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Abstract. The compatibility of Federated Learning (FL) models with
unseen Out-Of-Federation (OOF) centers remains a critical yet under-
explored challenge, particularly when dealing with heterogeneous data.
To address this gap, this study proposes a data-driven approach to as-
sess the feasibility of applying an FL model to OOF centers. The case
study explored is the prediction of diabetic retinopathy from multiple
real-world, highly heterogeneous electronic health records. An FL XG-
Boost model (FL-XGB) is trained across five in-federation (IF) centers,
showing an average test Area Under the ROC Curve (AUC) of 75.27%.
A novel metric, the OOF Applicability (OFA) predictor, is introduced to
estimate whether FL-XGB could be safely applied to the 15 OOF cen-
ters. OFA combines statistical and learnable features from both IF and
OOF centers and is used as a predictor for a regression model, employed
to estimate the performance of FL-XGB (in terms of AUC) on OOF
datasets. The regression model achieved a confidence of 76% in predict-
ing AUC values, with a statistically significant p-value (≪ 0.001). The
average discrepancy between the predicted and observed AUC values
was 6%. Overall, FL-XGB shows robust performance on IF centers and
the OFA predictor plays a crucial role in assessing its applicability to
infer on unseen OOF centers. By providing statistically significant es-
timations, OFA effectively identifies OOF centers whose characteristics
are too divergent from what the FL model can effectively manage. Our
codes are available at https://github.com/geronimaw/OFA4FL.

Keywords: Federated Learning · Out-of-Federation · Electronic Health
Records · Predictive Modeling · Diabetic Retinopathy
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1 Introduction

Diabetic Retinopathy (DR) is a leading complication of diabetes and a major
cause of vision impairment and blindness worldwide. It currently affects approx-
imately 103 million diabetic patients, a number expected to rise to 161 million
by 2045 [1]. Despite its severity, DR often goes undetected in its early stages,
resulting in reactive rather than preventive treatments. Early detection is essen-
tial, as timely intervention can significantly lower the risk of severe vision loss
and enhance the quality of life for those affected.

Machine Learning (ML) and Deep Learning (DL) techniques have shown
great promise in DR diagnosis, particularly when applied to retinal fundus im-
ages and optical coherence tomography scans [2]. While these imaging modalities
are widely adopted to identify disease markers and grade disease severity [3,4],
Electronic Health Records (EHRs) remain underutilized in DR research, despite
providing continuous and comprehensive insight into a patient’s health journey.
EHRs contain invaluable longitudinal data, such as demographics, clinical his-
tory, comorbidities, and routine laboratory results, which makes them suitable
for early detection of DR risk and monitoring its progression [5]. Several stud-
ies have investigated ML models for predicting DR onset in diabetic patients
using EHR data, and eXtreme Gradient Boosting (XGBoost) has consistently
outperformed other classical ML models, such as logistic regression, support
vector machines, artificial neural networks and random forests, in diabetic DR
risk prediction [6,7,8,9,10]. Despite the promising results, these studies rely on
the aggregation of data from multiple centers into a single repository, an ap-
proach that simplifies model training and is impractical in real-life scenarios due
to privacy concerns and regulatory restrictions surrounding patient data. More-
over, centralizing data leads to less generalizable models, as they fail to capture
the variability of data collected across diverse healthcare institutions, ultimately
limiting their applicability.

Federated Learning (FL) [11] is a decentralized approach that offers the pos-
sibility to tackle these challenges by enabling multiple centers to collaboratively
train a shared predictive model without exchanging data, thereby preserving
patient privacy and adhering to data governance policies [12,13]. Despite these
advantages, FL models face significant hurdles in real-world applications, par-
ticularly when dealing with Out-of-Federation (OOF) centers, whose data char-
acteristics differ from those of the In-Federation (IF) centers and often exhibit
high variability and heterogeneity in real-world scenarios. Therefore, this study
is guided by the following research question:

Is it possible to determine whether an FL model can be reliably applied to
OOF centers? How can we assess its compatibility with unseen data?

To address this question, we propose the novel Out-of-Federation Applicabil-
ity (OFA) predictor, which evaluates whether an FL XGBoost model (FL-XGB)
can be effectively used on data from an OOF center. OFA is a data-driven pre-
dictor that leverages a combination of statistical features (e.g., class imbalance,
missing values) and latent features extracted via unsupervised DL techniques to
quantitatively assess the FL model reliability to infer on OOF centers. Figure
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1 shows the proposed framework, where FL-XGB is trained on IF centers and
OFA assesses its compatibility with OOF centers.

The main contributions of this work are as follows:

– Introduction of the OFA predictor, a novel methodology integrating statis-
tical and learnable features to determine the applicability of FL models to
unseen centers.

– Introduction of the Out-of-Federation Suitability Score (OSS), a quantitative
metric derived from the OFA outcomes, providing an interpretable measure
of FL model applicability to OOF centers.

– Development of an FL framework based on XGBoost, called FL-XGB, de-
signed and trained to predict DR risk from real-world EHR data collected
from multiple diabetic centers.

To the best of our knowledge, this study is the first to introduce an ap-
proach to evaluate the compatibility of FL models with OOF centers, providing
a data-driven framework to address privacy concerns, regulatory restrictions,
and generalizability challenges in DR risk prediction from EHR data.

Fig. 1: Overview of the proposed framework for Diabetic Retinopathy (DR) risk pre-
diction using a global XGBoost model (FL-XGB). (1) The process begins with the
FL-XGB model being trained across five In-Federation (IF) centers, with blue arrows
showing the flow of model updates. (2) The trained FL-XGB model and statistical
features from IF and Out-Of-Federation (OOF) centers are fed to the novel Out-of-
Federation Applicability (OFA) predictor to assess compatibility. (3) If the evaluation
from the OFA predictor indicates sufficient compatibility, the FL-XGB model is ap-
plied to the OOF center for inference.

1.1 Related works

Although EHR data are essential for early-stage DR onset prediction and pre-
ventive care, their integration into predictive models remains largely unexplored.
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While recent studies [6,7,8,9,10] demonstrated the potential of EHRs for DR risk
prediction, they rely on centralized approaches, overlooking privacy concerns as
well as the distributed nature of EHRs. The advent of FL has created new
opportunities for collaborative learning with EHRs across multiple healthcare
institutions, enabling predictive modeling for various clinical tasks while pre-
serving patient privacy [14,15]. However, to the best of our knowledge, FL for
EHR-based DR prediction has been explored in only one study [16], which op-
timizes a logistic regression model in an FL fashion on 22 centers. While this
work achieved a sensitivity of 72% on real-world EHRs, it relied on dataset
undersampling to balance classes, a strategy that likely oversimplified the task.

Outside of the DR and diabetes research domain, most studies involving FL
in clinical tasks artificially create homogeneity in the federation by splitting a
single dataset to simulate multiple FL clients. This approach facilitates experi-
mentation but fails to reflect the complexity of real-world EHR collections [17].
To better handle heterogeneous data within the federation, strategies such as
client selection [17] or client similarity metrics [18,19] have been introduced.
However, these strategies often require preventive feature space transformation,
which may reduce the interpretability and applicability of the models to real-
world EHR data. Similarly, in the broader field of FL, literature primarily ad-
dresses data heterogeneity inside the federation [20,21] or between federations
[22]. However, the challenge of FL model generalizability to OOF centers has
been recently tackled by studies such as [23,24,25], in which the FL model is
explicitly trained to generalize well across both seen and unseen environments.

In light of these considerations, our work addresses a key gap in the field of
FL in healthcare by effectively training an FL model on real-world EHR data
despite their imbalance and heterogeneity across classes and centers. Further-
more, while previous studies focused on ways to train an FL model to increase
its generalizability towards OOF data, our work investigates ways to predict
whether a pre-trained FL model can be effectively applied to OOF data based
on information such as class imbalance, dataset size, missing values, and latent
features extracted in an unsupervised manner. This shifts the focus from gen-
eralization to compatibility estimation between a trained FL model and a new
center.

2 Methods

2.1 Data and predictive task definition

The study leverages EHR datasets from 20 diabetic centers across Italy, con-
taining patient records organized into three fields: i) demographic information
(e.g., gender, age, diabetes duration), ii) pathology data (comorbidities), and iii)
laboratory test results. Patients are classified into two groups — DR and con-
trol — based on specific observational temporal windows, following established
preprocessing criteria [6,8]. The objective, framed as a binary classification task,
is to predict the likelihood of DR development in diabetic patients. The clas-
sification is based on 62 predictors, including laboratory test results averaged
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over the observational period, demographic information such as gender and age,
and potential comorbidities. Missing data were handled using an extra-value
imputation strategy.

Fig. 2: Statistical summary of the involved datasets. (a) Patient distribution across IF
(blue) and OOF (green) centers, with total counts above the bars. The table details
DR/control counts (also visually differentiated within the bars by hues, with lighter
shades for DR), the DR ratio, and the percentage of missing data. IF selection criteria
are marked: a 1000-patient threshold (dotted line), and DR counts ≥800, DR ratio
≥25%, and missing values <65% (red in the table). (b-c) Radar charts representing
the L1 distances of each OOF center from the federation based on predictor values (b)
and missing data percentages (c), with scales normalized from 0 to 1.

The diabetic centers are categorized into two groups, as shown in Fig. 2:

– IF centers: 5 centers (ID0-ID4) involved in the FL-XGB training and vali-
dation, selected based on data quality, volume, and diversity criteria: >1000
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total patients, ≥800 DR patients, ≥25% DR patients, and <65% missing
values.

– OOF centers: 15 centers (ID5-ID19), used for external validation, exhibit-
ing high variability in patient numbers, predictor distributions, and missing
data.

The inclusion criteria ensure that IF centers have sufficient data volume,
diversity, and quality to support robust model training. As shown in Fig. 2a, the
federation includes 20480 patients, while OOF centers collect data about 17648
patients. OOF centers exhibit a wide range of data characteristics, including
extremely small numbers of patients and significantly high percentages of missing
values. Preliminary analyses were carried out to assess the similarity between
IF and OOF centers, focusing on the mean, median, 75th percentile, and range
(minimum and maximum values) of predictors and percentages of missing values.
In Fig. 2b-c, the normalized L1 distance between IF and OOF centers is depicted
in terms of the 75th percentile of predictors and missing values, respectively.
This variability reflects real-world heterogeneity, with notable differences from
the federation in OOF centers such as ID13, ID16, and ID19, characterized by
greater data sparsity and distribution discrepancies compared to IF centers.

2.2 Federated framework

To predict DR onset in diabetic patients, the FL framework uses XGBoost [26],
a tree-based boosting algorithm known for its effectiveness in handling sparse,
imbalanced and complex datasets, making it well-suited for EHR data [27].
This choice is further supported by multiple studies that demonstrate supe-
rior XGBoost performance over other ML models in EHR-based DR prediction
task [6,7,8,9,10]. These strengths, combined with FL, allow FL-XGB to leverage
heterogeneous datasets to train a generalized, privacy-preserving model appli-
cable to diverse patient populations. Five IF centers collaboratively train the
global model by sharing model updates (gradients) with a central server that
aggregates them via Federated Averaging [11]. This ensures compliance with
data governance policies and patient privacy regulations.

2.3 Out-of-Federation Applicability (OFA) Predictor

In a real-world scenario, a trained FL model can be made publicly available,
enabling other centers to use it for testing purposes on the same task. However,
factors such as data distribution, class imbalance, and missing values — which
can vary significantly across real-world EHR datasets — can affect model per-
formance on OOF data [28]. Taking these factors into account, we introduce the
OFA predictor. Given a model trained on a federation of centers and an OOF
center COF , OFA predicts the model’s performance on COF in terms of the
Area Under the ROC Curve (AUC). This prediction is based on a combination
of properties of COF and metadata about the IF centers, grouped as follows:
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– Statistical characteristics (Sc) of COF : Cardinality, class imbalance, and dis-
tributions of missing values and average predictors. The last two characteris-
tics are compared with the corresponding distributions from each IF center,
which are released as metadata.

– Prediction confidence (ppred): The FL-XGB model’s output on COF , serving
as a measure of the alignment between COF and all IF centers.

– Latent representations (LAE) of COF : The predictors in COF are projected
into a low-dimensional latent space via an autoencoder and compared with
the latent representations of each IF center, also released as metadata.

The metadata required from the federation can be shared while ensuring
OFA’s compliance with regulatory restrictions.

Formulation. OFA is based on the hypothesis that there is a (linear) correla-
tion between the FL-XGB model’s AUC performance on COF and a combination
of the above-mentioned properties, XOF A, defined as follows:

XOF A = Sc × LAE × ppred =
( η

n
× DL1,miss × DL1,feat

)
× DAE,feat × ppred

(1)

where i) η is the imbalance ratio (negative/positive samples) in COF ; ii) n is the
cardinality of COF ; iii) DL1,feat is the average L1 distance between COF and all
the IF centers, calculated for the 75th percentile of their predictors (see Fig. 2b);
iv) DAE,feat is same metric but calculated for centroids in a 6-dimensional latent
space generated by an autoencoder (details in Sec. 2.4); v) DL1,miss measures
the same distance in terms of missingness (see Fig. 2c); vi) ppred is the average
probability predicted by FL-XGB over all samples in COF . The variables com-
posing XOF A are selected for their relevance in capturing differences between
the OOF center and the federation. The relationship between these variables
and model performance was empirically validated through experimentation.

Finally, linear regression is used to estimate the relationship between XOF A

and AUC obtained from the FL-XGB model on COF :

AUCOF A = m × XOF A + q (2)

Where the parameters m and q need to be regressed from a set of OOF
centers to fit the distribution at hand.

Scoring. To further refine decision-making, we define an OOF Suitability Score
(OSS) based on the OFA-predicted AUC values (AUCOF A). This score assesses
whether applying the FL-XGB model to a specific OOF center COF is advis-
able, and it is computed by comparing AUCOF A on COF against the average
performance across IF centers (AUCIF ), while also incorporating the predic-
tive strength of OFA’s linear regression, quantified by r2[%]. OSS ∈ [0, 100] is
defined by the formula:
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OSS% = r2 ×
100 −

∣∣AUCOF A − AUCIF

∣∣
100 (3)

Higher values indicate greater confidence in the model’s ability to generalize
to the OOF center, and OSS ≥50% indicates that the FL-XGB model can be
safely applied to the OOF center. The average OSS, if computed on a significant
number of OOF centers, is particularly meaningful for new centers that do not
have annotations or the possibility to train their own model.

2.4 Implementation details

Table 1: Range of XGBoost hyperparameters used for training the DR prediction
model. Regarding the scale for positive weight hyperparameter, η is defined as the num-
ber of negative samples over the number of positive samples. The objective function was
also tuned among three different loss functions: Binary Cross Entropy (BCE), Weighted
BCE (w-BCE) and Focal BCE (f-BCE). The hyperparameters α and γ marked with
an asterisk (*) were only applied to f-BCE and w-BCE, respectively.

Hyperparameter Range

Number of estimators
Maximum tree depth
Learning rate
Subsample ratio
Column sample ratio
L2 regularization term (λ)
Scale for positive class weight
Imbalance parameter (α∗)
Focusing parameter (γ∗)
Objective function

{3, 5, 7, 9, 12, 15, 25}
{15, 25, 50, 75, 100}
{0.01, 0.05, 0.1, 1}
{0.3, 0.5, 0.7, 0.9, 1}
{0.3, 0.5, 0.7, 0.9, 1}
{1, 3, 5, 7, 10, 15}
η × {0.5, 1, 3, 5, 10}
{1, 2, 3, 4, 5}
{1, 1.5, 2, 2.5, 3}
{BCE, w-BCE, f-BCE}

FL-XGB. Following a thorough experimental evaluation, the optimal training
configuration for DR prediction using FL-XGB is established after a 10-fold
cross-validation and an extensive grid search to maximize AUCIF . A list of the
optimal hyperparameters can be found in Table 1. Regardless of AUC value
maximization, the column sample ratio, i.e., the number of randomly sampled
columns among the 62 predictors, is set to 1. This choice is driven by the high
inhomogeneity among centers and aimed to prevent weak learners in XGBoost
from relying on unimportant predictors during training.

To address class imbalance, a weight for positive samples (scale_pos_weight)
is applied, and Binary Cross Entropy (BCE) is selected as the objective function.
Additionally, two other objective functions were tested in this study — namely,
Weighted BCE (w-BCE) and Focal BCE (f-BCE), as they are designed to handle
imbalanced datasets. The FL framework, implemented using the Flower platform
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[29], involves training each model locally for five rounds before sending them
to the central server for aggregation using Federated Averaging [11]. Feature
importance is analyzed using the ’weight’ strategy, emphasizing the frequency
of predictors used to split nodes across the model’s trees.

OFA. The optimal OFA predictor is determined by varying the variables in-
volved in the computation of XOF A and the relationship between them, as ex-
plained in the next Section. A critical aspect pertains to the design of the au-
toencoder architecture, which consists of two layers (16 and 32 neurons) in the
encoder and specular layers for the decoder, with a latent space dimension of
6, determined from a grid search from the set [3, 6, 9, 12]. Hidden layers are
activated by Leaky ReLU, while sigmoid is used for the output layer. The au-
toencoder is trained for 100 epochs using a batch size of 64, a learning rate of
0.001, and the Adam optimizer, with mean squared error as the loss function.

To evaluate the predictive relationship of OFA between XOF A and AUCOF A,
all OOF centers are utilized except for ID11 and ID16, which are left out to test
the model due to their unique characteristics in terms of sample size (25 for
ID16) and missingness rate (76% in ID9), as shown in Fig. 2.

2.5 Ablation studies
To assess the robustness and generalizability of FL-XGB, we conducted numer-
ous experiments. While performing a wide hyperparameters grid search as in
Table 1, as Ablation Study 1 (AS1), we explored different loss functions (BCE,
w-BCE, and f-BCE) to handle class imbalance and evaluated which of these loss
functions was the most suitable for the task. Moreover, we evaluated different
sets of IF centers in order to obtain the optimal federation in Ablation Study
2 (AS2). In particular, we tested federations with a varying number of centers
(from 3 to 7 centers), including those that strictly adhere to the inclusion cri-
teria (see Sec. 2.1) and those that marginally met these criteria (i.e., ID5 and
ID8) to evaluate the impact of center diversity and data heterogeneity on model
performance.

To evaluate the effectiveness of the OFA predictor, two ablation studies were
carried out to provide insights into the obtained results and enhance the cor-
relation between the designed XOF A and the AUC predictions from the FL-
XGB model. Ablation Study 3 (AS3) investigates whether non-learnable statis-
tical features are more or less significant than deep representations extracted
by an autoencoder in assessing the compatibility of a COF with the FL-XGB
model. Specifically, we compared the OFA predictor with two alternative vari-
ants: OFAL1, which excludes DAE,feat from Eq. 1, and OFAAE , which excludes
DL1,feat and only uses learnable latent representations of the predictors. Finally,
Ablation Study 4 (AS4) aims to assess the impact of each variable on the re-
lationship between XOF A and FL-XGB’s performance on COF , as well as the
impact of other variables that were not included in the final XOF A definition,
such as the alignment between the feature importance vectors obtained from the
FL-XGB model and those from a locally-trained XGBoost.
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It is important to note the absence of comparisons with similar state-of-the-
art approaches, due to the lack of directly comparable work in the literature.
Instead, our focus has been on exploring and validating this novel approach
within the context of our datasets and operational constraints.

2.6 Evaluation Metrics

To evaluate the performance of the FL-XGB model and the OFA predictor, AUC
is selected as the main performance metric due to its effectiveness in providing
a balanced evaluation of model discrimination. Additionally, Sensitivity (Sens)
and Specificity (Spec) are used to gauge the accuracy in identifying DR and
control patients, respectively.

To assess whether XOF A correlates significantly with AUC predicted by FL-
XGB, statistical measures such as p-value and r2 are employed. If the regressed
linear model (Eq. 2) shows p > 0.05 and/or r2 < 0.6, it is discarded as statisti-
cally insignificant. Additionally, the effectiveness of the OFA prediction is mea-
sured via the difference, referred to as ∆AUC, between the predicted AUCOF A

and the actual AUC obtained by the FL-XGB model.

3 Results

Table 2 summarizes the performance of FL-XGB compared to locally-trained
XGBoost models on IF centers. FL-XGB achieves an average AUCIF of 75.27%,
closely matching the 75.21% average AUC of the local models. Notably, FL-XGB
improves Sens to 69.51%, up from 66.46% in local models, enhancing the ability
to correctly identify positive cases. However, this improvement in Sens comes
at the expense of Spec, which decreases to 68.43% compared to 86.24% in local
models. Center ID3 demonstrates the most substantial improvement from the
federation with respect to the locally-trained model, with a 4.57% increase in
AUC and a 5.23% increase in Sens. The last two columns of Table 2 include
results from AS1, which was meant to analyze which objective function yielded
best results among BCE, w-BCE, and f-BCE. While the last two functions are
specifically tailored for imbalanced datasets, BCE achieves the best performance,
with an average AUC of 75.27%. FL-XGB trained with f-BCE achieves the
highest Sens score (84.45% against 69.51% from BCE), but this comes at the
expense of Spec, which decreases to 40.79% (against 68.43% with BCE). Given
the crucial importance of Spec, especially in healthcare, BCE is considered the
optimal loss function.

Table 3 shows results from AS2, i.e., how different federation compositions
impact FL-XGB performance across diverse clinical scenarios. ConfIF 3 includes
centers ID0, ID1, and ID2; ConfIF 4 includes centers ID0, ID1, ID2, and ID4;
ConfIF 5 is the federation introduced in Fig. 2 (ID0, ID1, ID2, ID3, and ID4);
additionally, ID5 was included in ConfIF 6, and ID5 and ID8 were included in
ConfIF 7. Both ID5 and ID8 meet three out of four inclusion criteria outlined in
Sec. 2.1. The optimal federation results to be ConfIF 5.
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Table 2: Performance comparison of local XGBoost models and Federated Learning
(FL) with XGBoost model (FL-XGB) using different objective functions (BCE, w-
BCE, and f-BCE, as per Ablation Study 1) is reported in terms of Area Under the
Curve (AUC), Specificity (Spec) and Sensitivity (Sens). All metrics are expressed as
a percentage (%).
IF Center Local XGBoost FL-XGB (BCE) FL-XGB (w-BCE) FL-XGB (f-BCE)

AUC Spec Sens AUC Spec Sens AUC Spec Sens AUC Spec Sens

ID0 74.09 85.99 66.23 74.68 67.67 67.49 72.35 67.67 67.49 70.71 30.97 89.13
ID1 75.51 88.98 65.59 76.10 65.69 69.39 72.82 65.69 69.39 72.16 49.93 80.88
ID2 78.68 86.18 69.83 74.13 64.84 66.29 67.53 64.84 66.29 68.86 44.44 80.41
ID3 72.15 79.17 66.76 76.72 76.87 71.99 76.15 76.87 71.99 76.90 27.18 96.71
ID4 75.61 90.89 63.90 74.75 67.12 72.38 69.27 67.12 72.38 70.59 51.43 75.12

Average 75.21 86.24 66.46 75.27 68.43 69.51 71.62 68.42 69.50 71.85 40.79 84.45

Table 3: Results from Ablation Study 2 (AS2), in which different configurations with
varying numbers of In-Federation (IF) centers are tested. Average test performance are
reported in terms of Area Under the Curve (AUC), Specificity (Spec), and Sensitivity
(Sens) for each configuration. Metrics are expressed as a percentage (%).

Configuration ID0 ID1 ID2 ID3 ID4 ID5 ID8 AUC Spec Sens
ConfIF 3 (3 centers) ✓ ✓ ✓ × × × × 71.19 38.78 79.81
ConfIF 4 (4 centers) ✓ ✓ ✓ × ✓ × × 71.63 30.27 84.67
ConfIF 5 (5 centers) ✓ ✓ ✓ ✓ ✓ × × 75.27 68.43 69.51
ConfIF 6 (6 centers) ✓ ✓ ✓ ✓ ✓ ✓ × 72.61 44.16 77.39
ConfIF 7 (7 centers) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 71.79 40.22 80.23

Extending our analysis from the federation to the unseen OOF centers, we
assess how FL-XGB performs beyond the training environment. Table 4 presents
the performance of the FL-XGB in terms of AUC for all OOF centers, across
which the FL model scores an average AUC of 58.16%, lower than AUCIF

(75.27%) reported for IF centers. Particularly poor predictions are obtained for
ID13 and ID19 (AUC of 22.22% and 33.33%, respectively), while FL performance
on ID7 (AUC = 76.08%) is stronger than AUCIF .

Table 4 also shows the results of the OFA predictor, which assesses the ap-
plicability of FL-XGB to OOF. The upper part of the table includes the centers
involved in the OFA regression process, whereas the lower part shows the two
centers (ID9 and ID16) used to test the regressed predictor’s accuracy. For each
OOF center, FL-XGB results are compared to those obtained from the OFA pre-
dictor and its variants, OFAL1 and OFAAE . The OFA predictor demonstrates an
average prediction error (i.e., ∆AUC) of 6.13% and an average OSS of 63.70%.
Centers ID5, ID6, ID7, and ID8 exhibit the highest OSS values, around 72%:
ID5 is correctly predicted by OFA (∆AUC = −0.59%); ID7 and ID8 are slightly
under and overestimated by OFA (∆AUC = −7.63% and ∆AUC = +7.50%,
respectively); while ID6 is largely overestimated by OFA (∆AUC = +17.15%).
ID13 and D19 obtain the lowest OSS values (39.20% and 42.45%), which is
due to the fact that, although FL-XGB performance on both OOF centers is
correctly predicted by OFA (∆AUC = +4.16% and ∆AUC = −2.72%), these
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Table 4: Performance comparison between FL-XGB and OFA predictor in its variants:
OFA as fully defined in Eq. 1, OFAL1 using only statistical information, and OFAAE

based on autoencoder latent space features only (Ablation Study 3). The regression pre-
diction error (∆AUC) represents the average absolute difference between the AUCOF A

values and the AUC values scored by FL-XGB. Similarly, the OSS score is reported
for each OFA variant. The bottom part of the table reports the performance calculated
over the two OOF centers (ID9 and ID16) excluded from the OFA regression process.
All metrics are expressed as a percentage (%).

OOF Center FL-XGB OFA OFAL1 OFAAE

AUC ∆AUC OSS ∆AUC OSS ∆AUC OSS

ID5 69.26 -0.59 71.64 -0.30 68.77 +1.53 59.60
ID6 51.14 +17.15 71.35 +17.21 68.32 +18.81 59.08
ID7 76.08 -7.63 71.47 -7.79 68.28 -5.50 59.47
ID8 61.07 +7.50 71.56 +7.75 68.67 +9.50 59.47
ID10 48.72 +5.58 60.62 +8.21 59.94 -7.51 41.15
ID11 64.06 +2.74 70.20 +2.95 67.34 +2.71 57.10
ID12 57.00 +2.73 64.78 +1.91 61.39 -2.38 49.51
ID13 22.22 +4.16 39.20 +3.02 36.68 +12.01 36.79
ID14 56.94 -0.57 62.20 -1.27 59.01 -7.38 46.36
ID15 73.91 -10.51 67.60 -11.37 64.06 -12.21 53.93
ID17 73.33 -7.47 69.48 -9.78 64.80 -6.59 57.08
ID18 69.00 -10.36 63.94 -10.01 61.45 -12.38 50.76
ID19 33.33 -2.72 42.45 -0.54 42.22 +9.40 42.10

Average 58.16 6.13 63.70 6.32 60.84 8.30 51.72
ID9 68.37 -3.60 68.65 - - - -
ID16 56.35 -2.61 60.19 - - - -

two centers are the ones on which FL-XGB performs the worst (AUC = 22.22%
and AUC = 33.33%). For the remaining OOF centers, OSS values range be-
tween 60.62% and 70.20%, while ∆AUC values vary from -10.51% to +5.58%.
The last columns of Table 4 report the results from AS3, i.e., the comparison
between OFA and its variants, OFAL1 and OFAAE . From this comparison, the
complete OFA model demonstrates superior accuracy. It achieves a lower av-
erage ∆AUC of 6.13%, compared to 6.32% for OFAL1 and 8.30% for OFAAE ,
indicating that the integration of both statistics and latent representations pro-
vides a more comprehensive assessment of the applicability of FL-XGB to COF .
On ID9 and ID16, FL-XGB scores AUC values of 68.37% and 56.35%, while the
OFA predictor proves quite accurate, with ∆AUC of -3.60% and -2.61%. The
resultant OSS values are 68.65% for ID9 and 60.19% for ID16.

The performance of the OFA predictor across the OOF centers is also repre-
sented in Fig. 3, which illustrates the relationship between the designed XOF A

comprehensive variable and the actual AUC values scored by FL-XGB on OOF
centers. The linear regression f : XAUC → AUC, shown as a black line, explains
76.70% of the variance (as indicated by r2), with a statistically significant p-
value (≪ 0.001), underscoring OFA’s effectiveness in capturing the correlation



Federated Learning towards the unknown 13

Fig. 3: Scatter plot illustrating the relationship between OFA predictions and actual
AUC test values for OOF centers. The black line represents the linear regression
between XOF A and AUC predicted by FL-XGB. The regressed linear equation, r2,
p−value, and average OOF Suitability Score (OSS) are also reported. The dashed red
line indicates the average performance of the FL-XGB model on IF centers (AUCIF

= 75.27%). All OOF centers are represented with a colored circle, except for ID9 and
ID16 shown as diamonds, as they were excluded from the linear regression and used to
evaluate the regressed OFA model.

between AUC performance from a pre-trained FL-XGB and the information
about COF summarized in XOF A. The effectiveness of the OFA predictor is fur-
ther underscored in Table 5, which outlines the results from AS4, i.e., the impact
of each variable in explaining the correlation between performance from FL-XGB
on COF and XOF A. The final row shows that XOF A, as defined in Eq. 1, can
explain up to 76.7% of the variance of the distribution shown in Fig. 3.

4 Discussion

Deploying FL models in real-world scenarios is challenging due to not only data
variability across centers, but also internal variability [30]. Differences in demo-
graphics, healthcare standards, and acquisition protocols further increase hetero-
geneity, which impacts both training and deployment. While FL enables privacy-
compliant collaborative learning, it does not automatically guarantee the same
level of generalization to every center, whether within or outside the federation.
Hence, rather than focusing on building a universally generalizable model, this
study aims to explore the feasibility of deploying an existing FL model on data
from unseen OOF centers. This perspective shifts the focus from generalization
to compatibility estimation between a trained FL model and a new center.
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Table 5: Results from Ablation Study 4 (AS4): impact of the variables involved in
XOF A in predicting the performance from FL-XGB on a given COF . The variables are:
imbalance (η), cardinality (n), distances between features distributions (DL1,feat and
DAE,feat), distance between missing values distributions (DL1,miss), and predicted
probability (or confidence, ppred). Each row is associated with the final r2, i.e., the
explained variance in the relationship between XOF A and AUC values scored by FL-
XGB on OOF centers.The last row corresponds to the definition of XOF A in Eq. 1.

OFA variables r2 (%)
η / n 52.9

η × DAE,feat/n 54.0
η × DL1,feat / n 70.6

η × DL1,feat × DAE,feat / n 72.1
η × DL1,feat × DAE,feat × DL1,miss / n 75.7

η × DL1,feat × DAE,feat × DL1,miss × ppred / n 76.7

To investigate this, FL-XGB has been trained and tested on five IF centers.
As shown in Table 2, its average performance across the federation (AUCIF

= 75.27%) closely matches that of locally trained models (75.21%). However,
FL-XGB demonstrates greater consistency across centers, with a lower standard
deviation in AUC (1.08 vs. 2.39 for local XGBoost). This stability is likely due
to FL mitigating overfitting to center-specific data characteristics. Notably, FL-
XGB also improves Sens by +8.48%, a crucial advantage for DR early detection,
where accurately identifying at-risk patients is essential.

Beyond the training phase, applying FL models to OOF centers introduces
further complexity, as their data distributions may significantly differ from IF
data. Notably, our goal is not to demonstrate that FL-XGB performs well on
all OOF centers, but to provide a tool (the OFA predictor) that can predict
whether an FL model is suitable for a given OOF dataset before deployment.
FL-XGB’s performance on OOF centers is, in many cases, comparable to that
observed on the IF centers. Centers ID5, ID7, ID15, ID17, ID18, and ID9 share
similar data characteristics with the IF centers (see Fig. 2), which results in
strong performance from FL-XGB (AUC > 69%) despite limitations such as
the high volume of missing data or small and strongly unbalanced datasets.
This suggests that FL-XGB itself has strong potential for real-world application,
particularly valuable for centers that, due to limited data resources, could not
train their own models. To estimate the performance of an FL model on OOF
data, the OFA predictor has been developed and applied to the case study of
DR risk prediction using real-world EHRs from 20 diabetic centers. OFA uses 13
OOF centers to regress a linear relationship between AUC from FL-XGB and
XOF A, a special variable designed to represent key features of an OOF center
and its differences from the IF centers. As shown in Table 4, OFA effectively
detects OOF centers that are incompatible with FL-XGB. For example, the
poor performance of FL-XGB on ID13 and ID19 (AUC of 22.22% and 33.33%)
is accurately identified by XOF A (see Fig. 3), which can be seen as a function
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that maps OOF centers based on their compatibility with FL-XGB. Additionally,
OSS values discourage the use of FL-XGB on these unsuitable centers (39.20%
for ID13 and 42.45% for ID19). On the other hand, for centers where OSS ≥
60%, OFA maintains prediction errors ∆AUC within an 8-point margin and
only a few cases reaching higher error rates, with a maximum ∆AUC of +17.15
points. Also, when tested on ID9 and ID16, centers left out of the regression
process, OFA displays prediction errors ∆AUC within a tolerable range (< 4%),
proving its consistency on OOF data.

Table 5 shows the impact of each variable in explaining the correlation
between performance from FL-XGB on COF and XOF A. The basic variables
η and n accounted for 52.9% of the AUC-XOF A variance. The integration
of the DL1,feat considerably improved the regression model, elevating r2 to
70.6%, which is further refined by the introduction of DL1,feat and DAE,feat

(r2 = 72.1%). This suggests that feature distribution statistics have a crucial
role in explaining the difference between OOF and IF centers, as well as that
latent features capture additional nuances not evident through direct statisti-
cal measures alone. Final XOF A also includes DL1,miss and ppred, reaching r2

of 76.7%. This importance is further confirmed by comparing the performance
of the two main OFA variants, OFAL1 (using only statistical information) and
OFAAE (leveraging only distances on latent space features), as reported in Table
4. Although the overall behaviors of the OFA variants are similar, both OFAL1
and OFAAE tend to exhibit larger errors, especially for centers with moderate
compatibility.Figure 3 illustrates the regression accuracy for the relationship be-
tween XOF A and AUC scores from FL-XGB on the OOF datasets. The OFA
predictor seems to capture the information needed to separate the datasets,
aligning reasonably well with actual AUC scores. However, centers ID5, ID6,
ID7 and ID8 present a challenge: they have similar XOF A but exhibit substan-
tial variation in FL-XGB performance, ranging from approximately 50% to 76%
in AUC. This suggests that the variables included in XOF A may not fully explain
the relationship between XOF A and FL-XGB’s AUC.

It is worth mentioning that OFA’s performance can be heavily influenced
by FL-XGB’s training parameters. In particular, XGBoost is often trained with
a feature subsampling approach, in which only some predictors are randomly
selected during model training. While this method reduces the risk of overfitting
and enhances model reliability, it can lead to inconsistent outputs and sub-
optimal feature selection, particularly in datasets with extensive missing data
or imbalanced features [31]. In datasets characterized by high sparsity, random
feature selection can skew model reproducibility and reliability, depending on
the predictors selected during training.To address this issue, we trained the FL-
XGB model using all available features, avoiding random column subsampling
for weak learners. This approach balances the trade-off between maximizing
accuracy and ensuring robustness and reproducibility across diverse healthcare
settings. Another important aspect concerns model interpretability and clinical
validity. Future work will explore strategies to ensure that the estimated feature
importance aligns with its actual clinical relevance.
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We also plan to assess the generalizability of the OFA predictor on other med-
ical use cases and multi-centric datasets. For instance, we will test it on EHRs
from general practitioners [32] to evaluate its robustness in a different clinical
context. In parallel, we will investigate alternative base models and FL strategies
to verify the OFA stability under different ML configurations. While XGBoost
was selected for its well-established effectiveness with tabular data, class im-
balance, and missing values [6,7,8,9,10], exploring other models and learning
paradigms may reveal complementary strengths or uncover limitations in the
current implementation. Further directions include validating OFA in vertical
FL settings and through multi-view analyses [33], as well as integrating differ-
ential privacy techniques [34] to enhance data protection and ensure privacy
compliance in real-world deployments.

5 Conclusion

This study proposed an innovative OFA predictor which, by combining statis-
tical and latent features of OOF data, demonstrated statistical significance in
determining whether an FL model can be effectively applied to OOF centers,
thus answering the research question in Sec. 1. Many clinical centers, due to
their data characteristics or limited resources, cannot develop their own model,
but could substantially benefit from accessing a robust FL model. The flexibility
and privacy focus of the FL-XGB framework, combined with the OFA predictor’s
ability to evaluate its compatibility with OOF data, offer a valuable solution for
DR screening across diverse clinical settings, potentially making a significant
impact on diabetic preventive care. The experimental findings suggest how the
OFA predictor may play a key role in ensuring the safe and effective deployment
of FL models in OOF settings, offering a new paradigm for the adaptability and
scalability of AI in clinical practice.

Disclosure of Interests. The authors did not receive support from any funding
organization in the public, commercial, or not-for-profit sectors for the present work.
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