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Abstract. Refuse derived fuels (RDF), produced from municipal and
industrial waste, provide an alternative to fossil fuels like coal or lignite
in the cement production, thereby reducing the significant CO2 emissions
typically associated with cement production. The composition of RDF
is often unknown, which limits the substitution rate, since otherwise the
risk of impacting cement quality would increase. In this contribution,
both near-infrared spectroscopy (NIRS) and RGB images were used to
analyze RDF in an at-line measurement on a conveyor belt setup. The
goal was to classify individual RDF particles in one of six fractions (pa-
per, foils, 3D plastic, rubber, foams, textiles), since the fractions differ in
combustion and flight behavior and therefore influence cement quality.
For this, training, validation, and test data were obtained from 11,526
manually sorted RDF particles, sampled from various German cement
plants and processed using an at-line conveyor belt setup. The NIRS data
were processed using a small convolutional neural network (CNN) to pro-
vide the respective fraction, yielding an accuracy of 99.5 %. The images
were processed with different CNNs with transfer learning, yielding an
accuracy of 96.7 %. In a second phase, both NIRS and image predictions
were combined by soft voting, yielding an accuracy of 99.7 %. This val-
idates the method under lab conditions and lays the groundwork for an
application in a cement plant.
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1 Introduction

1.1 Cement production and Refuse derived fuels

Cement is the most used building material worldwide [5]. Its main component,
cement clinker, is produced from limestone, C'aCOj3. Clinker consists of a mix-
ture of C'aO minerals, which give cement its characteristic properties. From the
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chemical formulas of clinker formation it is obvious that producing clinker re-
quires the removal of carbon dioxide from the limestone. This happens in the
calcination reaction, shown in Eq. .

CaCOs(s) — CaO(s) + COy(g), Ah, = +1780k.J /kg (1)

The reaction enthalpy of 41780 kJ/kg indicates that the reaction is highly en-
dothermic. Consequently, the calcination reaction occurs at 900 °C [2]. Combined
with other necessary reactions and heat losses, the mean specific thermal energy
demand in the German cement production is 2807 MJ per 1 ton of cement [2§].
The required heat is provided by direct combustion in a horizontal rotary kiln
(diameter 3-6 m, length up to 100 m). The raw limestone (ground into a fine
meal) is conveyed by gravity due to a kiln incline of approx. 5 % and a kiln
rotation of ca. 1-4 rpm [I4]. The fuels are injected together with the combustion
air into the kiln at the main burner in counter flow to the raw limestone. The
combustion of the fuels provides temperatures of 1450 °C near the flame [I4].

The main emission of the cement production is COs, both from the fuels and
the calcination reaction. An average German cement plant emits 586 kg of CO2
per ton of cement [27]. While the emissions of the calcination are inevitable,
the emissions of the fuel are directly influenced by the type of fuel used. Tradi-
tionally, fossil fuels like lignite and pulverized coal are combusted. This comes
with several disadvantages: First, the fuels are expensive, finite and not locally
available. Second, fossil fuels increase the carbon dioxide emissions of the ce-
ment production, which also, in countries with C'O5 certificates or tax further
increase the fuel price. Third, the higher COy emissions result in the acceler-
ation of anthropogenic climate change. It is estimated that cement production
is responsible for around 8 % of worldwide CO5 emissions [I3]. 60 % of these
emission originate from the calcination reaction itself, but the remaining 40 %
originate from the energy supply, mainly from the fuels [2§].

Alternative fuels can help to mitigate these disadvantages. These fuels can
be used tires, sewage sludge or animal bone meal, but the biggest proportion
are refuse derived fuels (RDF), made from industrial and municipal waste. RDF
are produced from waste in several steps, mainly involving shredding to sizes
of few centimeters and removal of metals. RDF are not only cheap, in some
cases they have a negative price (considered as waste incineration), which helps
stabilizing production prices. In terms of C'O, emissions certificates, RDF are
also cheaper, since they 1) have a better carbon to hydrogen ratio and 2) contain
a certain amount of biodegradable waste, which is considered COs neutral. In
total, RDF produces only around 50 g CO5 per provided MJ energy [18] (lignite:
111 gCO2/MJ [I], coal: 94 gCO2/MJ [II]). Since industrial and municipal
waste are generated at all urban and industrial areas, RDF do not need long
and expensive routes of transport. The substitution ratios of alternative fuels
in cement production differ worldwide: Austria (79 % [22]) and Germany (73 %
[28]) are in pole position, the EU average is 46 %, while the United States only
use 15 % and Asian countries like China, South Korea and Japan use 11 %
[22]. In India, the substitution ratio is minimal, with a percentage of only 3%



Near-infrared and Image Classification of Refuse Derived Fuels 3

[22]. Since the waste input streams differ over time and location, so does the
RDF composition. The composition can be divided in six fractions: Paper and
cardboard, foils, three-dimensional plastics, foams, textiles, and rubber. These
fractions differ both in flight and combustion behavior and are therefore not
equally suitable for the combustion in a cement plant. 3D plastics, for example,
often hit the clinker bed not completely combusted, which produces reducing
conditions in the clinker bed and therefore lower cement quality [1].

1.2 Near-infrared spectroscopy

Near-infrared spectroscopy (NIRS) is a method to determine the structure of
molecules. It is a type of vibrational spectroscopy in which molecules are exposed
to electromagnetic radiation. Depending on their structure, different vibrational
modes (e.g., stretching, bending, or twisting) are possible. For energy in the near-
infrared (NIR) wavelength range to be absorbed, a molecule must exhibit a dipole
moment [I6/23]. This makes NIRS particularly useful for detecting molecular
bonds such as C=0, O-H, and C-H.

A typical NIRS setup consists of two main components. First, a light source
emitting radiation in the NIRd wavelength range of 800-2500 nm, such as halo-
gen lamps, LEDs, or lasers. The light interacts with a sample and is reflected
from the sample. Second, the reflected light is detected by an NIRS detector,
such as a silicon photodiode, photomultiplier tube, or an indium gallium ar-
senide (InGaAs) sensor, which differ in their detection wavelength ranges. The
change in light intensity due to light absorption in the sample (measured as di-
mensionless absorbance) is then plotted as a function of wavelength, resulting in
a characteristic spectrum [16123].

Unlike mid-infrared (MIR) spectroscopy, where fundamental molecular vibra-
tions are dominant, NIRS spectra primarily consist of overtones and combination
bands. Overtones are harmonic vibrations that occur at integer multiples of the
fundamental vibrational frequency [16]. In NIRS, the most prominent overtones
originate from C-H, O-H, and N-H bonds, making the technique particularly
sensitive to organic compounds and water.

For molecules with more than two atoms (N > 2), the number of vibrational
degrees of freedom is given by 3N — 6 [16]. As a result, NIR spectra can be
complex, with overlapping absorption bands. While characteristic peaks can be
associated with specific molecular bonds, manual classification based solely on
NIR spectra is challenging. Therefore, statistical and machine learning methods
are essential for the automated classification and analysis of NIRS data.

1.3 Main Contributions

The literature on classification and evaluation of RDF in the cement process is
limited. The approach of fuel classification through proximate analysis and hier-
archical learning [7] still relies on slow and labor-intensive laboratory analyses.
Several methods for RDF classification using NIRS exist, but they lack proper
validation: In [29], a classifier applied to pure substances (e.g., PET) was used
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to predict RDF heating values. Since the fuel was not manually sorted, true
labels were unavailable, meaning the accuracy and effectiveness of the classifier
in predicting RDF fractions could not be verified. In Sevcik [21I], FT-NIRS was
combined with a Support Vector Machine, but only a small number of artificial
model fuel samples were used (2-8 per fraction). Krdmer and Flamme [I2] report
a commercial product for real-time RDF heating value analysis, but neither its
accuracy nor the underlying algorithms are specified. For RDF classification us-
ing RGB images, an initial approach is proposed in Peddireddy et al. [I7], but
it still depends on manual sorting, essentially shifting the sorting process from
a conveyor belt to a desk-based workstation. Additionally, a study from Tahir
et al. [24] presents a method to detect and classify waste based on video record-
ings taken after processing municipal solid waste (MSW) through a mechanical
sorting line. The method demonstrates an accuracy of 0.70. In Fischer et al. [9],
a similar approach for RDF classification based on images showed an accuracy
of 0.71. A combination of image and NIRS classification for RDF classification
is not yet known.

2 Experiments

2.1 Experimental Setup

The experimental setup is designed as either an offline or at-line method to
classify individual RDF particles and hence determine the composition of a fuel.
The setup is constructed around a conveyor belt. An image is shown in Fig.
A camera, Basler a2A1920-160ucPRO with 2.3 MP and 168 fps, is mounted on
top of the conveyor belt, such that the recorded images are not distorted by an
angle. Laterally, both an infrared light source, a tungsten halogen lamp, and an
near-infrared detector, Viavi 1700 ES, are mounted at an angle to the conveyor
belt. The NIRS detector is an indium gallium arsenide detector with measurable
wavelength in the range of 908 - 1676 nm. The measurement time is 9.2 ms and
the wavelength resolution is 6.19 nm. To provide rich meta data, an environment
sensor 2JCIE-BUO1 from OMRON is used. It can be connected by USB 3.0 and
measures temperature, humidity, illuminance, barometric pressure, sound noise,
3-axis acceleration, and TVOC (Total volatile organic compounds). Accuracies
are given in [I5].

The particles are fed by vibration over a 8 mm sieve to the conveyor belt. This
ensures both no fines and dust on the conveyor belt, and separation of individual
particles, such that they do not overlap and can clearly be distinguished from an-
other. A measurement is triggered by a color change of central pixels against an
average background of the black conveyor belt. For each measurement, one im-
age, one NIR spectrum and one set of meta-data are stored into a SQL database.
Each particle is assigned an unique ID (UUID4) and each experiment is grouped
into a batch of particles. For the database creation, RDF mixtures from different
cement plants were beforehand manually sorted into batches of the six fractions.
The manual sorting was executed due to a pre-determined sorting catalog which
defines optic, material and haptic of the particles. The presorted RDF particles
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Fig. 1: Experimental setup consisting of camera (middle up) over a conveyor belt
(middle) and a NIRS (left) with a halogen lamp (right).

were then fed to the experimental setup, hence, the batch labels could later be
used as labels for classification.



6 J. Fischer et al.

2.2 Experimental dataset

In Table |1} the numbers of particles per fraction in the database are listed,
resulting in a total number of 11,526. Since the fractions in RDF mixtures do
not occur equally, it follows that the numbers per fraction in the database are
not evenly distributed either. Rubber for example is rarer than other fractions,
resulting only in 1066 samples, while textiles with 2580 samples are slightly
oversampled. In Fig. 2] example images for each fraction are shown. Here, some
problematic characteristics of RDF for quality control can be seen: RDF particles
differ in size, tend to stick together and sometimes are black or transparent. Also,
the particles are not always perfectly centered in the image. In Fig. [3] example
NIR spectra for each fraction are depicted, showing typical behavior: While both
plastic fractions, 3D plastics and foils, have distinct peaks around 1200 nm and
1450 nm, the fractions paper and cardboard (PC) and textiles show one broad
peak from 1450 nm to 1650 nm. Rubber and foams show only smaller peaks.
Especially for rubber, this is the case due to the dominant black color of the
particles, which leads to an higher NIRS absorbance regardless of the material.

The dataset is published at https://doi.org/10.5281/zenodo. 14859683
[8]. For all following classification tasks, 10 % of each fraction were used as each
validation and test data, leaving 80 % for the training data. In a first step,
image and NIRS classification were executed separately, while in a second step,
the results were combined. The implementation of neural networks was realized
with TensorFlow [26]. The training was executed on a NVIDIA GeForce RTX
4070 Ti Super GPU (VRAM = 16 GB).


https://doi.org/10.5281/zenodo.14859683

Near-infrared and Image Classification of Refuse Derived Fuels 7

Table 1: Number of samples per fraction.

Fraction Number
Foils 2188

3D plastics 1321
Paper and Cardboard 2442
Rubber 1066
Foams 1929
Textiles 2580
Total 11526

Fig.2: Examples of RDF images per fraction: a 3D plastic, b foils, ¢ rubber, d
paper and cardboard, e foams, f textiles.
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Fig. 3: Examples of NIR spectra per fraction.
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2.3 Image classification

The images of the training data set were used together with the labels, inherited
from the batch identities, to classify the samples in one of the six different frac-
tions. For this, different convolutional neural networks (CNNs) were compared,
namely Xception [4], ResNet-50 [10] and EfficientNets B0-B5 [25]. An overview
is given in Table [2|

Additionally to this CNNs, from here on called "base models", some other
layers were added, such that the data flow is as follows:

1. Input layer with size according to base model between 224x224x3 and 456x456x3

pixel.
2. Data augmentation layer with random flip, random translation, random ro-
tation, random zoom, random contrast and random brightness.
. Normalization layer.
. Base model CNN.
Global average pooling layer.
. Dropout Layer (0.5).
Batch normalization layer.
. Dense connected layer with 128 nodes.
. Output layer with softmax activation.

© 00 DU W

To increase training speed, all CNNs were trained with transfer learning, us-
ing the weights from the ImageNet dataset [19]. In transfer learning, the training
is split into two training phases. The first phase is used to only train the dense
connected layer at the end of the network with a high learning rate (o = le™3).
In the second step, the whole network is trained, but with a smaller learning
rate (« = le~®). In this publication, both phases lasted 50 epochs. The opti-
mizer used is Adam with categorical crossentropy as loss function. The batch size
was selected as 16, except for EfficientNetB5 as base model, where the batch size
needed to be reduced to 8 due to a lack of more VRAM. Bigger EfficientNets
therefore were not tested.

2.4 NIRS classification

For the classification based on NIRS measurement, the feature is the absorbance
over the wavelength after some preprocessing (125 data points per sample),
which is described in the following. After being loaded from the data base, a
Savitzky-Golay filter [20] is applied to each spectrum. This is a common prac-
tice in chemometrics and it serves two purposes: First, smoothing of the data,
reducing the measurement noise and second, a robust way to find a smooth
derivative. Derivatives can help increase classification results since mostly peaks
of absorbance are used to determine the identity of a sample. The filter is a finite
filter with kernel length Kj.,, applied to the spectrum values = at position a by
multiplying with kernel values K., as shown in Eq. .
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Table 2: Used CNN based models with trainable parameters (including upstream
and downstream), input size, ImageNet Topl and Top3 accuracies.

Trainable Input ImageNet ImageNet
Parameters size Acc. Topl Acc. Top3

Base model Source

BO 4,219,433 224x224x3 0.771 0.933 [25]
B1 6,745,101 240x240x3 0.791 0.944 [25]
B2 7,955,327 260x260x3 0.801 0.949 [25]
B3 10,987,189  300x300x3 0.816 0.957 [25]
B4 17,911,269  380x380x3 0.829 0.964 [25]
B5 28,784,765  456x456x3 0.836 0.967 [25]
ResNet50 23,858,950  224x224x3 0.7715 0.933 [10]
Xception 21,132,718  229x229x3 0.79 0.945 [4]
Kien

To = z_; K,zp g (2)

K, depend on both K., and the derivative d. Also, d = 0 is possible, which
only applies a smoothing function to the measurement values. In Fig. |4f (a), the
example spectra from Fig. 3] are shown after the application of the Savitzky-
Golay filter (Kjen, = 15, d = 0). Since spectral data are heavily dependent on
the lighting situation, the default mean value is not equal, such that a nor-
malization is necessary to make NIRS measurements comparable and useful for
classification. In this contribution, normalization is done with the standard nor-
mal variate (SNV). With SNV, the spectrum is normalized as shown in Eq. .
First, the mean value of the spectrum Z is subtracted. This leads to a new mean
of 0. Second, the difference is divided by the standard deviation s. In this way,
the variance o is equal 1.

r—x

TSNy = (3)

The result is the feature used for the NIRS classification with mean of 0 and
variance equal 1. In Fig. [4] (b), the spectra from Fig. [3| with SNV normalization
are shown. The labels are, analogous to the image classification, derived from
the batch identities. In Fig. [5 the structure of the used neural network for
NIRS classification is shown. In the upper half, two blocks of 1D convolutional
layers combined with batch normalization and maximum pooling process the
spectrum, similar to [3]. An 1D convolution is, like the Savitzky-Golay filter, a
finite filter, but with learned kernel values K. In this neural network, the 1D
convolutional layers apply 64 filters each with a kernel size of 5. The second
half consists of three dense connected layers with 128, 32 and 6 nodes. The last
node activates with the softmax function, while all other layers activate with
ReLu. In between of the blocks, Gaussian noise is added as data augmentation
to increase robustness against measurement noise. Additionally, a dropout of 0.5
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Fig. 4: Data preprocessing of NIRS data example from Fig. [3| Left: Savitzky-
Golay filter with Kj.,, = 15 and d = 0 applied to example spectra. Right:
Standard normal variate applied to results from left.
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Fig. 5: Neural network structure for NIRS classification. The first half consists
of two time, 1D convolutional layer, batch normalization and and maximum
pooling. The second half consist of dense connected layers. During training,
Gaussian noise added in between.

is used during training to prevent overfitting. The structure adds up to 255270
trainable parameters.

2.5 Combined image and NIRS classification

Combining predictions from different classifiers can benefit the accuracy of the
prediction. For combining the predictions ¢! of sample i and classifier j, different
options are possible. In hard voting, the class with most predictions votes cZ is
voted. When using only two classifiers, this would either result in an unanimous
vote or a tie, which cannot increase the accuracy. Another form of voting is soft
voting [31], where the prediction probabilities p] are used as shown in Eq. .

C
pi= Y w;p] (4)
J=1
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C is the number of classifiers and w; are weights. In this contribution, both the
unweighted case (w;=1,2 = 1) as well as the weighted case are tested. For the
weighted case, the weight of the classifiers are their accuracy on the test data.
In majority voting, the prediction with the highest probability is used, as shown
in Eq. .

c; = argmaac(p%, ,pf) (5)

3 Results and Discussion

3.1 Image classification

In Fig. |§| (a), the accuracies of the image classification with different base models
are shown over the number of trainable parameters of the whole network with all
upstream and downstream layers. First, it can easily be seen that both Xception
and ResNet, although having a high number of trainable parameters, do not
perform better than some smaller base models tested (EfficientNet B0-B3). For
the EfficientNet base models, a linear correlation between trainable parameters
and accuracy can be stated. In Fig. |§| (b), the accuracies are plotted over the
corresponding training time. Surprisingly here, ResNet is the base model with
the lowest training time, but differences to Xception an EfficientNets B0-B3
are small. For the EfficientNets models, there is again a quasi linear correlation
between accuracy and training time as seen between training parameters and
training time. Highest accuracies can be observed with base models Efficient-
Net B4 (accuracy=0.967) and B5 (accuracy=0.979). Although B5 provides the
highest accuracy, training time is nearly double (7.1 h instead of 4.8 h) of B4,
and can only barely be executed on the employed hardware. Hence, EfficientNet
B4 is selected as base model for the image classification part. In Table [3] the
confusion matrix for the image classification is listed. Foils and 3D plastics are
often confused due to their optical similarity. Paper/cardboard has the lowest
precision of 93.85 %, which results in mispredicted samples for all fractions ex-
cept rubber. This fraction has a recall of 100 %, meaning only rubber samples
were predicted as rubber. To measure the effect of transfer learning, the train-
ing with EfficientNet B4 was again executed with random initial weights. The
training plan remained the same (50 epochs a = le™3, 50 epochs a = le™9),
except that in the first phase also the whole model was trained. The training
took 7.3 h, which is 1.5 times the required training time for the EfficientNet B4
using transfer learning. Although the accuracy on training and test data was
high after the training, the accuracy on the test data was just 0.27, only slightly
better than random. This shows the benefits of the transfer learning technique.
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Fig. 6: Accuracies on the test data set of Xception, ResNet 50 and Efficientnet B0-
B5 over (a) the number of trainable parameters (left) and (b) over the required
training time in hours.

Table 3: Confusion Matrix for image classification.

Predictions

3D Plastics Foils Rubber Paper Foams Textiles
3D Plastics 0.9621 0.0303 0.0 0.0076 0.0 0.0

2 Foils 0.0138 0.9725 0.0 0.0092 0.0 0.0046
Té Rubber 0.0094 0.0 0.9623 0.0 0.0189 0.0094
S Paper 0.0164 0.0164 0.0 0.9385 0.0205 0.0082
= Foams 0.0 0.0052 0.0 0.0052 0.9896 0.0
Textiles 0.0 0.0 0.0 0.0 0.0233 0.9767

3.2 NIRS classification

The accuracies for NIRS classification with derivatives d = 0,1, 2 are 0.995, 0.724
and 0.763, respectively. Surprisingly, the results for d = 0 with an accuracy of
0.995 are the highest. This might be due to the convolutional layers in the used
neural network, which, in combination with the smoothing Savitzky-Golay fil-
ter and SNV normalization, extract the required information to distinguish the
different fractions. When using d = 0, not only peaks in the spectra are used
for the prediction, but the whole shape and absolute values of the curve. Both
differ drastically between two groups: While the 3D plastics and foil fractions
show narrow, sharp peaks, the other fractions show broad peaks over many wave-
lengths (see Fig. . In Table {4} the confusion matrix for the NIRS classification
is shown. For the fractions foils, 3D plastic and textiles the precisions are 100 %
and for textiles also the recall is 100 %. Between 3D plastic and foils no mix-up
occurred.

In Fig. [7 the feature importance by permutation is shown. For this, the
feature was permuted 100 times for each wavelength with a kernel size of 5 (equal
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Table 4: Confusion Matrix for NIRS classification.

Predictions
3D Plastics Foils Rubber Paper Foams Textiles

3D Plastics 1.00 0.0 0.0 0.0 0.0 0.0
Foils 0.0 1.00 0.0 0.0 0.0 0.0

>

'jé Rubber 0.0189 0.0189 0.9623 0.0 0.0 0.0

< Paper 0.0041 0.0 0.0 0.9959 0.0 0.0

~  Foams 0.0 0.0 0.0 0.00520.9948 0.0
Textiles 0.0 0.0 0.0 0.0 0.0 1.00

0.121

0.10

0.081

0.061

0.04 -

0.02

Permutation Importance (A Accuracy)

0.00+

900 1000 1100 1200 1300 1400 1500 1600 1700
Wavelength [nm]

Fig. 7: Feature importance by permutation.

to the 1D Conv. layer kernel). This means, for each wavelength, the two adjacent
values above and below were also permuted. The highest feature importance
is observed at wavelength 1650 nm, which represents the rising absorbance at
the upper end of the spectra. This is likely due to an olefinic C-H overtone at
1680 nm or an aromatic C-H overtone at 1685 nm [23]. Another region of high
feature importance is the region around 1500 nm, which is probably due to the
broad peaks of the textile and paper / cardboard fractions corresponding to O-H
overtones [23] from cellulose [6]. The peaks at 1400 nm and 1200 nm correspond
to the peaks of foils and 3D plastics (see Fig. [3), and their C-H (1200 nm) and
O-H groups (1400 nm) [23]. The peak at 1130 nm may be the third overtone of
C-H groups [30], for example seen in a small absorbance peak of textile particles.
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Table 5: Confusion Matrix for combined classification.

Predictions

3D Plastics Foils Rubber Paper Foams Textiles
3D Plastics  1.0000 0.0 0.0 0.0 0.0 0.0

»  Foils 0.0 1.0000 0.0 0.0 0.0 0.0
TE' Rubber 0.0094 0.0189 0.9717 0.0 0.0 0.0
> Paper 0.0 0.0 0.0 1.0000 0.0 0.0
= Foams 0.0 0.0 0.0 0.0 1.0000 0.0
Textiles 0.0 0.0 0.0 0.0 0.0  1.0000

3.3 Combined image and NIRS classification

The accuracies for unweighted soft voting, weighted soft voting and majority vot-
ing are listed were 0.997, 0.996 and 0.997. The differences between these methods
are only small, but the unweighted soft voting combination and majority voting
provided both the best results with an accuracy of 0.997.

In Table 5] the confusion matrix for the combined classification with un-
weighted soft voting is shown. Only the predictions for some rubber samples are
incorrectly predicted as 3D plastic or foils, but all other predictions are correct.
Majority voting showed the same results with the same samples being predicted
incorrectly. The remaining incorrectly predicted samples are three rubber parti-
cles, one black particle and two off-centered particles, shown in Fig. [§ All three
samples were also falsely predicted with NIRS, while being predicted correctly
with images. All of the falsely predicted samples of the image classification were
predicted correctly with NIRS and vice versa. Each sample was therefore at least
once predicted correctly.

Another approach, which can increase the robustness of the method is the
application of a threshold ¢: Only predictions with a p] > ¢ are admitted for the
final prediction, otherwise the prediction is either only based on the other method
or the sample has to be rejected in order not to compromise the statement about
the composition. For ¢t = 0.9, 96.2 % of all predictions from the EfficientNet B4
and 99.9 % of all predictions from the NIRS CNN were above the threshold.

In comparison to reported accuracies in literature (around 0.7, see section
, the accuracies for both image and NIRS classification separate and com-
bined are higher. In comparison to these approaches, this contribution uses a
bigger and manual labeled data set.
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Fig. 8: Samples incorrectly predicted with unweighted soft voting.

4 Conclusion

Two different measurement techniques were used to characterize refuse derived
fuels (RDF), RGB images and near-infrared spectroscopy (NIRS). A dataset
with 11526 samples was created with samples from different cement plants on
an lab set-up. The dataset was then used to classify RDF in one of six frac-
tions: paper, foils, 3D plastic, rubber, foams, textiles. In a first step, image and
NIRS classification were considered separately. For image classification, trans-
fer learning for different CNNs with pre-trained ImageNet weights was tested.
The highest accuracy in proportions to training effort and trainable parameters
was achieved with EfficientNets. For use in the combined predictor, EfficientNet
B4, which showed an accuracy of 0.967 on the test data, was selected. For the
NIRS classification, a self-designed CNN with 1D convolutional layers was used.
Surprisingly, the CNN showed better results when using the spectrum directly
instead of a derivative of the spectrum. This predictor showed an accuracy of
0.995 on test data. To combine both methods in a second step, soft voting and
majority voting were tested, which increased the accuracy to 0.997. With this,
the combined technique is lab validated. Nevertheless, a validation in a cement
plant is the next required step. For example, influences of the harsh environment
in a cement plant (vibration, dust, humidity) need to be examined.
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