces a scaling factor that accounts for both dmodel,
and L. By modifying ωk, the encoding achieves a more balanced frequency dis-
tribution, and enhancing the model’s ability to distinguish between positional
embeddings. We refer to this method as low-dimensional Absolute Positional
Encoding (ldAPE). The dot product between positional embeddings at a fixed
reference position reflects their similarity. Compared to other methods, ldAPE
produces a broader and more distinct, yet smooth and noise-free, distribution
of similarity scores across positions (Figure 4a), enhancing the model’s abil-
ity to differentiate between them. Also, in ldAPE, the positional encodings for
positions 2 and 20 show minimal overlap, indicating that ldAPE enhances po-
sition distinguishability more effectively than other methods (Figure 4b-d). The
ldAPE demonstrates a better dot product than the other mentioned APEs for
dimensions below 128, SI Section S.4.

4 Results and discussion

We tested LSTM models with 64, 128, and 256 units, as well as Bi-LSTM models
with the same configurations. The Bi-LSTM models consistently outperformed
the LSTM models, prompting us to use Bi-LSTM architectures for further ex-
periments.
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Table 1. Model comparison based on RMSE. Results are repeated over three indepen-
dent runs for reliability.

Model Configuration RMSE Avg. RMSE std.

ViT + transformer encoder 148.2 3.6
VGG16 + BiLSTM 204.1 2.8
Pre-trained VGG16 + BiLSTM 81.9 9.1
VGG8 + BiLSTM 63.5 2.8
Pre-trained VGG8 + BiLSTM 86.1 4.0
BlurVGG8 + BiLSTM + Self attention 54.1 4.0
BlurVGG8 + ConvTran (ours) 48.4 2.4

Initially, we tested transformer models and the VGG16 architecture, known
for their effectiveness in capturing complex patterns and features across various
tasks [34, 35]. However, due to the limited amount of training data available and
low information density image frames, these models did not perform as well as
expected (Table 1). The concept of low information density has been used to
compare information density in computer vision and Natural Language Process-
ing (NLP), suggesting that pixels in computer vision contain less information
than words in NLP [37]. Additionally, different regions of an image contribute
unequally to its overall meaning. Based on this, we argue that our images have
even lower information density than typical computer vision images, as only the
drop contour is relevant while the rest of the image holds minimal significance.
To address this, we switched to VGG8, a streamlined version of the VGG ar-
chitecture with lower complexity. This change achieved an RMSE of 63.54 µm,
surpassing earlier studies that used features based on domain knowledge (RMSE
of 67.6 µm [12]).

Performance improved even more after modifying VGG8, replacing standard
pooling with BlurPooling, utilizing Gaussian Error Linear Unit (GELU) activa-
tion, and adding self-attention after the Bi-LSTM layer, achieving an RMSE of
54.13 µm.

The modified VGG8 (BlurVGG8) was retained because it yielded better re-
sults, while ConvTran was used for the temporal component. To conduct an ab-
lation study, three different APE variants were evaluated: Sin-APE, tAPE, and
the proposed ldAPE (see Sec. 3.5). The ldAPE achieved the best performance,
reaching an RMSE of 48.4µm (Table 2). To further assess the contribution of in-
put velocity and the proposed BlurVGG8 architecture, we removed the velocity
input and replaced BlurVGG8 with the original VGG8 in the best-performing
configuration, observing the corresponding performance drop in each case.

Surface defects and their larger geometry create more complex time series
patterns, increasing the error rate. One defect-free sample (I) and three sam-
ples with a block defect (800 µm thick) from the test set are visualized in Fig-
ure 5a: sample II (1000 × 106 µm), sample III (2000 × 74 µm), and sample
IV (3000 × 174 µm). In nearly all cases, the error rate decreased compared to
the previous study that used predefined features. Specifically, the error changed
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Table 2. Ablation study on the effects of BlurVGG8, velocity input, and different APE
variants.

Configuration RMSE Avg. RMSE std.

BlurVGG8 + ConvTran (Sin-APE) 53.8 6.1
BlurVGG8 + ConvTran (tAPE) 50.2 4.3
BlurVGG8 + ConvTran (ldAPE) 48.4 2.4
BlurVGG8 + ConvTran (ldAPE) – without velocity 61.1 4.9
VGG8 + ConvTran (ldAPE) 57.5 4.1

from 30.8 µm to 33.9 µm for sample I, from 56.2 µm to 21.9 µm for sample II,
from 50.4 µm to 49.3 µm for sample III, and from 82.8 µm to 57.1 µm for sample
IV [12].

Additionally, to evaluate the generalization capability, we compared their re-
sults on a sliding drop example that was not part of the training dataset. This
experiment was performed on a hydrophobic surface (PFOTS_Si) with a block
defect (800 µm thick, 3000 µm long, 23 µm high). While PFOTS_Si surfaces
were in the training videos, this specific defect size was not. During the exper-
iment, the drop stuck to the defect and detached very slowly, which had not
occurred in the dataset. The model with predefined features based on domain
knowledge produced an RMSE of 112.5 µm [12], while the model utilizing auto-
extracted features achieved a significantly lower RMSE of 66.6 µm (Figure 5b).
We hypothesized that deep learning models with automated feature extraction
would better capture complexities than those using predefined features. The
RMSE improvement confirmed this. We altered the frames by adjusting illumi-
nation and introducing blurriness and artifacts, simulating challenging real-world
conditions. The results indicated that the model’s estimations remained robust
under these perturbations, exhibiting minor fluctuations and slight deviations in
the drop width measurements (Figure 5c).

Feature sensitivity. To evaluate how the model identifies key features for
drop width estimation, we applied the Grad-CAM algorithm to visualize the
Regions of Interest (ROIs) in the input images (Figure 6). The figure presents
seven middle frames from a sequence of 20, focusing on estimating the width of
the central frame (frame 10). Each row represents a different time step in the
video sequence, illustrating how the model’s attention dynamically shifts as the
sliding drop interacts with the surface.

The sequence captures the critical moment when the advancing edge of the
drop encounters a surface defect (Figure 6, frame 7) and its subsequent response.
The heatmaps in the middle column are spatially normalized between 0 and 1,
ensuring that the most significant regions within each frame are distinctly high-
lighted. These visualizations reveal that the model consistently focuses on the
drop’s contour. The heatmaps in the left column remain unnormalized, preserv-
ing absolute activation values to capture spatiotemporal dependencies across
frames. This enables a direct comparison of activation patterns over time. No-
tably, frames 8 and 9 exhibit the strongest activations, suggesting they provide
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Fig. 5. a) Drop width measurements while sliding over a defect-free surface and three
samples with defect, all 800 µm thick: sample II (length 1000 µm, height 106 µm),
sample III (2000 × 74 µm), and sample IV (3000 × 174 µm). b) Comparison of the
predefined features model and the automated feature extraction model on a sample
outside the training dataset, with RMSEs of 112.5 µm and 66.6 µm, respectively.
c) Effect of data augmentations (illumination changes, blurriness, and artifacts) on
estimation diagrams using the automated feature extraction model. Distribution of
residual errors (predicted - measured width) under different data augmentations. Each
individual bar corresponds to the frequency of a specific residual value range.

the most critical information for accurately estimating the width of frame 10.
This experiment demonstrates that the model effectively identifies key features
aligned with established domain knowledge, such as drop length, height, and
receding. Additionally, the Grad-CAM visualizations highlight the model’s dy-
namic attention shifts, particularly at critical interaction points, reinforcing its
ability to capture spatiotemporal dependencies. This opens the door for further
studies to explore deeper feature correlations and refine automated methods for
analyzing sliding drops.

5 Conclusions

In this study, we introduced a novel position invariant video processing method that
effectively prevents overfitting to object location while reducing computation time by
84%. This is achieved by introducing the sliding spatiotemporal window (SSW) con-
cept and incorporating the first derivative of the position of the region of interest into
an architecture capable of processing both spatial and temporal data. The approach
is scalable and can be extended to higher-dimensional cases, such as 2D object mo-
tion. Our approach, which leverages both a specialized VGG8-inspired architecture
and the novel ldAPE representation, is well-suited for addressing spatiotemporal chal-
lenges with low information density, such as drop motion analysis. This method can
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Fig. 6. Grad-CAM visualization of key regions influencing drop width estimation. The
normalized heatmaps (middle column) emphasize critical spatial features, primarily
the drop’s edges, while the unnormalized heatmaps (left column) preserve absolute
activation values, capturing spatiotemporal dependencies across frames.

effectively address challenges in drop and soft matter research. It is also applicable to
scientific domains involving video sequences where the temporal contour evolution of
small objects of interest is critical and data availability is limited, such as in biomedical
video analysis. Moreover, it integrates with interpretability techniques like Grad-CAM,
offering deeper insights into model behavior by highlighting the most influential video
features. The interpretability and performance of our method pave the way for uncov-
ering new correlations. For example, we observed that subtle reflections within drops,
although seemingly insignificant, may carry meaningful information about drop geom-
etry. Our dataset includes variations in drop viscosity, surface chemistry, wettability,
sliding angle, and surface defect geometry, enabling our research to address a broad
range of physical conditions and support generalization. However, the current scope
does not include phenomena such as slide electrification or extreme wetting regimes
(e.g., superhydrophobic or superhydrophilic surfaces), which are left for future investi-
gation. This approach is currently being applied in experimental workflows at the Max
Planck Institute for Polymer Research to support automated drop analysis in surface
science experiments. To support further research, we have made our code and dataset
publicly available.
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