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Abstract. The high dimensionality and variability of Computational
Fluid Dynamics (CFD) data pose a significant challenge for Machine
Learning (ML) models. The only solutions in the literature address-
ing inference from CFD flow fields are based on expert-driven features,
which consist of fluid dynamic quantities averaged on specific regions of
the entire computational domain. However, using handcrafted features
can limit the scalability and portability of existing methods, and result
in the loss of critical flow field information that might be essential for
capturing non-linear patterns inherent in the CFD data. We propose a
method to replace handcrafted features with features defined on regions
obtained by clustering. Our approach combines: ) physics-based cluster-
ing, to identify meaningful regions within the flow field, i) cluster-based
feature extraction, to capture localized fluid dynamics properties, and
i11) set-learning models to process the extracted information. Our solu-
tion allows integrating physics-based modeling with ML, and provides a
portable and flexible pipeline capable of effectively dealing with the vari-
ability and dimensionality of CFD flow fields. We validate our method
on publicly available CFD datasets (from the aerospace domain) and
apply it to a realistic scenario, that is, the classification of pathologies
in real 3D human upper airways extracted from CT scans, acquired in
collaboration with a medical hospital. Experimental results demonstrate
the accuracy and scalability of our method, and highlight its potential
for leveraging CFD data in ML frameworks for other scientific and engi-
neering applications.

Keywords: Computational Fluid Dynamics - Machine Learning - Physics-
Based Clustering - Set Learning - Features Extraction.
1 Introduction

Computational Fluid Dynamics (CFD), i.e., solving the numerical version of dif-
ferential equations of the fluid motion, plays a crucial role in a large number of
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applications [1]. By solving the Navier-Stokes equations over a discretized do-
main, CFD provides detailed information on velocity, pressure, and several other
flow variables, simulating real-world problems in a wide spectrum of fields, from
aerodynamics [2] and weather prediction [3] to biomedical engineering (e.g., air-
flow analysis in respiratory diseases), and energy applications (e.g., wind farms
and turbomachinery). From CFD, experts can evaluate performance, optimize
designs, and gain a deeper understanding of fluid behavior in complex systems.
The high dimensionality of CFD outputs and the computational cost of simu-
lations, however, pose significant challenges for data analysis through Machine
Learning (ML). Gathering annotated CED datasets, in fact, is particularly diffi-
cult, as generating labeled data often requires running expensive simulations and
relying on expert domain knowledge. Moreover, the size and complexity of CFD
flow fields, which often involve millions of spatial points and tens of flow variables
per point, make it impractical to directly train ML models on raw CFD data.
This underscores the need for compact and informative data representations.
Yet, ML represents a natural approach to CFD, as it can reduce computational
burden, provide valuable insights, and extract meaningful patterns from fluid
dynamics.

The classical approach for feeding CFD data to a ML model consists of a
handcrafted feature extraction, where domain experts or CFD specialists design
features to capture specific flow properties within selected regions. These regions
are spatial subdomains of the flow field, defined based on prior knowledge, whose
selection process acts as an information filtering step that substantially reduces
the dimensionality of the CFD data. Despite being intuitive, this procedure in-
troduces a critical limitation: the same selected regions must be consistently
identified and propagated to all the samples in the training and test sets, which
may not always be straightforward. As an example, in the context of airflow
analysis within the human upper airways, Schillaci et al. [4] proposed a CFD
classifier that serves as a precursor to our work. In particular, they define cross-
sectional planes a priori within simplified human geometries (visible in the middle
of Figure 1) to extract averaged flow features. While this approach reduces data
dimensionality, it also imposes rigid constraints that may limit generalization to
new samples with different anatomical variations or airflow conditions. To the
best of our knowledge, this is also the only method currently addressing the in-
ference of non-computable quantities from CFD data, and therefore constitutes
the current state of the art for this task. Although effective, handcrafted features
can limit portability, lead to information loss, and require intensive domain ex-
pertise. Recent advances in ML, particularly in unsupervised learning and deep
learning models, offer new opportunities to address these limitations [2,3].

In this work, we propose a method to overcome the drawbacks of handcrafted
feature extraction by making a step towards data-driven methods. Our idea is to
identify adaptive regions inside the flow field through clustering and extract fea-
tures from these, without relying on any a priori engineered region selection. We
ground our approach on three main components: i) a physics-based clustering,
inspired by [3], that identifies meaningful regions in the flow field by leveraging
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Fig. 1. On the left, the figure shows the flow streamlines in the upper airways. The
middle highlights Schillaci et al.’s [4] cross-sections for CFD feature extraction, while
the right shows regions from our clustering algorithm.

the physical principles inherent in the governing equations; i) in-cluster fea-
tures extraction, which captures localized fluid dynamic properties along with
geometrical and statistical quantities; and 444) set learning models [5] to process
the information extracted from clusters.

Unlike traditional expert-driven region selection, our clustering algorithm
adopts a data-driven approach grounded on the governing equations of fluid dy-
namics to define the regions on which we compute features. An example of this
can be seen on the right-hand side of Figure 1, which illustrates the application
of such clustering to human upper airways. By defining these regions using phys-
ical principles rather than heuristic choices, we ensure greater generalizability
and adaptability across different scenarios, making our method inherently more
portable than expert-driven approaches. However, replacing predefined regions
with clusters introduces new challenges: since the number and order of clus-
ters are not fixed a priori, directly comparing clusters across different samples
becomes challenging. To address this, we adopt two complementary strategies:
one directly processes the unordered clusters using set-learning models, which
operate on unordered sets of features and do not require a predefined cluster or-
der, while the other restores cluster comparability through a propagation strat-
egy, mapping clusters from a reference sample onto new samples to preserve
consistency in cluster definition. These strategies enable our method to effec-
tively handle variability in cluster structures while retaining the advantages of
a physics-based, data-driven approach. Another key advantage of our method is
that we can extrapolate information from the whole CFD data without relying
on sub-portions of the computational domain, which inevitably leads to a loss
of information.

We conduct our experiments on different scenarios of increasing complexity.
First, we validate our method on two large datasets of 2D flow fields from the
aerospace domain, including both publicly available data [6] and an extended
version we generated. In this setting, where a large amount of data is available,
we focus on two regression tasks: i) predicting the 4-digit NACA (National
Advisory Committee for Aeronautics) airfoil code as in [4], and ii) estimating
parametrized geometric defects (e.g., bumps, cavities, or cut trailing edges) on
the surface of NACA airfoils. To further assess the robustness of our approach in
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a more challenging real-world scenario with limited data, we apply it to 4i) the
classification of pathologies in 3D human upper airways extracted from patients’
CT scans. Despite the reduced number of samples in this setting, our method
maintains consistent performance, demonstrating its ability to generalize across
different flow domains and data availability conditions.

The main contributions of our work are: i) We extract informative features
from CFD data by identifying physics-based regions in the flow field; i) We take
a step toward end-to-end processing of CFD data for ML models, moving be-
yond existing expert-driven methods; ii7) We validate our approach on datasets
of varying complexity, showing improved performance over the state-of-the-art
method by Schillaci et al. [4].

2 Related Work

Over the past 5-10 years, the application of ML in the field of fluid mechanics
has experienced significant growth. This is evident from the increasing quan-
tity and quality of published material [1,7,8]. The dominant use of ML for CFD
focuses on bypassing the solution of differential equations that govern fluid mo-
tion, e.g., by physics-informed neural networks (PINNs) [9,10]. Another promi-
nent research direction addresses turbulence modeling, where for instance, Ling
et al. [11] used deep neural networks to refine the Spalart-Allmaras turbulence
model [12]. Fukami et al. [13] explored ML for regression tasks, such as flow
field reconstruction and estimation, and applied convolutional neural networks
for super-resolution tasks, training models to extract key flow features. However,
these studies primarily aim to improve or accelerate existing CFD capabilities
by using fluid dynamic quantities as both input and output of their ML mod-
els. In contrast, our work focuses on a less-explored area: extracting meaningful
information from CFD data to predict quantities that CFD alone cannot com-
pute (e.g., pathologies). This problem is particularly challenging because of the
dimensionality of CFD data and the difficulty in finding public datasets of an-
notated CFD simulations.

Given the large amount of data returned from CFD, feeding a ML model di-
rectly with flow fields is computationally prohibitive, whereby feature extraction
methods are crucial to reduce complexity and focus on the most relevant infor-
mation. A classical approach to feature extraction relies on expert-driven, hand-
crafted features designed to capture specific flow properties in predefined regions.
For instance, Schillaci et al. [4] extracted predefined spatial regions from the flow
field, and averaged fluid dynamic quantities within each region. This method was
used to infer geometric properties in two different scenarios: i) predicting the
NACA code from CFD data around airfoils, and i) identifying pathologies from
the internal flow in a simplified human nose. While effective, this approach relies
heavily on domain expertise, is restricted to small sub-portions of the flow field,
which may lead to the loss of critical information, and lacks portability across
different scenarios.
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Recent advances in ML, particularly in unsupervised learning and deep learn-
ing models, offer new opportunities to overcome the limitations of expert-driven
approaches and highlight a growing trend toward end-to-end methods. For in-
stance, Callaham et al. [3] employ Gaussian mixture models (GMM) and sparse
principal component analysis (SPCA) to identify dominant physical processes
in CFD flow fields. Their method segments flow regions based on local balance
relationships in the governing equations, enabling the discovery of physically
meaningful subspaces where certain terms in the Navier—Stokes equations can
be neglected. Similarly, Saetta et al. [2] employ GMMs to segment homogeneous
flow regions in CFD solutions, segmenting boundary layers, shock waves, and
external inviscid flow. Their approach eliminates the need for case-dependent
thresholds and human intervention, achieving results comparable to reference
methods in aerodynamics. These works exemplify the increasing adoption of ML
for structuring CFD data and enhancing analysis beyond traditional heuristic
techniques. However, while [2] and [3] focus on data exploration and unsupervised
structure identification, our approach leverages physics-based clustering explic-
itly for feature extraction and supervised inference. To the best of our knowledge,
end-to-end trainable solutions have not yet been adopted in flow fields, and the
method proposed by Schillaci et al. [4] remains the only published approach
that uses CFD data to predict quantities that cannot be directly computed from
the flow variables themselves. Inspired by [2] and [3], we target the prediction
of such non-computable quantities (e.g., airfoil defects, pathologies), integrating
flow segmentation into a trainable pipeline for regression and classification tasks.
By grounding clustering on the governing equations rather than heuristics, we
enhance portability and mark a significant step toward end-to-end ML methods
for CFD analysis.

3 Problem Formulation

The flow field returned by a CFD simulation consists of a set of scalar and vector
fields defined over a spatial domain 2 C R3, discretized into n cells. These fields
are derived by solving the discretized Navier—Stokes equations with boundary
conditions applied to the geometrical boundary I' C R®. CFD simulations typ-
ically produce several output flow variables, which are usually time-dependent.
To simplify the analysis, we remove the dependency on time by considering
steady-state solutions or time-averaged quantities, whereby the generic vectorial
flow quantity ¢ can be written in Cartesian coordinates as:

D(x) = [¢2(x), by (%), 6-(x)] ",

where x = (z,y,2) € {2.

Each cell 4 in the discretized domain 2 is associated with a vector Q; € R
of D flow variables, such that Q; = [ql, qo, . .- ,qD]T, where each ¢; represents
either a spatial coordinate, a scalar quantity (e.g., pressure), or a component of a
vectorial flow variable (e.g., velocity components u, u,, u,). The complete CFD
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output can be represented as a matrix F € R"*P containing all flow quantities
across the discretized domain:

F= [Q17Q27"' aQn

]T
In some applications (e.g., human upper airways), n can easily range in the order
of n =~ 107, while the dimensionality of each cell, D, typically spans tens of flow
variables.

Our objective is to train a model K that predicts a target variable Y from
the CFD data F, K : F — Y, where Y may represent categorical (e.g., pathol-
ogy classification) or continuous values (e.g., defects parameters). This requires
a labeled training dataset {(F;,Y;)}, where F; represents the input features
extracted from the j-th simulation, and Y; denotes the corresponding target
variable.

4 Method

Our method applies a clustering algorithm to process the matrix C € R*"*V,
derived from the CFD data matrix F € R"*P through the governing equations
of the CFD solver (top of Figure 2). The clustering step groups the flow field
into meaningful regions based on these equations (top-right corner of Figure
2), capturing the underlying physical properties of the flow. Thus, within each
cluster, characterized by a particular physical phenomenon (illustrated at the
bottom of Figure 2), we compute fluid dynamic and geometric features, such
as average flow quantities, cluster areas, and centroids. Clustering reduces the
dimensionality of each simulation, condensing the data into a compact set of
vectors P, where each vector represents a cluster and contains features extracted
from it, associated with the cluster centroid. This set of feature vectors is then
used as input to an ML model trained to predict different target quantities
(bottom-left of Figure 2).

4.1 Physics-Based Clustering

To reduce the dimensionality of F' and extract meaningful structures, we apply
clustering to the CFD data. The clustering process is based on the physics of
the problem, as it leverages terms derived from the momentum equations of
motion of the model we use to perform CFD simulations, such as the Reynolds-
averaged Navier-Stokes (RANS) equations [14], or Large Eddy simulations (LES)
equations, as inputs of the clustering algorithm.

Clustering Inputs Inspired by [3], we apply clustering not directly to the CFD
matrix F € R"*P but to a transformed matrix C € R"*¥ obtained by a
mapping of F through the governing equations. In CFD, each cell in the compu-
tational domain is represented by a vector of flow variables Q; € R” (as men-
tioned in Section 3), containing raw CFD quantities such as velocity, pressure,
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Fig. 2. Overview of our method. Starting from CFD simulations, we collect the flow
field data in the matrix F € R"*P (top-left). We derive the matrix C by processing F
through the governing equations (top-right), and use it as input for the physics-based
clustering of the flow domain. The clustering step groups the flow field into meaningful
regions, capturing the underlying physical properties. From each cluster, we extract
statistical, geometric, and physical features, building a set of feature vectors P (bottom-
right). These are then fed into a machine learning model K for training (bottom-left),
with the goal of predicting target quantities.

and turbulence-related terms. Similarly, each column of C is defined cell-by-cell
by a new vector of CFD quantities C; € RN which contains the terms of the
equations used by the CFD solver. This transformation maps the CFD data
F € R"*P to the matrix C € R"*¥, where N < D. By applying clustering di-
rectly to the columns of C, which include the terms derived from the governing
equations, we ensure that the process captures the underlying physics, allowing
the model to identify meaningful regions guided by the flow dynamics.

We report in (1) the RANS equations, an analytical model for turbulent
flows that decomposes flow variables into a mean component, which represents
the averaged flow behavior in time, and a fluctuating component, which captures
turbulence effects. For RANS equations, C; includes the Cartesian components
of the advection term, pressure gradient, turbulent and laminar diffusion, and
turbulent kinetic energy (TKE) terms, namely:
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2
V-(u®u) = vV u + V-:-@wVu
( ) wy ( )
Advection Laminar diffusion  yrhylent diffusion

1 2
pr v ( 3k‘>, (1)
Pressure gradient TKE

where u is the mean velocity, p is the mean pressure, p is the fluid density
(assumed to be constant for incompressible flows), v is the kinematic viscosity
of the fluid, v; is the turbulent viscosity computed via a turbulence model to
account for the effects of the velocity fluctuations u; and pressure fluctuations
p/, and k is the TKE, defined as k = (u’ - u’). The operator V denotes the
gradient, while V- and V? represent the divergence and Laplacian, respectively.
For LES, we define C in a similar way: in this case, a spatial filtering operation
replaces time averaging, separating the resolved large-scale structures from the
subgrid-scale motions, which are modeled through turbulence closures.

Clustering Algorithm We leverage a Bayesian Gaussian Mixture Model (BGMM)
[15] to cluster the column vectors of C. By doing that, we identify flow regions
based on the underlying physical properties of the flow (at the bottom of Figure
2), which we then use to extract features in P. The key characteristic of the
BGMM is the use of covariance matrices to model the statistical distribution
of each cluster extracted from C, effectively capturing correlations between the
terms in (1). This allows the BGMM to distinguish regions governed by different
flow phenomena, such as boundary layer development, shear layers, separation
zones, and wake structures. Moreover, the variational Bayesian inference frame-
work autonomously determines the optimal number of clusters k, eliminating
manual tuning and allowing each simulation to return a different number of
clusters. By doing that, the clustering adapts to the physics of each simulation,
making our method as general as possible. To improve numerical stability and
convergence, we initialize the Gaussian components using the centroids obtained
from k-means clustering.

4.2 Feature Extraction

We associate each cluster with its centroid and compute a set of in-cluster quanti-
ties to be used as a feature vector. The idea is to generalize the regional averaging
approach used in [4], replacing predefined spatial regions with clusters while in-
corporating a broader set of features. These include the averages of flow variables,
turbulence quantities, and clustering inputs defined in Section 4.1 as columns of
C, weighted by the cell area or volume, along with the cluster area or volume.
This process reduces the dimensionality of the clustering input C € R™*V to a
compact set of feature vectors P = { P; € R!, i = 1,...,k}, where k < n is the
number of clusters returned by the BGMM, and [ = O(N) represents the num-
ber of extracted features per cluster. Notably, P; also includes the coordinates of
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the centroids to preserve spatial information, which is fundamental for a Point
Transformer, the architecture we employ for set learning. We further highlight
that P is not directly comparable across different flow fields, as both k£ and the
ordering of clusters in P can vary from case to case.

4.3 Clustering Strategies

The clustering process condenses the CFD data from the matrix C € R**V

to a more compact set representation P. In this process, however, we cannot
directly control the ordering of the clusters returned by the BGMM, that is, the
order in which the clusters appear in set P. Therefore, using a non-permutation
invariant ML model K can lead to mutually inconsistent training samples and
misclassification. We thus adopt two different strategies to build the set P:

— Free clustering (C-FREE): We let the order and the number of the clus-
ters vary in each simulation by applying a BGMM independently to each
CFD flow field. By adopting this approach, the order of the k clusters in
P is uncontrolled and needs to be accounted for in the choice of model
K. Nevertheless, we do not impose any fixed clustering structure, and the
method is more flexible and adaptive to different flow conditions and scenar-
ios. Here, we treat P as an ensemble of feature vectors where the ordering is
not relevant. We use a set-learning model [5] for K trained on P, providing
a straightforward solution that naturally handles unordered data sets.

— Clustering propagation (C-PROP): Set-learning models are less effective

than classical MLPs on ordered data. Therefore, we provide a method to
consistently define clusters across different simulations. In particular, we
select a reference CFD simulation where clusters have been computed as
described in Section 4.1. We then propagate these clusters to all other CFD
flow fields by matching the clustered data in C to those of the reference
simulation. Specifically, given C™f from the reference clusters and C* from
a new simulation s, we assign each cell in Cj to the closest cells Cr*f based
on a Euclidean distance metric d(Cf’f, Cj) This matching process is im-
plemented using a k-d tree [16], and the core rationale relies on preserving
similarity in the space of the columns of C.
As the clustering inputs are derived directly from the terms of the governing
equations, we ensure that the cluster propagation inherently captures the
physics of the problem. With this approach, on the one hand, we preserve
the number and the order of the clusters in P across simulations, maintain-
ing consistency in the representation of the flow field and enabling direct
comparisons between simulations. On the other hand, we constrain simula-
tions to only capture the physical phenomena that characterize the reference
simulations, reducing generality.

4.4 Inference Models

Depending on the clustering strategy we adopt, we employ different ML models:
in C-PROP, where the clustering is propagated from the reference C*f, we train
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a simple MLP. However, in the case of C-FREEFE, we require a model capable of
handling sets as input, i.e., unordered inputs of varying dimensions. To achieve
this, in the C-FREFE setting, we use for IC a Point Transformer model (PT) [5]
which provides a dual advantage: along with the invariance to input order, it
also extracts spatial information from the clusters by leveraging self-attention
mechanisms specifically designed for point clouds, modeling interactions between
features extracted from clusters based on their geometric proximity and feature
similarity. This ability to learn spatially-aware representations can be a funda-
mental aspect in a CFD context as spatial information is crucial for understand-
ing the physics of the problem. Furthermore, as we work with relatively small yet
inherently highly complex datasets, it is essential to extract as much meaningful
information as possible to enhance the learning process and improve inference
performance.

5 Experiments

We test our method on three distinct tasks of increasing complexity, each ad-
dressing a different application of CFD analysis: airfoil shape identification, sur-
face defect detection on airfoils, and pathology classification in real human upper
airways extracted from patients’ CT scans. In each scenario, we conduct four par-
allel experiments in which we extract features in set P using different methods,
as described in the following section. We directly compare our pipeline against
the handcrafted-feature-based approach proposed by Schillaci et al. [4], which
represents the current state of the art for the inference of non-computable quan-
tities from CFD data, and use it as a baseline across all tasks. We first validate
our approach on a publicly available dataset [6] and an extended version that we
produced. These datasets consist of 2D flow fields with a large number of sam-
ples, allowing for extensive evaluation. Then, we apply our method to a more
realistic real-world problem, that is, pathology identification in human upper
airways directly extracted from CT scans, where data availability is significantly
more limited and expensive. Additionally, this dataset consists of 3D flow fields,
increasing the complexity of the problem by introducing an additional spatial
dimension and geometric variability. This transition from a controlled, data-rich
2D setting to a real-world, data-scarce 3D scenario enables a comprehensive
assessment of the method’s adaptability and robustness.

5.1 Considered Methods

In this section, we describe the experiments we performed to evaluate our method.
We consider 4 parallel approaches to extract P, each differing in the clustering
and feature selection strategy. The first approach, HC' (Hand-Crafted features),
serves as a baseline method. It relies on expert-driven feature selection proposed
in [4], where CFD quantities are manually extracted based on prior domain
knowledge, without leveraging clustering. In CR+HC' (Clustering Regions with
Hand-Crafted features), we introduce our clustering method to identify regions,
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while retaining the same feature as in HC. This allows us to assess how clustering
influences performance without altering the feature set with respect to HC. A
more data-driven approach is adopted in FREE-CR+FC (Free Cluster Regions
with Full Clustering features), where both clustering regions and feature selec-
tion are determined without constraints using the C-FREFE strategy, described
in Section 4.3. In this case, we employ a PT for training and testing, as detailed
in Section 4.4. Finally, in PROP-CR+FC (Propagated Cluster Regions with
Full Clustering features), we enforce cluster consistency across simulations by
propagating clusters from a reference case using the C-PROP strategy. Unlike
FREE-CR+FC, this approach aligns clusters across different flow fields, allow-
ing for direct comparisons of their feature representations. Similar to HC' and
CR+HC, in this method we employ an MLP for training and testing. In the fol-
lowing paragraphs, we provide details on the dataset structure and the process
used to generate features for each experiment.

5.2 Datasets and Tasks

Airfoil Shape Identification (AirNACA) We consider the family of NACA
(National Advisory Committee for Aeronautics) four-digit airfoils. We aim to
train a regressor K that predicts the NACA code, and thus the airfoil shape,
directly from the CFD solution. The shape of a NACA airfoil is defined by a
four-digit code, which parametrizes the maximum camber as a percentage of the
chord ¢ (I digit, ranging from 0 to 9, where c¢ is the straight-line distance from
the airfoil leading to the trailing edge), its position along the chord in tenths of
¢ (IT digits, also from 0 to 9)), and the maximum thickness as a percentage of ¢
(last two digits, ranging from 5 to 50). Therefore, the identification task reduces
to a regression over 3 integer numbers.

The 2D computational domain {2 is centered on the airfoil and extends over
a radius of 500c, with unitary chord ¢, comprising an order of O(10%) discretized
cells. The angle of attack is set to a = 10°, with a freestream velocity of 30
m/s, and the RANS equations are used for turbulence modeling. The dataset
comprises 3025 different flow fields, generated by varying the NACA digits and
solving the corresponding CFD problems. The complete dataset of RANS sim-
ulations is publicly available on Zenodo (10.5281/zenodo.4638071) [6], and the
implementation of AirNACA is provided at 10.5281/zenodo.15637850.

Surface Defect Detection (AirDEF) The second dataset extends the NACA
airfoil dataset by introducing controlled geometric deformations to simulate man-
ufacturing defects, structural damage, or ice accretion. The simulation setup
remains identical to the previous case, maintaining the same computational do-
main, boundary conditions, and freestream parameters. We consider bumps,
cavities, and cut trailing edges, which are parameterized and encoded in a 3-
digit code. Each airfoil undergoes controlled deformations by introducing a set
of 18 different surface defects applied individually or in combination, for a total
of 3600 CFD flow fields. Bumps and cavities, as shown in Figure 4, are modeled
with Gaussian functions at the chord midpoint: a bump raises a section of the
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Fig. 3. Cumulative percentage distribution of Cell Volume and Number of Cells with
respect to the size of the cells. The dashed lines represent the percentage of volume we
lose with the filtering (red line), the percentage of memory we save (light blue line),
and the volume threshold (violet line).

airfoil, while a cavity creates a small indentation. The first two digits ([-2:2])
define the orientation (bump or cavity) and the intensity of the deformation,
which can reach up to the 4% of the chord c. The last digit ([0:2]) controls the
intensity of the cut at the trailing edge, which can raise up to the 5% of c.

Pathology Identification in Real Upper Airways (NosePAT) The third
dataset consists of LES simulations of airflows in human upper airways, focusing
on the identification of septal deviations and turbinate hypertrophies on real 3D
patient geometries obtained from CT scan segmentation. A septal deviation is a
condition where the nasal septum is deviated to one side, potentially obstructing
airflow and causing breathing difficulties. Turbinate hypertrophy refers to the
excessive enlargement of the nasal turbinates, leading to nasal congestion.

The dataset is derived from 7 CT scans of healthy patients provided by ASST
Santi Paolo e Carlo, a medical institution we are collaborating with. ENT (Ear,
Nose, and Throat) specialists manually introduced geometric deformations to
synthetically simulate nasal pathologies, varying their locations and severities to
create a diverse set of pathological cases. This process resulted in 309 synthetic
pathological geometries, on which we performed LES simulations of a steady-
state inspiration. The CFD simulations were performed using OpenFOAM, em-
ploying the LES technique under incompressible flow assumptions. By using real
CT scans for dataset generation, this approach captures anatomical variability
while preserving realism. In addition to the 309 synthetic geometries, we ex-
tracted 10 real pathological cases (5 septal deviations, 5 hypertrophies) from
CT scans to evaluate whether a model trained on synthetic data can accurately
detect real conditions (we refer to this experiment as NoseREAL).

The computational domain discretizes the upper airways’ internal volume,
enclosing the nostrils within a spherical boundary to simulate an open environ-
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ment. Each mesh consists of O(107) cells, each storing tens of fluid dynamic
quantities. Simulations run on 96 cores on a high-performance computing sys-
tem, requiring 160GB of RAM and tens of thousands of core-hours, producing
around 40GB of data each. Generating real human upper airway data demands
specialized expertise and substantial computational resources.

Figure 3 shows the cumulative distribution of mesh cells and total volume
by cell size. Most cells’ volume range between 2 x 10713 m3 and 5 x 10713 m3,
but they contribute minimally to the total volume, which is largely concentrated
(80%) in cells around 3 x 1071 m?. To reduce computational costs, after LES
simulations, we filter out cells with V' < 3x 1072 m3 (violet dashed line in Figure
3), reducing data by 91% while retaining 95% of the total volume. The removed
cells, located near walls (on a millimeter scale), are essential for CFD accuracy
but contain little information related to pathology effects, which manifest on
larger scales. This filtering is purely for computational efficiency, and including
these cells would only add information, potentially improving performance.

5.3 Feature Extraction

For the HC' experiment, we compute the same features from the CFD flow fields
as in [4]. In AirNACA and AirDEF, this involves computing region-averaged
velocity magnitude and pressure on expert-defined regions along three verti-
cal lines perpendicular to the airfoil chord (left-hand side of Figure 4) at © =
—c¢, = le¢, and © = 10c. Each segment contains 8 regions symmetrically
distributed around y = 0, with boundaries defined by the y-coordinates at
[-500,—10,—-1,-0.1,0,0.1, 1, 10, 500]c. Each regional average is weighted over
the cells’ area to account for their uneven dimension. In NosePAT, we define 6
sections with the first and last one marking the start and end of the olfactory
region (right-hand side of Figure 4), while the remaining 4 are evenly spaced
between them. On these, we compute the regional average of the velocity mag-
nitude |u| separately for the left and right semi-sections. By doing that, each
LES simulation is compressed to 12 features that are used as inputs of K.

For CR+HC, we apply C-PROP clustering as described in Section 4.3 using
as reference a NACA0012 in AirNACA and AirDEF, and one of the 7 healthy
patients used to generate the training set as reference for propagating clusters
in NosePAT. Within clusters, we compute the same regional averages as for HC,
mentioned in the previous paragraph.

For FREE-CR+FC and PROP-CR+FC, we fully apply our clustering
method as described in Section 4, using for PROP-CR+FC' the same references
as for CR+HC.

5.4 Models Training and Evaluation

As in [4], we stick to training simple MLPs for HC, CR+HC and for PROP-
CR+FC, while we adopt a Point Transformer model for FREE-CR+FC. We
define models with a comparable number of parameters (around 50K parameters
in AirNACA and AirDEF, and 30K for NosePAT) to evaluate the performance
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Fig. 4. Handcrafted regions in AirNACA and AirDEF (left) and NosePAT (right).

when considering architectures having similar learning capacities. In AirNACA
and AirDEF, the dataset is standardized and shuffled before being split into five
folds for cross-validation. In each fold, one subset is used for testing, while the
rest is split into training and validation (80% and 20%). We train our models
using the mean squared error (MSE) as loss function. As these are regression
tasks and the predicted values are not necessarily integers, they are rounded to
obtain the final output code. We report the averaged results across the five folds,
considering the mean absolute error (MAE) over each estimated code and the
classification accuracy, which represents the percentage of correctly predicted
codes when rounding predictions to the nearest integer.

In NosePAT, we evaluate the performance of our models with a Leave-One-
Patient-Out Cross-Validation (LOPOCYV): in this approach, all the synthetic
samples derived from each of the 7 healthy patients are iteratively excluded
from the training set and used as test cases, ensuring that models are evaluated
on anatomies that were never seen during training. For each iteration, the re-
maining patients’ data are split into 85% for training and 15% for validation.
Eventually we average the results of the test over all the excluded patients.
Unlike the previous regression tasks, this problem is now framed as a binary
classification task, and models are trained using categorical cross-entropy as the
loss function. The primary evaluation metric is classification accuracy. In the
NoseREAL experiment, we train our models on the complete synthetic dataset
and then test on the set of real pathological samples, assessing the performance
on never-seen-before anatomies and pathological forms.

5.5 Experimental Results

The results of our experiments are reported in Table 1 and 2. Table 1 shows
the test accuracy of the inference models trained using features extracted with
methods described in Section 5.1. We stress that in regression tasks (AirNACA
and AirDEF) we round the results to the nearest integer and evaluate the ac-
curacy. Alongside the accuracy of the LOPOCYV for the NosePAT task, we also
report the scores of the classifier on the set of real pathological patients (Nose-
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Test Accuracy Score

AirNACA  AirDEF  NosePAT | NoseREAL
HC 84.6% 65.6% 88.8% 8/10
CR+HC 85.0% 83.2% 71.5% 6/10
PROP-CR+FC 86.5% 88.7% 86.8% 8/10
FREE-CR+FC 85.1% 84.3% 77.5% 7/10

Table 1. Test accuracy of HC, CR+HC, PROP-CR+FC and FREE-CR+FC. On the
right-hand side of the table, we report the score on the set of real pathological patients.

Mean Absolute Error (MAE) and Standard Deviation (std)
AirNACA AirDEF

I digit | II digit | III digit | 1 digit | II digit | III digit
MAE +std| MAE +std| MAE £std| MAE +std| MAE +std| MAE +std
HC 0.17 0.23]0.30 0.24|0.17 0.26|0.35 0.25|0.33 0.18]0.11 0.15
CR+HC 0.16 0.20]0.28 0.21|0.16 0.23|0.22 0.21|0.21 0.17]|0.03 0.12
PROP-CR+FC 0.14 0.19|0.24 0.21{0.15 0.24|0.18 0.19({0.19 0.18|0.01 0.11
FREE-CR+FC 0.14 0.21|0.26 0.20|0.16 0.19]0.21 0.22|0.21 0.18]0.02 0.09

Range [0:9] [0:9] [5:50] [-2:2] [-2:2] [0:2]

Table 2. Mean Absolute Error (MAE) and standard deviation (std) for each digit of
the regression code in AirNACA and AirDEF tasks.

REAL). Table 2 contains the MAEs and the standard deviations over the test
set predictions for each individual digit that composes the regression code.

Table 1, shows that the clustering is overall beneficial in almost every task.
For both AirNACA and AirDEF, the clustering progressively improves the clas-
sification accuracy of HC, both when considering clustering regions in CR+HC,
and when using all the in-cluster features (PROP-CR+FC). We argue this im-
provement is due to the use of physics-based identified cluster regions and the
more informative features we extract from those regions, which also contain ge-
ometric information that is crucial for identifying defects. This is particularly
evident in the case of AirDEF, where HC' alone achieves the lowest performance.
In HC, indeed, we extract information from regions that are distant from the air-
foil, making it less effective in capturing the local aerodynamic effects of defects.
Although FREE-CR-+FC outperforms HC in both AirNACA and AirDEF, its
accuracy remains lower than that of PROP-CR+FC. This result is consistent
with the increased difficulty of the inference problem in FREE-CR+FC, where
cluster ordering is not constrained.

In NosePAT, we report the test accuracy of the LOPOCYV described in Sec-
tion 5.4. The trend in CR+HC, PROP-CR+FC and FREE-CR+FC is con-
firmed, demonstrating that including in the training set more in-cluster features
enhances the classification performance. Also, in the case FREE-CR+FC, the ac-
curacy reduces with respect to PROP-CR+FC, reflecting the higher complexity
of the problem. However, in NosePAT, HC achieves the best test performance,
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which is not surprising as the 6 transversal sections we use in HC to extract
features are designed ad-hoc for this particular task, and two of these align with
pathological deformations, directly capturing critical information.

Table 1 shows also the scores of the classifier on the set of real pathological
patients, which represent a significant real-world application. In this experiment,
we train a classifier on CFD data from synthetically pathological geometries
and then test it on actual pathological conditions. Despite the relatively small
dimension of the dataset, the results demonstrate that we can effectively identify
real pathologies on unseen patients using solely CFD data. PROP-CR+FC, in
fact, achieves an 8/10 score with a trend between CR+HC, FC+PROP-C, and
FREE-CR+FC similar to AirNACA and AirDEF.

From Table 2, we observe that the IT digit in AirNACA consistently exhibits
the highest MAE across all experiments, indicating it is the most challenging
parameter to predict. Conversely, the third digit, representing airfoil thickness,
is well predicted, showing the lowest MAE relative to its range. Similarly, in
AirDEF, the third digit also achieves the lowest MAE, while the first two digits
yield comparable errors. Here, the last digit corresponds to a trailing-edge cut,
whose high predictability is likely due to its distinct aerodynamic impact, as it
generates a structured wake effectively captured by physics-based clustering.

Overall, results from AirNACA and AirDEF confirm that our method im-
proves inference performance on aerospace datasets while maintaining consis-
tency across experiments. NosePAT demonstrates that our method can be ap-
plied to a complex real-world task such as pathology identification, even when
relying on limited CFD data.

5.6 Computational Considerations

Our method introduces additional computational overhead due to the clustering
step and the use of more advanced learning architectures with respect to the
baseline approach proposed in [4]. Clustering was performed on the Leonardo
Data Centric General Purpose (DCGP) partition of the CINECA HPC system,
using 3 compute nodes each equipped with 2x Intel Xeon Platinum 8480+ CPUs,
with 56 cores per CPU. In our implementation, we run one clustering process
per core in parallel. We apply BGMM to the matrix C € R™*¥ | where n is the
number of CFD cells. For the 2D airfoil simulations (AirNACA and AirDEF
tasks), where n ~ 300K, the BGMM requires around 10-12 minutes per sample.
In the NosePAT dataset, we filtered out the smallest cells, removing 91% of the
data but retaining 95% of the total volume as described in Section 5.2, resulting
in roughly 1.5-1.7 million cells per sample. Clustering on this reduced set takes
about 1.5 hours per sample (consistent with the linear scaling of the BGMM
with n), and this cost remains manageable and predictable. This overhead is
absent in the HC baseline, which uses manually defined regions. However, in
practice, defining such regions, especially in anatomically complex domains like
human upper airways, requires expert input and manual inspection, introducing
a non-negligible cost in human time and effort. Our method removes this depen-
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dency by automatically identifying meaningful flow regions in a data-driven and
physics-informed manner.

In terms of inference time, the Point Transformer model used in the FREE-
CR+FC setting is more computationally demanding than the MLPs we em-
ployed in HC, HC+FC, and PROP-CR+FC. While all architectures are con-
strained to have a similar number of parameters within the same task, the Point
Transformer involves more complex operations, such as attention over sets of
clusters, which lead to longer training times. In our experiments, training the
Point Transformer on standard hardware with GPU acceleration takes the order
of tens of minutes, whereas the MLPs typically converge in a matter of minutes.
We consider this additional training overhead acceptable, given the improved
flexibility and generalization achieved by the set-learning architecture.

In summary, although our method introduces additional computational costs
with respect to the handcrafted baseline, it provides a scalable and general so-
lution that eliminates manual feature engineering and enables consistent appli-
cation across diverse CFD domains.

6 Conclusion

In this work, we proposed a physics-based clustering framework to extract mean-
ingful flow structures from CFD data, enhancing the inference of non-computable
quantities in aerodynamic and biomedical applications. By replacing expert-
driven feature selection with a clustering strategy based on governing equations,
our method takes a step toward end-to-end approaches. We validated our method
on aerospace datasets for airfoil shape and defect identification and extended
its application to pathology classification in human upper airways. The results
demonstrated improved inference performance over traditional handcrafted fea-
tures. Moreover, our approach proved robust across different datasets, highlight-
ing its portability and scalability in diverse CFD scenarios. In future works, we
will explore more end-to-end methods to directly extract relevant information
and gain deeper insights into CFD data, minimizing expert-driven processing.

Reproducibility We provide the implementation of the AirNACA task presented
in this work, based on the public dataset available at 10.5281/zenodo.4638071. The
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