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Abstract. Built heritage faces nowadays increasing vulnerability due to
the combined impact of climatic, seismic, and anthropogenic forcings. In
this context, vibration-based monitoring has become a key non-invasive
method for assessing the integrity of historical buildings. However, little
attention has been given to the development of automatic tools, which are
crucial for rapid and effective decision-making. This study examines San
Cristobal Church, a 17th-century building located in the UNESCO World
Heritage site of Cusco, Peru. The church has been continuously moni-
tored during 17 months using a seismic sensor located on one of its walls.
First, we develop machine learning models to predict the church’s natu-
ral frequencies based only on weather data. Then, we analyze deviations
from the expected frequency variations to detect anomalies that may in-
dicate structural changes in the building, especially following strong tran-
sient events such as earthquake-induced motions. We evaluate multiple
machine learning approaches, including Ridge Regression, Feedforward
Neural Networks, and Temporal Convolutional Networks, with the latter
outperforming other models in capturing nonlinear temporal dependen-
cies. To estimate the post-seismic recovery time of the natural frequencies
following a Mw 4.2 earthquake occurred in August 13th, 2024, we em-
ploy the Bai-Perron test for structural break detection on the learned
deep temporal convolutional features. As this recovery time is influenced
by the damage state, changes in its duration can reflect alterations in
masonry mechanical properties. By accurately assessing the post-seismic
recovery time, our methodology offers a promising approach for develop-
ing early warning systems to identify damage in historical buildings.

Keywords: Structural Health Monitoring · Historical Masonry · Vi-
bration Analysis · Temporal Convolutional Networks · Structural Break
Analysis · Bai-Perron Test

1 Introduction

In the 21st century, preserving and protecting the cultural heritage is among
the principal missions of UNESCO organization. This heritage faces increasing
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vulnerability due to the combined impact of climatic, seismic, and anthropogenic
forcings. In the field of Structural Health Monitoring (SHM), the characteriza-
tion of the dynamic response of structures — to both continuous environmental
and transient seismic loadings — is widely recognized as an effective tool for
identifying the modal properties of existing structures [17, 15, 12].

In particular, the use of ambient vibration instead of external artificial excita-
tion is highly valuable, as it is quick and easy to implement for structural health
assessment and is often integrated into continuous monitoring systems [28]. This
approach enables a data-driven evaluation of structural conditions, which is par-
ticularly beneficial for heritage structures where invasive testing methods should
be avoided. As highlighted by numerous studies, variations in the natural fre-
quencies of buildings have been observed both during and after earthquakes [7,
27], even in the absence of structural damage [9]. If no permanent structural
damage occurs, the frequency shifts gradually diminish over time, normally re-
turning to pre-seismic values. The duration of this recovery period depends on
the mechanical properties of the materials and the damage state of the structure
[19, 16, 1]. However, the effects of environmental factors can mask and complicate
an accurate estimation of this recovery period. A proper understanding of the
environmental response is essential to develop a reliable model that distinguishes
between transient environmental effects and actual structural changes.

Unlike reinforced concrete structures, historical masonry buildings exhibit
complex responses that are less studied; the lack of experimental data, and con-
sequently robust models, limits preservation strategies for these heritage struc-
tures. No research has focused on the nonlinear elastic response (recovery pe-
riod) of historical buildings, mainly due to the complexity of their behavior. This
highlights the need to better understand the factors influencing their response
using machine learning algorithms. While some studies are emerging in Western
Europe, particularly in Italy [13, 25, 21, 2], the field remains largely unexplored
elsewhere. Studying and better characterizing the seismic response of historical
buildings is promising for improving the assessment of their structural health
and damage state.

This research focuses on Peru, which has a unique heritage of traditional ma-
sonry structures made of stone and earthen materials, distinct from the typical
materials used in European historical masonry. The goal is to develop innovative,
efficient and lightweight computational tools for a more accurate evaluation of
their structural health. This study focuses on the San Cristobal Church, a 17th-
century colonial building in the UNESCO World Heritage site of Cusco, Peru.
The church has been continuously monitored for 17 months using a tri-axial
Raspberry Shake (3C) velocimeter to record its response to ambient and tran-
sient vibrations. In addition, environmental data, including temperature, humid-
ity, wind speed, atmospheric pressure, and rainfall, have been collected from a
weather station in Cusco located 3.2 km from the site. The unique value of our
dataset is that it includes the recording of a Mw4.2 earthquake that occurred
on August 13, 2024, which temporarily altered the church’s dynamic properties.
A key contribution of this study is to focus on a historical masonry structure
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Fig. 1: a) San Cristobal church from Cusco city centre, view from the South.
The small green triangle indicates the position of the Raspberry Shake sensor.
Modified from Martin St-Amant - Wikipedia - CC-BY-SA-3.0. b) Interior of the
church with the Raspberry Shake sensor: small white box on the window sill.

built using stone and earthen materials (known as “adobe”) Such materials are
underrepresented in the literature and, to the best of our knowledge, no prior
machine learning study has attempted to model their environmental response.
Although previous work [29, 30] examined the response of earthen masonry to
weather conditions, they do not develop predictive models.

Our approach is to develop machine learning models capable of predicting the
church’s natural frequencies under normal environmental conditions, establishing
a baseline response of the undamaged structure. By doing so, we aim to predict
the natural frequency variations induced by weather parameters, allowing us to
identify non-predicted deviations as a proxy for detecting structural anomalies.

The key focus of this work is to estimate the post-seismic recovery period of
the structure’s dynamic properties. This estimation is crucial: when an earth-
quake affects a structure, its natural frequency should not return to its previous
value if significant damage has occurred. However, with only a single sensor,
localized damage elsewhere may not always be detectable from the data. As a
result, the natural frequency could appear to recover even if there is some damage
in parts of the church that are not monitored. Laboratory experiments and data
from reinforced concrete buildings suggest that the recovery period is directly
related to the degree of heterogeneity of the materials and therefore with their
mechanical properties [26, 16]. Consequently, a change in recovery period may
indicate evolving masonry properties, even in the absence of visible damage. This
leads us to our primary research hypothesis: machine learning can assess, model,
and predict these recovery periods, potentially identifying structural changes
before they result in visible, significant damage.

In summary, the contributions of this paper are twofold: i) we develop and
compare different machine learning models to predict the natural frequency of
the San Cristobal Church using exclusively environmental parameters before the
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earthquake, assumed as the undamaged state; ii) we use a methodology based
on structural break testing with Deep Temporal Convolutional Features to refine
the estimate of post-seismic recovery time.

2 Methodology

Our methodology has three main components: (i) data preprocessing and feature
engineering, (ii) predictive modeling of the natural frequency under normal con-
ditions using machine learning, and (iii) post-seismic recovery period estimation
based on structural break testing with deep temporal convolutional features.

2.1 Data Collection and Preprocessing

The dataset consists of two primary data sources: i) Seismic data recorded by a
triaxial seismometer installed in the south wall of the church’s nave, at a height
of around 6 meters, with a sampling rate of 100 Hz. The natural frequencies
are extracted from this data using the Random Decrement Technique [10, 11];
ii) Environmental data obtained from a Davis Vantage Pro 2 weather station
located approximately 3.2 km from the church, providing 10 minutes resolution
measurements of temperature, humidity, wind speed, atmospheric pressure, and
rainfall. To align the environmental data with the seismic data, all time series
are downsampled to an hourly resolution. Weather parameters are averaged,
except for rainfall, which is summed. Additionally, missing values are estimated
using linear interpolation, as the gaps are short, with a maximum of one week
of missing data. In July 2023, we carried out the Operational Modal Analysis
[8] of the church from which several structural modes were identified. In the
present paper, we focus specifically on the wandering of the natural frequency
corresponding to the first torsional mode of the bell tower (around 6.7 Hz), as it
is the most excited mode at the sensor location and provides a clean time series
with minimal uncertainty. The complete time series is shown in Figure 2.

2.2 Predictive Modeling

To predict the natural frequency from environmental data, we evaluate multiple
machine learning models:

– Baseline Linear Model: Ridge Regression [18] is used as a baseline to
benchmark more complex models. Linear models are commonly applied in
SHM, as noted in [24, 23].

– Feedforward Neural Network: a feedforward neural network (FNN) is
implemented to model nonlinear dependencies between environmental pa-
rameters and the natural frequency. The model is trained using the Adam
optimizer with mean squared error as the loss function, and early stopping
is applied to prevent overfitting.
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– Temporal Convolutional Networks: To better capture temporal depen-
dencies, we consider Temporal Convolutional Networks (TCN) [20]. A TCN
is a generic 1D-convolutional architecture for sequence prediction with addi-
tional key characteristics: (i) It employs causal convolutions, ensuring that
the output at time t depends only on the current and past inputs. (ii) A
simple causal convolution can only look back at a history (receptive field)
that grows linearly with the network depth. To efficiently capture long-range
dependencies, dilated convolutions are used, expanding the receptive field ex-
ponentially with respect to the number of hidden layers. The transformation
of an input sequence xt

0 through a hidden dilated causal convolutional layer
is defined as

h(l)(s) =

k−1∑
i=0

f (l)(i)xs−di , ∀s ∈ {0, . . . , n− k} , (1)

where h(l)(s) is the output of the convolutional layer at position s in layer
l, f (l)(i) is the learnable convolutional filter at layer l with i indexing the
filter coefficients, k is the filter size and d is the dilation factor, which con-
trols the spacing between kernel elements. (iii) Residual connections facili-
tate stable training, allowing the TCN to model long-term dependencies by
stacking multiple layers. Finally, differently from a standard sequence predic-
tion TCN, we focus only on the final time step: ŷt = f(x0, x1, ..., xt) where
xt
0 ≡ x0, x1, . . . , xt is the input sequence, and ŷt is the predicted output cor-

responding to time t. The model is trained using the Adam optimizer with
mean squared error as the loss function, and early stopping is applied to
prevent overfitting. The final prediction is obtained through a linear layer,
which maps the extracted deep convolutional features to the output.

2.3 Structural Break Testing

As the building’s natural frequency responds to weather variations, we cannot
assess its recovery by considering the variation of the frequency alone. Instead,
our approach is to identify changes in the frequency response to the weather
variables. In Economics and Statistics, Structural Break Analysis aims at identi-
fying changes over time in the parameters of regression models, called structural
breaks. The Bai-Perron (BP) sequential test [4, Sec. 5.2.2][5, Sec. 5.3] identifies
an unknown number of structural breaks in linear regression models and assesses
their statistical significance, by estimating them one at a time as in [3]. After
l ≥ 0 breaks T̂1, . . . , T̂l have been found (when l = 0, the sequence is empty), the
test considers an additional break at each possible location within each subsam-
ple defined by the l breaks (or within the whole sample, if l = 0). Let T̂0 = 0 and
T̂l+1 = T , with T being the sample size, and ST (T̂1, . . . , T̂m) denote the sum of
squared residuals obtained by fitting a linear model on each of the subsamples
defined the break points T̂1, . . . , T̂m . Then, the following statistic is considered
to test the null hypothesis of l breaks T̂1, . . . , T̂l against the alternative of l + 1
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breaks:

FT (l + 1 | l) =
{
ST

(
T̂1, . . . , T̂l

)
(2)

− min
1≤i≤l+1

inf
τ∈Λi,η

ST

(
T̂1, . . . , T̂i−1, τ, T̂i, . . . , T̂l

)}
/σ̂2

where

Λi,η =
{
τ ; T̂i−1 +

(
T̂i − T̂i−1

)
η ≤ τ ≤ T̂i −

(
T̂i − T̂i−1

)
η
}

with η being a parameter defining the minimal length between two adjacent
breaks and σ̂2 a consistent estimate of the variance of the disturbance σ2 under
the null hypothesis. Critical values for this statistic are provided in [4, Table II].
When FT (l + 1 | l) is above the critical value, the null is rejected and the value
of τ minimizing the second term of the right-hand side Eq. 2 is retained as the
l + 1-th break and appended to the previous list of breaks. The test starts with
l = 0 breaks and keeps increasing l by 1 as long as the null hypothesis is rejected
and a maximum number of breaks is not reached. The linear assumption allows
the optimization problem to be efficiently solved, resulting in O(T ) complexity
for the entire procedure.

To extend the structural break analysis to a non-linear framework, our ap-
proach consists in processing the raw weather features using the learned TCN
and taking the output of the last hidden layer as input features for the struc-
tural break analysis—thus replacing the last linear layer of the TCN by the
linear models fitted by the BP test. As shown in Sec. 3.5, we use this test to
estimate the length of the recovery process and finally assess if it recovered at
all by concatenating the time series before the earthquake with that after the
hypothesized recovery and testing for breaks—no rejection supporting the full
recovery hypothesis, up to a type II error.

3 Application Case: San Cristobal Church

We now present the results obtained with our methodology on the frequency
response of the San Cristobal Church to the weather conditions.

The code and the dataset necessary to reproduce the results can be found
at: https://github.com/francdente/SHM-post_earthquake_monitoring
and https://zenodo.org/records/15641078.

3.1 Experimental Setup

Temporal Constraints and Limited Data Availability A key challenge is
maintaining temporal relationships in the data, ensuring that validation and test
sets occur strictly after the training set to prevent the model from predicting
the past using future data. This issue is particularly critical for highly seasonal
datasets such as ours, which has distinct wet and dry seasons. If the training set
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consists of dry season data while the validation set is from the rainy season, the
model may struggle to generalize, making validation results less meaningful. Even
with time series cross-validation [6], which preserves temporal order, validation
and test splits may still fail to represent the full distribution, particularly in
cases of strong seasonality. The dataset consists of approximately one year and
four months of data, whereas at least two years would be ideal to better capture
seasonal variations in the validation and test sets. This limitation is complicated
by the occurrence of an earthquake on August 13, 2024, which disrupts normal
structural behavior, leaving only about a year of usable pre-earthquake data. To
mitigate this constraint, only 10% of the pre-earthquake data is allocated for
validation when training neural networks. This allows the network to be trained
on nearly a full year of pre-earthquake data, reducing the risk of overfitting while
still maintaining a sufficient validation set to evaluate performance.

Challenges with Neural Networks and Cross-Validation Time series
cross-validation poses challenges for neural networks, primarily due to train-
ing size bias, where increasing training data in each split artificially improves
performance, making comparisons difficult. Additionally, small training splits in
early folds can be problematic as neural networks require large datasets in re-
lation to the number of parameters they have to perform well. Smaller training
splits in early cross-validation iterations result in underperforming models, and
these results are not representative of the network’s true potential.

Dataset Partitioning Following the previous considerations, the dataset was
partitioned according to the earthquake of August 13. The pre-earthquake pe-
riod is used for training, including validation data, while the post-earthquake
period is designated as the test set. The post-earthquake test set may not fully
represent the generalization error of the model due to the sudden frequency dis-
turbance caused by the earthquake and the gradual recovery of elastic properties.
The recovery duration depends on material properties and structural damage
[19][16]. Since no visible damage is observed and the frequency value return
to pre-earthquake levels, there is no evidence of significant structural damage.
Thus, the period during which the frequency had not yet stabilized is classified
as abnormal behavior. To determine a first naive estimate of the recovery dura-
tion, we applied a conservative moving average with a 12-day window to identify
when frequency values returned to pre-earthquake levels (f = 6.76 Hz). This re-
sulted in around 2.5 months of estimated recovery period. The natural frequency
values calculated after this period are assumed to reflect normal behavior and
are used to estimate the generalization error of the predictive model. This setup
is visually shown in Figure 2. It allows both the evaluation of the model general-
ization under normal conditions and the investigation of the lingering effects of
the earthquake on the structure. By applying our methodology, we aim to refine
the estimate of the recovery period, moving beyond the naive assumptions made
during the preliminary analysis.
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Fig. 2: Visual representation of dataset splits.

Evaluation Metric: Root Mean Squared Error (RMSE) We use the Root
Mean Squared Error (RMSE) as the primary evaluation metric, as it is widely
adopted in regression tasks and retains the same unit as the target variable (Hz),
providing an intuitive measure of error magnitude.

3.2 Feature Engineering

Feature engineering is essential for enhancing the performance of linear models.
This section focuses on modeling the impact of past weather conditions and
examining the correlation between weather variables and natural frequencies
over various time shifts. To effectively capture these relationships, we use both
shifted weather values and rolling window averages as newly crafted features.

Rolling windows features Using only current weather values (t) ignores past
influences, while adding multiple lagged values increases model complexity and
risks overfitting. To address this, rolling window averages are used to capture
past trends and cumulative effects. Window sizes are treated as hyper-parameter.

Correlation Analysis To better understand the relationships between input
weather features and natural frequency, we compute the correlation coefficients
for various weather parameters with different time shifts. Figure 3 shows the
correlations across these shifts. Shifting weather data significantly improves cor-
relation for humidity and temperature, with temperature changes linked to ther-
mal expansion and humidity showing a 13-hour lag due to its anti-correlation
with temperature. A longer analysis indicates that rainfall has the highest corre-
lation with natural frequency after 4.4 days (106 hours), likely due to moisture
absorption in adobe walls4 and soil saturation effects on the foundation. Based
on these findings, the original values of temperature, humidity, and rainfall at
time t are replaced with their respective lagged counterparts: temperature (t−2
hours), humidity (t− 13 hours), and rainfall (t− 106 hours).
4 Adobe walls, composed of earth, clay, and straw, offer good insulation but are highly

susceptible to moisture from prolonged rainfall.
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Fig. 3: Pearson correlation between weather parameters and natural frequency at
different shifts. The x-axis represents the time shift (up to 24 hours in the past),
while the y-axis shows the correlation coefficient for each weather variable.

3.3 Ridge Regression

Training Strategy and Feature Engineering We optimize key hyperpa-
rameters using time series cross-validation [6] with 3 splits, as implemented in
TimeSeriesSplit from scikit-learn. For the regularization weight, values of
0.1, 1, 10, 100, and 1000 are tested. Rolling window sizes are also explored, with
different ranges for each variable. For pressure and temperature, window sizes
from 0 to 300 past hours are evaluated in increments of 50, as the correlation
analysis highlights the importance of recent values. For humidity and rainfall,
window sizes from 0 to 600 past hours are tested in increments of 50, as past
values in the correlation analysis appear to have a significant influence.

Results and Observations We evaluate the Ridge Regression model against
a dummy model that predicts the mean of the training set. Cross-validation
optimization selects the best hyperparameters: a regularization weight of 0.1, a
rolling window of 450 hours for rainfall, and 150 hours for temperature, with no
rolling window for pressure, humidity, or wind speed. Ridge Regression outper-
forms the dummy model but still struggles to capture natural frequency peaks
accurately. Table 1 summarizes the RMSE values for both models. Poorly mod-
eled peaks in natural frequency often coincide with periods of heavy rainfall in
Cusco. Comparing models with and without a past window for rainfall (Figure
4) reveals that aggregating past rainfall data significantly improves peak predic-
tion. Simply including rainfall as a feature without applying a past window does
not enhance performance, highlighting the importance of capturing cumulative
effects (see Figure 5). This is evident in the test set, where early rainfall in 2024
caused a peak that the model without past aggregation failed to capture. These
findings suggest that prolonged rainfall impacts the structure, likely through
moisture absorption in adobe walls or changes in the foundation.
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Table 1: Comparison of RMSE values for Ridge Regression with (w) and without
(w/o) past rainfall window and Dummy Model.

Model Train RMSE Validation RMSE Test RMSE

Dummy Model 0.0659 0.0788 0.0917
Ridge Regression (w/o) 0.0545 0.0599 0.0459
Ridge Regression (w) 0.0469 0.0521 0.0414

Table 2: Comparison of RMSE values (mean ± standard error of the mean) for
TCNNs trained with different sequence lengths across 10 independent runs.

Sequence Length Train RMSE Validation RMSE Test RMSE

400 0.0229± 0.0003 0.0306± 0.0001 0.0349± 0.0001
500 0.0229± 0.0002 0.0298± 0.0000 0.0375± 0.0001
600 0.0244± 0.0004 0.0320± 0.0001 0.0364± 0.0003

3.4 Temporal Convolutional Networks

Training Strategy and Feature Engineering Our implementation of the
TCN is based on the PyTorch-TCN library.5 As in Section 3.1, we adopt a fixed
train-validation-test partitioning strategy. The training set consists of 90% of the
pre-earthquake data, while the validation set, comprising 10%, is used to mon-
itor overfitting and select the best model based on validation loss. The test set
includes post-earthquake data after a naive recovery period and is used solely to
evaluate the model’s generalization performance. Since TCNs process sequential
data, raw instantaneous input features are used without rolling window trans-
formations, and the sequence length determines how far back the model can
analyze past data. To deal with the randomness of the training process, instead
of relying on a single training run, 10 independent TCN models are trained for 25
epochs at each sequence length, and the mean and standard deviation of their
RMSEs are reported. Based on findings from previous models, where rolling
rainfall windows (450 hours for Ridge Regression) improved performance, we
evaluate sequence lengths ranging from 400 to 600 time steps. To ensure that
the network’s receptive field spans the entire sequence length, we tune the TCN
architecture by varying the kernel size and the number of hidden layers.

Results and Observations Table 2 shows the mean and standard deviation of
the RMSE values across the 10 independent runs for different sequence lengths.
While the 500 sequence length model achieves the best mean validation RMSE,
we select the 400 sequence length model. The decision to select the latter model
is based on the real-world nature of this case study. Unlike a specific benchmark
dataset, real-world data often presents challenges, as discussed in Sec. 3.1, in-
cluding issues with the representativeness of the validation set, therefore basing
5 available at https://github.com/paul-krug/pytorch-tcn.
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Fig. 4: (Top) Ridge Regression results with the rainfall past window as a fea-
ture, peaks are better modeled. (Bottom) Ridge Regression results without the
rainfall past window as a feature, the model struggles to capture peaks and
completely fails in capturing the peak in the test set. Poorly modeled peaks are
highlighted in red.

model selection solely on validation performance may not be optimal. Instead,
we choose the 400 sequence length model because it exhibits a more balanced
behavior across training, validation, and test RMSE values. This suggests that it
is likely to generalize better and be less prone to overfitting. The selected model
is a TCN with seven layers (six with 16 channels and one with 8 channels), a
kernel size of 6, dropout of 0.3, and residual connections. The output from the
final TCN layer is processed through two fully connected layers (8 → 4 → 1)
to generate the final prediction. We also show results of a Feedforward Neural
Network (FFNN) with three fully connected layers (128, 64, and 1 neurons, re-
spectively), batch normalization, LeakyReLU activation, and dropout, in which
we performed feature engineering by adding a rolling window mean of past val-
ues for the rainfall feature. This choice was motivated by our observations from
Ridge Regression, where incorporating such transformations improved the ability
to model peak values. The results in Fig. 6 show that while the FFNN performs
better than Ridge Regression in capturing peak values, it still struggles to accu-
rately model the peak occurring between March and May. As a result, in certain
intervals, the residuals during the normal period are almost as high as those
observed during the anomalous period. In contrast, the TCN model provides a
more stable and well-behaved solution. As seen in Fig. 6, the residuals are better
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Fig. 5: (Top) Natural frequency time series with the three poorly modeled peaks
highlighted. They correspond to periods where the model struggles to accurately
predict the natural frequency. (Bottom) Instantaneous rainfall values (measured
in millimeters over a one-hour period) and the past rainfall rolling window (450-
hour window). The past window feature aligns well with these peaks, suggesting
its effectiveness in capturing the cumulative effects of rainfall.

distributed, and the RMSE values further confirm its better performance. The
other key advantage of TCNs is their ability to learn temporal dependencies
directly from raw data, eliminating the need for manually engineered features
like rolling window averages. Table 3 summarizes the comparison across different
architectures, where the TCN achieves the best performance.

3.5 Structural Break Testing

Our primary goal is to automatically identify the end of the post-earthquake
recovery period and refine the naive estimate of 2.5 months. To achieve this, we
implement the BP sequential test presented in Section 2.3, by using the dosequa
function provided in the R package mbreaks [22]. We perform the test using a
1% significance level, which means that only breakpoints with strong statistical
evidence for a structural change are retained. The package requires a minimum
segment length for reliable breakpoint detection. We set this value to 5% of the
total dataset length, which is the smallest allowed by the package. We set a
maximum of 10 breaks, which is the largest value allowed by the package.
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Table 3: Comparison of RMSE values for the best-performing models across
different architectures. For TCN, RMSE values of the best training run are
reported. TCN achieves the best performance.

Model Train RMSE Test RMSE Overall RMSE

Ridge Regression 0.0469 0.0414 0.0465
Feedforward Neural Network 0.0366 0.0394 0.0371
Temporal Convolutional Network 0.0243 0.0340 0.0308

Results and Observations Fig. 7a shows the result of our approach that
combines the BP test with Deep Temporal Convolutional features, on the whole
time series. The FT (l + 1 | l) statistic (denoted supF) representing the gain in
SSR obtained by splitting at a given break (see Sec. 2.3) is shown on the top.
The test correctly identifies a structural break corresponding to the earthquake
(Date 4) and two breaks after suggesting two important steps of the recovery
process. Before the earthquake, three breaks are detected, however, the breaks
at Date 1 and Date 2 have a much lower supF statistic compared to the others.
The detection of Date 3 can be attributed to the fact that it marks the beginning
of the validation set, where the model exhibits a higher RMSE compared to the
training set. Finally, as explained in Sec. 2.3, we concatenate the portion of the
time series between Date 3 and 4 of Fig. 7a (i.e., just before the earthquake)6 with
the portion after Date 6 (i.e., after the supposed recovery) and run the test on it,
resulting in a non rejection of the null hypothesis (i.e., the recovery). The linear
approach (see Fig. 7b), while correctly identifying the recovery period, detects
the maximum allowed 10 breaks, many of which may not reflect actual structural
changes. In contrast, our method avoids spurious breakpoints, providing a more
reliable interpretation and reducing the risk of false positives, especially in less
evident cases. These results demonstrate that our approach provides a more
precise estimate of the recovery period, improving upon both the initial naive
estimate and the results obtained with the linear approach.

4 Conclusions

This study combined machine learning and statistical methods to analyze the
relationship between environmental factors and the natural frequency of a his-
torical adobe church. By developing predictive models based on environmental
parameters, we established a baseline response that enabled the detection of
anomalies potentially linked to changes in the building’s structure.

Our findings demonstrate that incorporating past weather data, particularly
a rolling window for rainfall, significantly improves predictions. Ridge Regres-
sion served as a useful baseline, but it struggled to capture complex nonlinear

6 We do not use previous segments since they belong to the training set and would
induce a break due to the difference between training and test set as for Date 3.
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Fig. 6: (Top) Feedforward Neural Network results with rolling window feature en-
gineering (window size 600). While peak modeling improves compared to Ridge
Regression, the residuals remain problematic, suggesting further limitations.
(Bottom) Temporal Convolutional Neural Network results of the best model
across the 10 training runs with sequence length 400.

dependencies. In contrast, Temporal Convolutional Networks effectively modeled
temporal dependencies, outperforming other approaches in predictive accuracy,
as they could naturally take into account the time-delayed dynamic response
of the church to changes in weather parameters. The achievement of a reliable
baseline response model using exclusively weather data demonstrates that a large
portion of the observed frequency variations can be explained by environmental
conditions. Furthermore, our novel approach combining deep temporal convolu-
tional features with the Bai-Perron test allowed us to refine the estimation of
the post-seismic recovery period and to conclude that San Cristobal Church has
completely recovered its dynamic behavior on October 15th, 63 days after the
Mw 4.2 earthquake of August 13th, 2024.

By accurately assessing the post-seismic recovery time, our methodology pro-
vides a promising approach for developing early warning systems to detect dam-
age in historical buildings. This capability is particularly valuable for heritage
conservation, where non-invasive monitoring solutions are essential for preserving
structural integrity. Heritage management is generally reactive, with interven-
tions occurring only after damage has already taken place [14]. This approach is
costly and, in some cases, too late to preserve the building’s authenticity. The
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(a) Result of the BP test using Deep Temporal Convolutional Features as input.

(b) Result of the BP test using Ridge Regression features as input (see Section 3.3).

Fig. 7: Structural Breaks: The black curve represents the predictions with one
linear model per segment, the red one corresponds to predictions using a single
linear model, and the blue one represents the actual values. In a), Date 4 corre-
sponds to the earthquake, while Date 6 indicates the end of the recovery period.
The grayed segment corresponds to the naive estimate.

ability to detect subtle changes, prior to damage, in the mechanical properties
of masonry could improve risk assessment strategies and support more effective
maintenance interventions.
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