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Abstract. Hybrid wireless sensor networks (HWSNs) combine sensors
of varying costs to balance budget and deployment density. However,
their data products often exhibit high heterogeneity and noise, presenting
new challenges for spatial interpolation models. Traditional spatial inter-
polation models take dense input. When working on HWSN datasets, a
large part of the dense input must be obtained through imputation, lead-
ing to feature distribution changes and error accumulation. To address
these challenges, we propose the Context Encoder Spatial Interpolation
(CESI) Model, designed to work directly with sparse, narrow-format in-
put. CESI integrates a GraphSAGE-based backbone with a Transformer-
based context embedding module, leveraging probabilistic encoding for
better generalization to unseen coordinates and a self-supervised signal
to balance inductive biases between the two modules. Experimental re-
sults demonstrate that CESI consistently outperforms baseline models
across several publicly available real-world datasets.
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1 Introduction

In-situ sensor networks are crucial in many fields, offering high temporal coverage
and robustness to interference. Modern sensor networks increasingly combine
sensors of varying costs to balance budget and deployment density, enabling
finer-grained data collection for more detailed modeling. We hereafter refer to
them as hybrid wireless sensor networks (HWSNs) [13, 20].

Low-cost sensors, while economical, often compromise accuracy and relia-
bility, leading to highly heterogeneous and noisy HWSN datasets. This poses
significant challenges for spatial interpolation models, which are traditionally
designed based on homogeneous, high-quality sensor data [2, 7,12, 15, 18]. These
methods typically require dense, wide-format input (Figure 1 left), which is in-
creasingly incompatible with modern IoT protocols like OGC SensorThings API
[16] that favor narrow, sparse data formats (Figure 1 right) to cope with the
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Fig.1: An example of the wide format (left) and narrow format (right) of the
same input data entry of spatial interpolation models.

heterogeneity of HWSN. Consequently, there is a pressing need for spatial in-
terpolation models tailored to sparse input in HWSNs, which will introduce the
following potential benefits:

First, dense input models require extensive imputation to handle missing
values in HWSN datasets. While traditional spatial interpolation methods also
discuss data imputation, the causes of missing values in HWSNs differ signif-
icantly, resulting in much higher imputation workloads. In traditional sensor
networks, missing values are mainly caused by occasional sensor failures. With
high-quality sensors, such issues are infrequent. Thus, recent spatial interpolation
studies still consider simple techniques like linear interpolation [8] or removing
incomplete rows/columns [23] acceptable. In contrast, HWSNs face far more
frequent failures from low-cost sensors, compounded by heterogeneity in sen-
sor types, where sensors at different locations may only measure subsets of the
observed properties. For instance, applying PE-GNN [12] to the SmartAQnet
dataset [13] required imputing over 50% of the inputs, with all rows containing
missing cells. In such cases, removing incomplete data is infeasible, while exces-
sive imputation alters feature distributions and accumulates errors, degrading
model performance. By using sparse input, we can prevent the data imputation
step and the above-mentioned disadvantages (see Figure 1 as an example).

Second, dense input models typically encode all properties at the same loca-
tion (a row in Figure 1 left) and focus on location-level correlations. In contrast,
sparse input models encode each observation (a row in Figure 1 right), directly
capturing observation-level correlations. This allows sparse models to learn fine-
grained relationships more efficiently.

Despite these benefits, sparse input introduces challenges. The high dimen-
sional nature of the sparse input makes it harder for models to learn generalizable
representations, and direct exposure to noisy observations makes sparse input
models more sensitive to the high noise in HWSN datasets. In contrast, for dense
input models, the imputed values that occupy a considerable part of input are
obtained by referring to multiple observations. This helps neutralize the noise
from individual sensors, making the dense input models more robust to noise.

Based on the above insights, we propose the Context Encoder Spatial Inter-
polation (CEST) Model with the following contributions:
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— CESI is among the first spatial interpolation models tailored for narrow-
format sparse input, effectively addressing the heterogeneity in HWSN datasets
and achieving significant performance gains.

— We designed a self-supervised context embedding module to handle the
sparse input series. This module uses variational inference to learn the prob-
abilistic encoding of the input observations and uses a self-supervised loss
signal to achieve an adaptive balance of inductive bias with other modules.
Thus, the model’s robustness against noise and universality across different
tasks is significantly improved.

— We tested our model on three publicly available real-world HWSN datasets
from different fields and with different characteristics. Compared to the base-
lines, whose performance is shaky across different datasets, our model con-
sistently outperforms baselines on all three datasets.

2 Related Work

2.1 Challenges in HWSN Datasets

HWSN datasets are heterogeneous and noisy in several ways, typically including
but not limited to the following:

— Heterogeneity from various sensor models: HWSNs are usually a mix
of multiple sensor models. They may not observe all properties at the same
location, which is often one of the underlying assumptions of studies based
on traditional sensor networks.

— Heterogeneity from dynamic sensor network topology: Unlike the
long-lived traditional measuring stations, the lifespan of low-cost sensors
is unstable. Sometimes, deploying new ultra-low-cost sensors is even more
affordable than retrieving and repairing old ones. These factors keep the spa-
tial structure of HWSNs changing. Figure 2a illustrates how the total device
amount of one of such sensor networks changes over time, while Figure 2b
shows when sensors in this network successfully returned data and when did
not. It is easy to figure out that the topology of HWSNs is dynamic. Further-
more, in addition to stationary sensors, some sensor networks also partially
[13,4] or fully [14] employ moveable sensors, which further enhances the
heterogeneity of the spatial structure of the sensor network.

— Heterogeneity due to low-power wireless communication proto-
cols: Deployment of traditional sensors often faces administrative difficul-
ties, such as applying for land, power supply, and network access from local
administrations. As a result, many HWSNs turn to using low-power wireless
communication technologies such as LoRaWAN, Zigbee, BLE, etc. These
communication protocols allow sensors to operate on batteries alone for a
considerable period and send their observations to the data center wirelessly.
The cost of this is usually a restricted uplink bandwidth and transmission
time window. Even if the network delivers complete data at the end, the
real-time heterogeneity induced by these protocols must be considered when
considering the actual deployment of the model for real-time usage.
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— Uncertainty in sensor readings: The accuracy of a sensor, not only in
terms of its accuracy on its observed properties but also its position recorded
by the mounted GPS module, is generally related to its price level. Some
studies have also pointed out that how low-cost sensors are assembled and
the environment they operate in can also harm their measurements. In severe
cases, it can even return only qualitative results [3]. Moreover, maintaining
HWSNs is a complex, long-term task requiring much manual logging during
the installation, repair, and transfer of sensors. Considering that the opera-
tion period of HWSNS is often measured in years, human errors are almost
unavoidable, and a significant portion of them are challenging to identify
and fix in quality checks.
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Fig.2: (a). The curve of the monthly average active sensors in the SmartAQnet
dataset [13] (Jul. 2018 to Dec. 2020). (b). Daily activity status of low-cost sen-
sors in the SmartAQnet dataset (2021.01.01 to 2022.01.01). Each row represents
a sensor, with white indicating no readings collected in the day and black indi-
cating the opposite.

2.2 Spatial Interpolation

Spatial interpolation aims to predict values of a target property at any location
(mostly locations without historical observations) according to known observa-
tions. It is an essential spatial data analysis task widely used in atmosphere,
geology, and urban studies.

Early machine learning approaches, such as K-Nearest Neighbors and Ran-
dom Forest, are simple statistical models and struggle to capture complex and
dynamic correlations [10]. Gaussian Processes (GP, also Kriging) [5,17] offer
greater flexibility with custom kernel functions and provide reliable probabilistic
estimates.
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Deep learning methods have gained popularity in spatial interpolation, with
two prominent families: Graph Neural Networks (GNNs) and Transformers.
GNN-based models treat locations with known observations as graph nodes,
capturing patterns of information transfer through message-passing mechanisms.
Numerous GNN models [9, 11, 22] have been migrated to the field with promising
results. Researchers have also improved these GNN models regarding the specific
needs of the spatial interpolation task [1,12,18].

Transformer-based models interpret the input as a sequence of tokens. They
adaptively extract the correlation between input tokens with the multi-head
self-attention mechanism. However, we also note that existing transformer-based
spatial interpolation models still use dense input that takes all known observa-
tions of the same location as a token, benefiting from its homogeneity to learn
stable representations. For example, Fan et al. [7] put known observations on
grid maps and processed them with Vision Transformer, Yu et al. [23] removes
all sensing stations with more than 25% missing data, and Feng et al. [8] in-
terpolates the missing data with linear interpolation. However, we believe that
Transformer could also treat sparse observations as variable-length token se-
quences and, therefore, be highly compatible with the heterogeneity of HWSN
datasets. This paper will explore whether we can extract stable, generalizable
representations for spatial interpolation tasks from the sparse HWSN data.

3 Methodology

3.1 Preliminaries

Notations We regard a HWSN dataset D = {F} | j = 1,2, ...,n} as a collection
of Frames Fj. Each Frame F; = {O; | i = 1,2,...,m} contains all the Observa-
tions O; recorded at a same time, which an example is illustrated as the table
in Figure 1 (right). Each Observation O; = (P,C,V) is a triplet of a one-hot
encoded Property P, a two- or three-dimensional Coordinate C, and a Value V/,
which an example is illustrated as a row in Figure 1 (right).

We refer to the Property that needs to be interpolated as the Target Prop-
erty, abbreviated as Py4;. For our model, we only consider one Target Property at
a time. Since the spatial distribution of the Target Property is usually not only
affected by spatial correlation but also correlated with some other Properties,
HWSN datasets also observe these correlated Properties. They are called Sup-
port Properties, abbreviated as Py,p. Thus, a Frame F' can be further divided
into two parts: Target Sequence Fj, includes all the Observations of P4 and
Support Sequence Fj,,;, includes all the Observations of P,),.

Spatial Interpolation Task Given an input Frame F’ (F’ may not in D), the
spatial interpolation task is to predict the value V' of the P, at any arbitrary
target location C’. The basis for interpolation comes from the spatial correlation
with the known values in Ftlgt and the effect of F.,  on this correlation, which
can be learned from Frames provided in D.

P
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3.2 Framework
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Fig.3: An overview of the CESI model. The upper half is the GI Module, which
mainly models the spatial correlations. The bottom half shows the TCE Module,
which models the influence of the Support Sequence on the spatial correlations.

The main challenge of sparse input models on HWSN datasets is the contra-
diction between the requirement of adaptively discovering complex correlations
and defective datasets, mainly manifested in low spatial coverage limited by the
amount of the sensor and high noise due to the introduction of low-cost sensors.
Such problems are usually solved in other fields by obtaining more data sources
or using data augmentation approaches. However, in spatial interpolation tasks,
such methods are generally limited. We can no longer return to the past to col-
lect data from more locations, and we also lack prior knowledge of those Target
Properties affected by complex systems for artificially creating more data. It’s
worth noting that some heuristics widely used in other fields, such as transla-
tion and transposition, are also risky in fields like meteorology, where spatial
correlations are significantly affected by longitude, latitude, and azimuth.

These challenges necessitate a robust model design. Models with weak induc-
tive biases, like Transformers [21], excel at capturing complex correlations but
heavily depend on data quality and quantity, making their results unstable on
HWSN datasets. Conversely, models with strong inductive biases, such as KCN
[1] or even Inverse Distance Weighting Interpolation, while based on simple as-
sumptions, perform surprisingly strongly on specific datasets. Nevertheless, they
also risk their inductive biases being mismatched with the dataset. To address
this, we propose a hybrid strategy: a strong inductive bias module serves as the
backbone, complemented by a weak inductive bias module as an auxiliary com-
ponent. A self-supervised signal dynamically balances the two modules, enabling
better adaptation to different tasks.

Transformer-based Context Embedding (TCE) Module We design a
Transformer-based module as our auxiliary component, whose structure is illus-
trated as the bottom part of Figure 3. It learns the observation-level influence of
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the Support Properties on the spatial correlation of the Target Property. This
influence is eventually encoded as Context Samples, which are subsequently used
to correct the inputs of the GraphSAGE Module.

The TCE Module starts with input centering, that is, replacing the absolute
coordinates in each observation of the input Frame F' with its relative coordinates
to the target location C:

Feen = {(Hacz - Cla V;) | 1=1,2, 7m} (1)

With input centering, we hide the information of specific coordinates in the
input Frame, forcing the TCE Module to concentrate on more generalizable spa-
tial correlations. Fi.,, is then embedded by a multi-layer perceptron (MLP) and
further processed by the Context Transformer. The Context Transformer is with-
out positional embedding, making it order-independent for the input sequence.
With the multi-head self-attention mechanism, each output token of the Context
Transformer is obtained after referring to the information of all tokens in Fi,,.
In our design, the underlying intuition here is: for each input token, assuming
that all other tokens are noise-free, how much should we adjust its embedding?

The output of the Context Transformer is a deterministic encoding that maps
each token to a specific point in the latent space. As the reconstruction error
decreases, the model risks overfitting noise in the dataset, leading to degraded
performance. We use Variational Inference (VI) to learn a smooth, probabilistic
latent space to address this. In probabilistic encoding, the data with noise is
treated as a sample of the learned distribution. We construct a continuous and
smooth latent space by repeatedly sampling from the learned distribution and
ensuring these samples yield consistent outputs. This approach significantly en-
hances the model’s generalization ability while providing meaningful uncertainty
estimates for the final output. Specifically, we assume the posterior distribution
in the latent space ¢(z|z) follows a Gaussian distribution. The deterministic en-
coding z is passed through two MLPs to predict the mean p and variance o2
of q(z|z), respectively. Using the reparameterization trick, we sample a random
Context Sample from ¢(z|z):

z=p+oee~N(0T) (2)

To align the learned posterior ¢(z|z) with the standard normal prior p(z) ~
N(0,TI), we minimize their KL divergence:

Lir = Drr(q(zlz) || p(2)) (3)

GraphSAGE-based Interpolation (GI) Module We select GraphSAGE
as our backbone module, whose structure is illustrated as the upper part of
Figure 3. GraphSAGE assumes that the message-passing process follows the
graph’s topology, exchanging information within local neighborhoods through
shared aggregation and update functions. This represents a relatively strong in-
ductive bias. First, we construct a Virtual Token representing the target location
in the format of an observation, in which the Value is filled as zero:
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Oru = (Ptgtu Cl, 0) (4)

The Virtual Token, along with the tokens in Fyg, is then encoded by an MLP,
which is the Interpolation Embedding Layer in Figure 3, resulting in the Vir-
tual Token Embedding and the Target Sequence Embeddings. Next, we use the
Context Samples from the TCE Module to correct their corresponding Target
Sequence Embeddings, resulting in Node Features. The Virtual Token Embed-
ding and the Node Features are then together treated as the node feature matrix
of the input graph. The adjacency matrix of the input graph is constructed using
the k-nearest neighbors heuristic. Then, GraphSAGE is applied to process this
graph. Finally, the GraphSAGE output corresponding to the Virtual Token is
fed into an MLP Head to produce the interpolation result V’. We use the mean
absolute error between V' and the label L as part of the supervisory signal for
model training, named reconstruction loss:

Lrecon = MAE(V/7 L) (5>

Context Correction Loss In addition to L;ccon and Ly, we introduce an-
other self-supervision loss signal, named Context Correction Loss Lo, to auto-
matically balance the inductive bias of the two modules. It is the average of the
L1 Norm of all Context Samplings:

1 n
Loc = gi;HCSilll (6)

Introducing Lo can bring the following benefits that stabilize the model’s
performance. First, since the input of the GraphSAGE Module is a linear com-
bination of Target Sequence Embeddings and Context Samples, by limiting the
Context Samples to the global minimum, the Lo can make sure that the Graph-
SAGE Module dominates the training when backpropagating the Lj¢con. This
ensures that the GraphSAGE module keeps being the central component of the
pipeline, restricting the Transformer’s strong trend of overfitting as a module
with weak inductive bias. Second, since the Context Samples are sampled from
a Gaussian distribution ¢ learned by the Context VI Module, minimizing Lo
can constrain the standard deviation of ¢, preventing the model from identifying
the major part of the input as noise and converging to suboptimal results. Third,
the Loe encourages the TCE Module to correct the inputs with the minimum
possible corrections. This can be thought of as an Occam’s razor-based heuris-
tic. When a simple and a complex correction achieves similar results on a poorly
sampled dataset, we will prefer the simpler one, thus reducing the overfitting.

The final loss Signal of the model pipeline is a linear combination of L, ccon,
Likr,and Lece:

L= Lrecon + LKL + LCC (7>
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Table 1: Comparison of Datasets Included in this Study

Name ‘ Sensor Type ‘ Noise Level ‘Psup Channels‘Average 3 Length‘SpaLial Coverage Rate® ‘Missing rate?
SAQN |All fixed-location High 8 200.31 12.30% 52.54%
ABO All movable Low 2 460.52 4.68% 0.38%
Marine mixed Pass quality inspection 5 339.62 97.96% 21.15%

1. How many grids have been observed at least once in the entire dataset
2. How many input cells are missing when expressed as dense input

4 Experiments

4.1 Experimental Setup

Datasets We evaluate CESI on three publicly available real-world datasets:
the SmartAQnet dataset (SAQN) [13], the NOAA Aircraft Based Observation
dataset (ABO) [19], and the Copernicus In-situ Marine Observation dataset
(Marine) [4]. Table 1 provides detailed dataset information.

The SAQN dataset is a typical fixed-location HWSN dataset that monitors
urban air quality and meteorological conditions. It is characterized by a high
missing rate and considerable noise due to deploying numerous low-cost sen-
sors. Furthermore, its spatial coverage is limited as it relies exclusively on fixed-
location sensors. In contrast, the ABO and Marine datasets reflect the trend of
incorporating movable sensors in HWSN datasets for higher spatial coverage,
which leads to more complex sensor topologies. The ABO dataset, which moni-
tors meteorological parameters using sensors mounted on commercial aircraft, is
distinguished by its low noise and extremely low missing rate. However, despite
its larger number of observations in each Frame, the ABO dataset still exhibits
limited spatial coverage as it is the only three-dimensional dataset included in our
analysis. The Marine dataset, on the other hand, measures hydrological and me-
teorological parameters. Its use of a wide array of movable sensors results in high
spatial coverage. This dataset also resembles a traditional dataset, given its rel-
atively low missing data rate and the implementation of strict quality inspection
processes. Experiments using the Marine dataset also provide an opportunity to
evaluate the effectiveness of our model on more conventional datasets.

Baselines We involve GraphSAGE [9] and Transformer [21] into baselines, as
they are the base components of our model. From the GNN-based spatial inter-
polation models, we involve GAT [22]|, KSAGE [1], PE-SAGE [12], LSPE [6], and
SPONGE [18]. From the attention-based spatial interpolation models, we involve
SSIN [15], and SMACNP [2]. Experiment codes are provided in the additional
materials.

Data Preprocessing The SAQN dataset uses SmartAQnet data from January
1, 2017, to December 31, 2021. The time interval of the Frame is 1 hour. The
observed area is a rectangular area within 14 kilometers north and east from
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10.7992° E and 48.421° N. The target OP is PM10. Support OPs include PM2.5,
temperature, relative humidity, air pressure, longitudinal wind speed, latitudinal
wind speed, precipitation, and solar radiation.

For the ABO dataset, we selected all observations in this dataset from July
1, 2001, to April 1, 2004, located in the range of 74° W to 77° W, and 39° N
to 42° N. The time interval of the Frame is 1 hour. The target variable is air
temperature, and the support variables include wind speed and wind direction.

For the Marine dataset, we selected all observations in this dataset from
January 1, 1900, to December 31, 2010, located in the range of 36.0° W to 11.0°
W, and 31.0° N to 56.0° N. The time interval of the Frame is 4 hours. The target
variable is water temperature, and the support variables include air temperature,
air pressure, dew point, wind speed, and wind direction.

The following preprocessing steps are common to all the datasets:

— Step 1: Exclude outliers. In this step, we use the threshold method to ex-
clude outliers that do not comply with physical laws. The preprocessing code
provides further detail.

— Step 2: Split the Frames. We split the observations in the dataset into
different Frames according to the time intervals mentioned above.

— Step 3: Spatial aggregation. We further partition the horizontal space into
a 250 x 250 grid for each Frame. Then, we aggregate the readings with the
same coordinates by averaging.

— Step 4: Filter the Frames. We only retain Frames that provide at least 5
nodes for training and one node for evaluation. For datasets that still have
more than 20,000 Frames after filtering, we retain the 20,000 Frames with
the latest timestamps.

Time Training Hold-out
Area Area

Training Set 60%

Validation Set 20%
Test

Fig. 4: Our strategy for dividing the dataset. With this strategy, we ensure that
the models are tested only at times and locations that have never been seen
during training and validation.

Location

Evaluation Strategy Figure 4 illustrates our strategy for dividing the dataset.
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In the temporal dimension, we divide all the Frames into three parts accord-
ing to their temporal order: 60%, 20%, and 20% each, which are used in the
model’s training, validation, and testing, respectively.

In the spatial dimension, we divided the study area into four equal parts
by dividing the length and width of the horizontal area equally. We adopt the
leave-one-area-out cross-validation method and, in turn, use four areas as hold-
out areas. The training and validation of the model are performed only with the
label within the three non-hold-out regions, while the model is tested only with
the label in the hold-out region. With the above evaluation strategy, we ensure
that the models are tested only at times and locations that have never been seen
during training and validation.

Further, test locations might be densely surrounded by other sensors, making
it hard to evaluate whether the model performs well in the target locations that
are very remote. Therefore, when testing the model, for each target location,
in addition to testing with the complete Frame, we also use two other Frames
that remove all nodes within 20 or 50 pixels by Manhattan distance of the
target location, simulating the situation that target locations of different levels
of remoteness.

As in other literature in the field, we choose the mean absolute error (MAE)
and coefficient of determination (R?) between the model output and the label
as the metrics to evaluate the model performance. We first calculate the per-
formance of four-fold leave-one-area-out cross-validations under each random
seed and then calculate the mean and standard deviation of the results between
different random seeds.

Environments We conduct our experiments on an HPC cluster. Models that
demand lower computational resources, including GCN, GraphSAGE, KCN, and
PE-GNN, are trained on CPU nodes equipped with 20 Intel Xeon Gold 6230
CPUs and 192 GB of memory. Other models are trained on GPU nodes equipped
with 20 Intel Xeon Gold 6230 CPUs, 192 GB of CPU memory, 2 NVIDIA Tesla
V100 GPUs, and 64 GB of GPU memory.

The system used for all nodes is Red Hat Enterprise Linux (RHEL) 8.4. The
training environment is based on Python 3.10.12, Pytorch 2.1.0 + CUDA 12.1,
Pytorch-geometric 2.4.0, DGL 2.2.1, Numpy 1.26.1, Pandas 2.1.1, Scikit-learn
1.3.1, and Scipy 1.11.3.

4.2 Overall Performance

After random searches on hyperparameters, each model was evaluated with four-
fold leave-one-area-out cross-validations and five random seeds (1, 2, 3, 4, and
5). Table 2 shows the overall performance.
Q1: Which model demonstrates the best overall performance?
A1: CESI achieves the best average MAE and R? on all datasets. On the
ABO dataset, Transformer and SMACNP rank second and third, respectively,
while Transformer and SSIN occupy these positions on the Marine dataset. On
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Table 2: Overall Result of all models. Bold indicates the best performer, underline

indicates the second place

Model ABO SAQN Marine

Metrics MAE R MAE R? MAE R?
GraphSAGE 10.293 + 0.044 0.451 + 0.004 5.863 + 0.048 0.317 + 0.009 1.993 + 0.038 0.631 £ 0.012
Transformer 1.811 + 0.639 0.972 + 0.025 6.041 + 0.437 0.184 £ 0.104 0.971 £ 0.144 0.903 £ 0.027
KSAGE 14.268 £ 0.021 0.012 + 0.002 5.535 & 0.048 0.301 & 0.010 3.128 & 0.018 0.198 + 0.007
PE-SAGE  3.302 + 0.258 0.927 + 0.008 6.115 + 0.243 0.217 £ 0.047 1.315 = 0.042 0.835 =+ 0.011

LSPE 13.844 £ 0.424 -0.390 £ 0.409 6.205 £ 0.115 0.171 £ 0.030 1.660 £ 0.084 0.721 & 0.026
SPONGE 3.918 £ 0.296  0.913 £ 0.013  6.388 £ 0.138 0.249 £ 0.019 1.593 £ 0.071 0.768 £ 0.023
SSIN 18.800 £ 0.469 -0.420 £ 0.062 6.197 & 0.084 0.167 & 0.034 1.035 &+ 0.052  0.893 & 0.014
SMACNP 3.241 £ 0.281  0.884 £ 0.025 6.237 £ 0.337 0.201 £ 0.062 1.741 4+ 0.044 0.287 £ 0.127
CESI 1.426 + 0.040 0.987 + 0.001 5.362 & 0.110 0.334 + 0.008 0.944 + 0.036 0.910 + 0.009

the SAQN dataset, however, KSAGE and GraphSAGE take second and third
place, as the above models experience significant degradation. In conclusion,
CESI consistently outperforms all baselines across all three datasets, highlighting
its adaptability.

Q2: Is sparse input a beneficial choice for spatial interpolation?

A2: Sparse input is beneficial but presents challenges. On ABO and Marine
datasets, even the Vanilla Transformer surpasses dense input baselines on average
performance. However, sparse input models are more sensitive to noise and bias
in lower-quality datasets, such as the Transformer failure on the SAQN dataset,
and its performance is volatile on all the datasets. CESI effectively addresses
this challenge, with MAE standard deviations 93.7%, 74.8%, and 75.0% lower
than Transformer on ABO, SAQN, and Marine datasets, respectively. CESI’s
stability is competitive even against dense input models.

Q3: Why do many models degrade performance on the SAQN
dataset?

A3: First, the SAQN dataset only contains fixed-location sensors, coupled
with a low spatial coverage rate, resulting in a high location-related bias in the
dataset. Models that employ learnable location-based encodings (e.g., PE-SAGE,
LSPE, SPONGE, SSIN) are particularly susceptible to these biases, leading to
significant performance degradation. Second, the SAQN dataset has the highest
heterogeneity and noise level. Models lacking stable inductive bias (Transformer
and SMACNP) tend to overfit the noise, resulting in volatile performances. Our
model, on the contrary, successfully overcomes these challenges.

Q4: Why is the performance on the ABO dataset so polarized?

A4: Models like GraphSAGE, KSAGE, and SSIN use Euclidean distance-
based heuristics for encoding spatial relationships, and unlike PE-SAGE and
CESI, they do not incorporate additional location-based embeddings. The hidden
inductive bias of such heuristics is the spatial isotropy of the Euclidean distance.
However, on the ABO dataset, the Target Property (air temperature) has an
evident stratification along the altitude dimension. This reminds us again that
we should be cautious when introducing inductive bias into model design. When
the inductive bias of the model is consistent with the actual situation of the
dataset, we can learn a good model with less and worse data. However, when the
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Table 3: Result of Ablation Study. Bold indicates the best performer, underline
indicates the second place

Model ABO SAQN Marine
Metrics MAE R? MAE R? MAE R
CESI 1.426 £ 0.040 0.987 £ 0.001 5.362 £ 0.110 0.334 & 0.008 0.944 + 0.036 0.910 = 0.009

CESI w/o Lxr 2.020 £ 0.187 0.972 £+ 0.005 6.018 + 0.156 0.170 £ 0.030  0.900 + 0.025 0.915 £ 0.008
CESI w/o Lcc 1.489 £ 0.045 0.986 £ 0.001  6.044 + 0.500 0.214 £ 0.108 0.980 + 0.019  0.896 £ 0.008
CESI Null 2.285 + 0.064 0.968 + 0.002 8.548 + 1.170 -0.672 + 0.654 0.865 + 0.031 0.922 £ 0.005

model’s inductive bias conflicts with the dataset’s actual situation, the model’s
performance will be negatively affected.

4.3 Ablation Study

We use the following ablation models to study the effectiveness of each module:
CESI w/o Lk model removes the probabilistic encoding and its associated
Lkyp, CESI w/o Lec model removes the Context Correction Loss Loe, and
CESI Null model simultaneously removes the both. All experiment settings are
the same as above. Table 3 shows the results of the ablation study.

On the ABO dataset, both modules contribute to performance improvement.
The main contribution comes from probabilistic encoding, while Lo further
refines the performance. On the SAQN dataset, the contribution on average
MAE from both modules is roughly the same, and Loc provides more stability
improvement than probabilistic encoding.

However, our modules had a slight adverse effect on the Marine dataset.
The probabilistic encoding and Lo¢ are designed to address bias and noise in
datasets. However, these occurred less in the Marine dataset. First, the dataset
has undergone strict quality checks, making it generally noise-free. Second, it
boasts exceptionally high spatial coverage (up to 97.96%), minimizing location-
related bias. This led to misattributions of our modules, where the probabilistic
encoding mistakenly interpreted some genuine correlations as noise, resulting in
the significant performance drop of CESI w/o Leoe. From the performance of
CESI and CESI w/o Lk, we observed that Lo effectively served its intended
purpose of constraining such misattributions yet did not fully mitigate the per-
formance decline. Nevertheless, as the overall results demonstrated, this did not
prevent the model from achieving state-of-the-art performance. This highlights
that our model’s competitive edge relies not solely on exploiting flawed datasets
but also on learning fine-grained observation-level correlations.

We conducted additional experiments on robustness to missing rates and
noise using the Marine dataset to validate our explanation.

4.4 Experiments on Robustness

In the robustness experiment, we randomly mask 20%, 40%, 60%, and 80% of the
observations from each Frame in the Marine Dataset to increase its missing rate,
and we randomly add multiple Gaussian noise with different standard deviations
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Fig.5: Result of Robustness Experiment, the shaded area marks the standard
deviation

Table 4: Result of Robustness Experiment. Bold indicates the best performer,
underline indicates the second place

Masking Rate 20% 40% 60% 80%

Metrics MAE R MAE R MAE R MAE R
Without additional noise

CESI 0.622 + 0.019 0.874 £ 0.005 0.623 £ 0.021 0.878 + 0.006 0.619 £ 0.064 0.878 + 0.026 0.645 £ 0.041 0.872 + 0.017

CESI Null 0.705 &+ 0.097 0.850 £ 0.040 0.710 £ 0.009 0.843 £ 0.005 0.690 £ 0.014 0.857 & 0.008 0.711 & 0.053 0.848 + 0.019
Transformer — 0.809 + 0.040 0.797 & 0.013  0.646 £ 0.048 0.864 &= 0.025 0.903 £ 0.067 0.722 &+ 0.042 0.874 £ 0.281  0.690 + 0.234

PE-GNN 1.095 £ 0.094 0.631 £ 0.066 1.263 & 0.071  0.508 £ 0.054 1.228 4 0.075  0.525 £ 0.067 1.158 & 0.065 0.589 = 0.045
With additional noise
CESI 0.651 + 0.012 0.869 + 0.003 0.658 + 0.009 0.867 + 0.001 0.679 £ 0.001 0.862 + 0.001 0.678 £ 0.021 0.856 + 0.004

CESI Null 0.760 = 0.063  0.834 £ 0.025 0.742 £ 0.031 0.840 £ 0.012 0.771 £ 0.071  0.829 4 0.028 0.737 & 0.051 0.841 + 0.018
Transformer  0.676 + 0.070 0.859 & 0.028 0.709 + 0.069 0.845 & 0.032 0.761 £ 0.076 0.823 & 0.033  0.745 £ 0.114  0.826 & 0.051
PE-GNN 1.134 £ 0.124 0.603 £ 0.089 1.178 4 0.073 0.594 &+ 0.049 1.212 £ 0.057 0.559 £ 0.057 1.080 £ 0.080 0.651 =& 0.047

to varying proportions of data. Then, we train CESI, CESI Null, Transformer,
and PE-GNN models on these datasets. We train with random seeds 1, 2, and 3
for each model, respectively. The results are summarized in Table 4 and Figure 5.

Obviously, (1). the CESI model performs best in all experiments. (2). Al-
though we added noise with different standard deviations to different propor-
tions of data, the noise didn’t significantly affect the performance of the CESI
model. Since the Gaussian noise added is consistent with the preset of probabilis-
tic encoding, after getting rid of the misattribution, the stability of the model
is even improved. (3). Dense input models represented by PE-GNN are hardly
affected by the missing rate and noise because the model and data augmentation
provide very stable inductive biases. However, as a price, it sacrifices the ability
to discover fine-grained correlations, so the overall performance is the worst.

The above concludes that our design works as expected and can maintain
the model’s performance and stability under different noise and missing rates.
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5 Conclusion

We propose the CESI Model for HWSN datasets. Our model directly takes the
narrow format sparse input and learns their correlations. Since HWSN datasets
usually exhibit small-scale, low spatial sampling rates and considerable noise, we
use probabilistic encoding and a self-supervision signal named Context Correc-
tion Loss to extract encodings conducive to better generalizing to coordinates not
present in the training set. As a result, we effectively improve the model’s per-
formance and stability. Experiments across several publicly available real-world
HWSN datasets with different characteristics show the CESI Model holds signif-
icant potential for broader applications, such as enhancing data-driven decision-
making in environmental monitoring, urban planning, and other domains reliant
on sparse spatial data.
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