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Abstract. Stock prediction is hindered by data scarcity, and although
existing data augmentation techniques have made significant strides,
they often overlook the dynamic inter-stock interactions crucial for ro-
bust modeling. To address these challenges, we propose InterDiff, a
diffusion-based framework that synthesizes realistic financial time se-
ries by dynamically modeling both intra- and inter-stock correlations.
InterDiff employs hierarchical transformers to learn these correlations,
encoding them into a guidance vector that steers a diffusion model via
classifier-free guidance. This approach ensures that the synthetic data
preserves fidelity while introducing controlled variability. Evaluations on
CSI300 and CSI800 show that models trained on InterDiff-augmented
data boost the information coefficient by 1.13-4.70% on CSI300 and
40.15-49.60% on CSI800, while delivering cumulative return improve-
ments of 0.57-13.87% on CSI300 and 28.72-51.33% on CSI800 under
0.1% per-trade cost. The framework outperforms alternatives such as
DiffsFormer and Quant GAN. Ablation studies reveal a fidelity-diversity
tradeoff: while larger guidance strength improves synthetic data fidelity,
it does not necessarily enhance prediction performance. Visualizations
confirm the preservation of inter-stock correlations and a reduction in
overfitting. These results demonstrate InterDiff’s ability to enhance ro-
bustness and profitability in real-world trading environments and miti-
gate data scarcity.
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1 Introduction

Stock prediction, which involves forecasting future trends and prices based on
historical stock prices and factor time series, is a crucial technique for making
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profitable investment decisions [1-4]. Numerous machine learning models, such
as the State Frequency Memory (SFM) [5], have been proposed for this task.
However, the effectiveness of these models heavily depends on the availability of
high-quality data. A full year of stock price records typically contains only about
252 daily prices [6]. Furthermore, stock prices exhibit high volatility and are influ-
enced by numerous external factors, leading to a low signal-to-noise ratio (SNR)
[7]. These challenges—data scarcity and low SNR—complicate stock prediction,
making it difficult to extract meaningful signals and train robust models. As
a result, models often suffer from overfitting and poor generalization. A widely
adopted approach to mitigate these issues is data augmentation, which generates
synthetic sequences to expand the input space while preserving correct labels.
This process helps prevent overfitting and improves model generalization [8-10].
Traditional time series augmentation methods rely on transformations in the
time, frequency, and time-frequency domains [11-14|. More advanced techniques
incorporate decomposition-based methods and statistical generative models [15,
16]. Although these approaches can produce diverse samples, they often struggle
to fully capture the complex characteristics of real-world stock data. Recently,
deep generative models (DGMs) have gained popularity for time series data aug-
mentation, particularly generative adversarial networks (GANs) and variational
autoencoders (VAEs). GAN-based methods, such as TimeGAN [17] and Quant
GAN [18], employ an adversarial framework in which a generator and a dis-
criminator compete to produce realistic synthetic data that closely mimics the
underlying distribution [19,20]. Similarly, VAEs, such as TimeVAE [21], use a
probabilistic encoder-decoder architecture to learn latent representations, gen-
erating synthetic data that maintains temporal dependencies. The most recent
advancement in this domain is the application of diffusion models (DMs) for
time series augmentation [22]. Methods like Diffsformer [7] leverage a forward
and reverse diffusion process to iteratively denoise data, generating high-quality
synthetic samples.

A major limitation of existing DGM-based methods is their tendency to
treat stocks as independent entities. While these models effectively capture tem-
poral dependencies within individual stocks (intra-stock correlations), they often
overlook relationships between different stocks (inter-stock correlations), which
contain valuable predictive signals about market behavior [23-28]. For instance,
stocks within the same sector or industry frequently exhibit similar long-term
trends. Ignoring these relationships can lead to synthetic data that disrupts the
statistical dependencies between inter-stock correlations and future returns, ul-
timately impairing the performance of models trained on such data. A notable
exception is DiffsFormer [7], a state-of-the-art model that attempts to incor-
porate inter-stock correlations by conditioning the data generation process on
static industry-sector classifications. This approach assumes that stocks within
the same sector behave similarly. However, such a rigid classification oversim-
plifies real-world market dynamics [29]. In reality, sector-based relationships are
fluid and complex—firms within the same industry can respond asymmetrically
to market shocks (e.g., competing companies reacting differently to supply chain
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disruptions), experience intra-sector competition, or even redefine their industry
alignment over time (e.g., traditional companies pivoting to Al-driven business
models). This raises a critical question: How can we dynamically capture
both intra- and inter-stock correlations to improve financial time se-
ries augmentation?

o -0 Correlation
[] Original Series
[ ] Synthetic Series

Fig.1: A comparison of existing methods and InterDiff for financial time series
augmentation.

To address this limitation, we present InterDiff, a diffusion-based framework
that synthesizes financial time series with dynamic correlations across stocks. In-
terDiff employs hierarchical transformers to first capture intra-stock correlation
and then model inter-stock correlation. These transformers produce a guidance
vector that encodes real-world evolving market logic. This vector then steers a
diffusion model via classifier-free guidance. During training, InterDiff learns to
denoise data by optimizing two objectives: (1) a diffusion loss to match the sta-
tistical properties of real data and (2) a supervised loss to align guidance vector
with predictive signals for future returns. At inference, InterDiff blends guided
predictions (informed by the learned correlations) with unguided predictions, en-
suring synthetic data retains realistic inter-stock correlations while introducing
controlled variability to avoid overfitting.

This paper makes the following contributions:

(i) Hierarchical Correlation Learning: We design a process to dynamically
model intra-stock correlations and inter-stock correlations through trans-
formers, encoding these correlations into a guidance vector.

(ii) InterDiff Framework: We introduce a diffusion-based method using classi-
fier free guidance, conditioned on learned correlations, to synthesize financial
time series that balance fidelity to real data with controlled variability.

(iii) Empirical Validation: We demonstrate the framework’s effectiveness via
comprehensive evaluations on real world datasets (CSI300/CSI800), ablation
studies, and visualizations showing preserved market dynamics and improved
prediction robustness.

2 Related Work

Deep generative models (DGMs) have demonstrated superior performance over
traditional augmentation techniques in capturing the complex characteristics of
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real data. A pivotal work in this domain is TimeGAN [17], which integrates a
generative adversarial network (GAN) with a supervised autoregressive model
to preserve temporal dependencies while synthesizing realistic time series data.
Another notable model, Quant GAN [18], is specifically designed for financial
time series, effectively capturing long-range dependencies such as volatility clus-
tering. Its data-driven approach makes it particularly suited for modeling con-
tinuous sequential data with long-term dependencies. A comprehensive review
of GAN-based time series synthesis can be found in [30]. Beyond GANs, varia-
tional autoencoders (VAEs) offer a probabilistic framework that explicitly mod-
els the data distribution, resulting in stable and diverse synthetic samples [34].
TimeVAE [21] enhances this framework by incorporating seasonality and trend
modules, improving both model performance and interpretability.

The state-of-the-art model in this field is DiffsFormer [7], which leverages
diffusion models (DMs) for stock factor augmentation. Unlike previous methods
that generate synthetic data from scratch, DiffsFormer employs transfer learn-
ing to refine existing samples. Additionally, it conditions the generation process
on static industry classifications, aiming to incorporate inter-stock relationships
into the synthetic data. However, we argue that static industry classification is
insufficient to capture dynamic inter-stock correlation. Therefore, we propose
to condition the generation process on a learned vector that encodes dynamic
inter-stock relationships and market trends for realistic synthesis in InterDiff.

3 Background

In this section, we will introduce some definitions in our work and the problem
of stock price forecasting.

3.1 Problem Formulation

Stock forecasting aims to predict future normalized returns of stocks based on
historical factor data. For each stock u € S, quantifiable factors such as momen-
tum, volatility and liquidity are collected over a historical lookback window of
T days, forming a 2-D factor vector z* € RT*F where F denotes the number
of factors. The prediction target is the normalized return ratio r,, defined as:

Price}’, ; — Price;
Tu =

Price}’ ’

where ¢ is the current time and 4 is the forecast horizon (in days). To mitigate
data scarcity, a DGM synthesizes realistic sequences %, augmenting the original
dataset with synthetic data that preserves market dynamics. The task requires
jointly predicting {ry }nes for all stocks using their augmented factors {Z%},cs.

3.2 Denoising Diffusion Probabilistic Model

Denoising Diffusion Probabilistic Models (DDPMs) have demonstrated excep-
tional performance and outperformed Generative Adversarial Networks (GANS)
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in several areas, particularly in text-to-image generation tasks. The training of
a diffusion model involves two main processes: diffusion and denoising.

Diffusion process: Starting with a data point zg ~ ¢(z0)®, the diffusion
process progressively adds noise to create a sequence of step-dependent variables,
{x}£ . This process can be described as a Markov chain:

=

q(x1.x|z0) = H (zrlzr—1) (1)

where q(zy|rr—1) = N(xk; \/arre—1, BkI). Here, N represents a Gaussian dis-
tribution, «y controls the signal retention strength, and Sy governs the scale of
the noise added. These scalars, oy and S, are predefined for each step k. A
common setting is the variance-preserving process where o = 1 — G.

Denoising Process: The goal of the denoising process is to reconstruct
the original data by reversing the transformations introduced in the diffusion
process. This is accomplished by another Markov chain:

K
po(To.x) = H (Tg—1|zk) (2)

, where zx ~ N(0,I). The distribution py is an approximation of the true
distribution ¢. Specifically, pg(zr—1|Tr) = N(xp_1; po(zk, k), 09 (21, k)I), where
g and oy are learned functions of the noisy input x; and the step k. For each
sample in a batch, a time step k is randomly selected from 1,2,..., K, and the
noise is adjusted accordingly at step k.

Inference Process: Once 6 is well-trained, the DM generates samples by
initializing zx ~ A(0,I) and iteratively denoising through zx — -+ — = —
Tp—1 — -+ — To using pg(Tr—1|xg).

3.3 Classifier and Classifier-Free Guidance

DMs utilize two primary conditioning strategies to incorporate information from
a guidance variable c¢: classifier guidance and classifier-free guidance. Classifier
guidance relies on training an auxiliary classifier to estimate p(c|zg, k). Dur-
ing inference, the gradient V, logp(c|zy, k) from this classifier is used to steer
the synthesis process. Specifically, the predicted noise at each step is adjusted
according to

€ =eg(ap, k) — V1 —apwVy, logp(clak, k) (3)

where w scales the guidance strength.
In contrast, classifier-free guidance eliminates the need for a separate clas-
sifier by jointly training a conditional DM and an unconditional DM. These

5 20 denotes the initial (non-noised) step, with the total diffusion steps K set to 500

in our work (or say in the experiment section)
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two components are combined during inference using a weighted interpolation
of their predicted noise:

€0 = (1 + wiree)€9(Tks ¢, k) — wirec€o (w1, 0, k) (4)

where wgee controls the trade-off between conditioning fidelity and sample di-
versity.

We opt for classifier-free guidance due to a critical limitation inherent to clas-
sifier guidance: gradient instability. When classifier gradients are injected into
the denoising process, they can behave adversarially. This instability disrupts the
generation process, as erratic gradient updates degrade output quality and con-
sistency. Empirical results from [31] confirm that this sensitivity to adversarial-
like gradients often renders classifier-guided synthesis inferior to classifier-free
approaches.

4 Methodology

The InterDiff framework generates synthetic stock data that balances diversity
with correlation-consistency through two key stages. First, for each stock u, a
guidance vector e, is learned to capture its intra-stock correlation and inter-stock
correlations through a 3-stage hierarchical transformer (Intra-, Inter-stock and
Temporal Aggregation). Next, e, guides a DM in the denoising and inference
process by classifier-free approach.

Guided Diffusion-Denoising Process

Guidance Vector Learning o ~ Eqs (3) Temporal Aggregation |
’ z - B R ——
Concat. lfor allte [1,7] Y €u Diffusion Process
’ + - \ Zu,| T Zyr )
(2)Inter-stock Aggregation ! f % f Eq.10
P - (
—y T . | - )
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Fig.2: The Pipeline for InterDiff

4.1 Guidance Vector Learning through Hierarchical Transformer

The guidance vector learning process begins by splitting the set of stock factors
{2"}ues into {&""},es1e1,1), Where each stock’s data is associated with factors
at each time step. The learning process proceeds as follows:
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Intra-Stock Aggregation: For each stock, the factors at each time step
{z*"}ues,tep1,m are first encoded into embeddings I, ; = f(z"") via a linear layer
f(-). A transformer encoder then processes these embeddings with sinusoidal
positional encodings p; to preserve chronological order:

L,= Hte[l,T]LN(f(fu’t) + i) (5)

where || denotes concatenation and LN is layer normalization. Multi-head atten-
tion (N7 heads) and feed-forward networks (FFNs) then aggregate intra-stock
correlations across time steps. The transformer computes query (QL), key (K})
and value (V,!) matrices from L,, producing local embeddings h,, ; enriched with
cross-time signals:

Qu=W4hLy, K,=WiL,, V,=W{L,

1 1Al gl 171 (6)
H! = lltepr, myPue =FFN (MHA(Q,, K,,V,,) + L)
These embeddings retain local temporal details while integrating global historical
context, ensuring the learned intra-stock correlations reflect both short-term
fluctuations and long-term trends.
Inter-Stock Aggregation: At each time step ¢, local embeddings {hq ¢ }ues
from all stocks are combined to model inter-stock correlations. Another multi-
head attention layer (N2 heads) computes cross-stock interactions:

Q; =W3H,, K} =WiH, V?=WyH,

Zy = |lueszue =FFN*(MHA*(QF, K}, Vi) + HY) 7
where Hf = ||lueshu,t. The temporal embedding z, ; for stock u at time ¢ encodes
both its intrinsic features and dependencies on other stocks.

Temporal Aggregation: To summarize the obtained temporal embeddings
and obtain a comprehensive stock embedding e,,, we employ a temporal atten-
tion layer along the time axis. We use the latest temporal embedding z, 7 as
the query vector, and compute the attention score A, ; in a hidden space with
transformation matrix Wy,

WWazy
Mg = PCzn) 5 (®)

2 ie[1,T] exp( ZuiWazu,T) te[L,T)

Return Calibration: For stock forecasting, each input requires a label, but
rather than directly generating label as an additional dimension, using ground
truth labels to guide data generation and keep the original label is more effec-
tive [7]. Therefore, we introduce an auxiliary predictor ¢ that maps the learned
guidance vector e, to the stock return r,. This ensures e, captures the depen-
dencies critical for forecasting while allowing us to use the original return as a
label through a mean squared error (MSE) loss:

Lreturn - ]EuES[Hru - ¢(eu)||§] (9)
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4.2 Classifier-Free Correlation Guided Diffusion-Denoising Process

The InterDiff framework synthesizes stock data with realistic intra- and inter-
stock correlations by integrating a DM conditioned on the learned guidance
vector e, . For clarity, we omit the stock-specific superscript « in this section (e.g.,
Ty = x0, €y = €), as the diffusion and denoising processes operate identically for
each stock. The process follows a diffusion-denoising pipeline.

Diffusion Process: The forward process gradually corrupts xg over K steps
by adding Gaussian noise. At step k, the noised state zj follows ¢(xg|xo) =
N (z; v/arxg, (1 — @y)l), where oy = an:l oy, and o = 1 — Bi. This allows
direct sampling of x; via reparameterization:

r = Varre + /1 —age, where e ~ N(0,1) (10)

Denoising Process: The denoising process iteratively removes noise from
xy, to reconstruct &y ~ g(xp). To enable classifier-free guidance, we stochastically
mask the guidance vector e with a null token () with probability p during train-
ing, enabling the model to learn both conditional and unconditional denoising.
Formally:

po(Tr—1|rr, e) = N(zp—1; polxr, k, €), Zy(k)I) (11)
with:
L (zk - \/lﬁki@(xk, k, e)) ,with probability (1 — p)
Ja —a
,U'Q(xka k7 6) = g F

! (J) —7ﬁk €
Var \" T VT—ar
(12)

The mean square error between the true noise € and the predicted noise €y is
computed across all timesteps and incorporated into the InterDiff loss function
to ensure accurate noise estimation and effective denoising.

(g, K, @)) ,with probability p

»Cdiff = Emgwq(zo),eNN(O,I),kNUniform(l,K) H |6 - 69' |g] (13)

Loss Function: InterDiff employs an uncertainty-aware loss [32] that dy-
namically weights the denoising and return calibration tasks to balance the dual
objectives of generating relationally consistent stock data and preserving return-
predictive signals. The total loss integrates the DM’s noise prediction error Lgig
and the return calibration error Lyetyrn through learnable variance parameters

03 and 02 ..., which quantify the intrinsic uncertainty of each task:
1 1 9 9
['InterDiff = 252 »Cdiff + 252 [’return + i(k)g O diff + IOg Jreturn) (14)
Odif Oreturn

The first two terms adaptively scale each loss based on task difficulty, where
volatile tasks (higher o2) receive lower weights. The third term penalizes ex-
cessive uncertainty. This mechanism eliminates manual loss weighting, critical
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in financial applications where market volatility and return scales vary widely
across stocks and time periods.

Inference Process: Synthetic data generation begins with Gaussian noise
rx and a guidance vector e. The model iteratively denoises zx to &y over K
steps. During inference, the predicted noise €9 combines conditional and uncon-
ditional predictions using a guidance strength weyee:

€9 = (1 — Wree) - €0(Tps k, D) + Wiree - €9(xk, K €) (15)

This blended prediction guides the denoising trajectory, ensuring outputs align
with the correlation patterns encoded in e while maintaining statistical diver-
sity. The final synthetic data z is sampled by progressively refining 2;_; from
po(ilfk—1|£17k, €)~

5 Experiment

We conduct experiments to address three key questions. RQ1 (Compatibility):
Does InterDiff generalize across diverse backbone models while improving their
forecasting performance? RQ2 (Component Efficacy): How do key design
choices, such as guidance variable and critical parameters like guidance strength,
influence the quality of synthetic data and the overall performance of the model?
RQ3 (Correlation Preservation): Can InterDiff synthesize data that retains
realistic intra- and inter-stock correlations observed in real markets?

5.1 Dataset

We evaluate InterDiff on CSI300 and CSI800—datasets comprising the 300 and
800 largest stocks by market capitalization from the Shanghai and Shenzhen
exchanges. Following [33] and [7], we use daily data spanning 2008-2023, par-
titioned into training (Q1 2008-Q1 2021), validation (Q2 2021), and test (Q3
2021-Q4 2023) sets. Stock features are obtained from the Alphal58 factor suite
in Qlib%, with a lookback window 7' = 8 days and prediction horizon i = 5 days,
consistent with [29].

5.2 Reproducibility

We implement InterDiff using Python 3.8.5 and PyTorch 1.11.0, running on
NVIDIA RTX 3090 GPUs and AMD EPYC 7532 CPUs. To facilitate repro-
ducibility, we outline the key techniques used in our implementation.

First, we use Robust Z-score Normalization, which replaces the mean and
standard deviation with the median (MED) and median absolute deviation
(MAD). This approach ensures scale-invariant features and reduces sensitivity
to outliers:

_|z* = MED(X)|
N MAD(X)

~U

: (16)

5 https://github.com /microsoft /qlib
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Second, we apply Extreme Label Filtering, which removes the top and bot-
tom 2.5% of returns. This step mitigates distortions caused by limit-up and
limit-down events, preventing extreme values from biasing the model. Third, we
employ the "train on synthetic, test on real" (TSTR) strategy to evaluate the
effectiveness of the synthetic data generated by InterDiff. This approach involves
training the model on the augmented, synthetic dataset and testing it on real-
world data, allowing us to assess the generalization of the model when faced with
actual market conditions. Lastly, we optimize hyperparameters such as guidance
vector size, attention heads and guidance strength through grid search. The
best-performing values are highlighted in Table 1.

Parameters \ Search Range
layers in DM {3, 6}
stop loss thred {0.6, 0.8, 0.9, 0.95, 0.965, 1}
Guidance Vector Size {128, 256, 512}
Guidance Strength weree {1.5, 2, 3, 4, 5}
Attention Heads N; {2, 3, 4, 5}
Attention Heads Ny {2, 3, 4, 5}

Table 1: Hyper-parameters and the search range, the optimal parameters are
indicated in boldface.

5.3 Experimental Setup

To evaluate our framework’s performance in stock forecasting, we use five widely
adopted models as backbones: Multi-Layer Perceptron (MLP), Long Short-Term
Memory (LSTM) [36], Gated Recurrent Unit (GRU) [37], State Frequency Mem-
ory (SFM) [5], and a Transformer-based model [35]. These models serve as fore-
casting backbones, allowing us to compare their effectiveness in predicting stock
movements. Each experiment is repeated 10 times, with results averaged for ro-
bust model evaluation and statistical reliability. Training follows a daily batch
strategy: each batch comprises all stock data for a single day, enabling gradient
updates based on return prediction errors per day. The model minimizes the
Pearson Loss:
Ccov (r, Tpred)
EPearson =1- SD(T) .SD (rpred)’

(17)

where 7, 7P ¢ RISl denote ground-truth and predicted daily returns for all
stocks, respectively. Each r, represents the normalized daily return of stock wu.
We assess model performance using both ranking metrics and portfolio-based
metrics. The ranking metrics include Information Coefficient (IC) [38], which
measures the Pearson correlation between predictions and labels, and Rank In-
formation Coefficient (RankIC) [39], which computes the Spearman rank correla-
tion. These metrics provide insights into the model’s ability to generate accurate
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stock rankings. For portfolio-based evaluation, we use cumulative return to mea-
sure investment profitability. We simulate stock trading using a 'top30-drop30’
strategy under two scenarios: with and without transaction cost. The strategy
retains the top 30 stocks with the highest predicted return ratios, while any
stock that falls out of the top 30 is dropped, regardless of its previous ranking.
For the cost-inclusive scenario, a transaction cost of 0.1% per trade is applied to
both entry (buy) and exit (sell) transactions. This dual evaluation helps assess
both the theoretical potential and practical viability of forecasting models in
real trading environments.

5.4 Performance Comparison (RQ1)

To answer RQ1, we conduct a thorough comparison of key metrics for back-
bones trained on both original and augmented data. InterDiff consistently en-
hances cumulative returns across all models and datasets. For CSI300 (Fig. 3a),
improvements from synthetic data range from 4.46% to 13.66% without transac-
tion cost. When incorporating a 0.1% per-trade cost, improvements persist but
vary by model: the Transformer retains nearly all gains (13.87%), while GRU’s
improvement drops sharply to 0.57%, reflecting sensitivity to turnover. MLP
and SFM exhibit moderate erosion, highlighting model-specific cost tolerance.
For CSI800 (Fig. 3b), improvements are far more pronounced, with cost-free
gains spanning 50.34% to 76.48%. Transaction costs reduce returns but pre-
serve significant margins. These improvements underscore InterDiff’s capability
to generate correlation-aware synthetic financial time series that enhance model
robustness and profitability across diverse market conditions.

Transformer
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Fig.3: Cumulative returns (in %) for CSI300 and CSI800. Purple lines exclude
a 0.1% transaction cost; dashed lines represent models trained on InterDiff-
augmented data. Solid lines denote original data.

Table 2a and Table 2b show that ranking metrics such as IC and RankIC also
improve universally with the augmented data. The sharper increase in perfor-
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mance for CSI800 (40.15-49.60% for IC and 39.8-68.91% for RankIC) underscores
the ability of InterDiff to adapt to markets with more noise and variation. This
suggests that InterDiff not only improves predictive accuracy but also enhances
the model’s ability to handle the complexities of broader, more volatile markets.
What sets InterDiff apart from DiffsFormer [7] is its ability to capture dynamic
inter-stock correlations, making it highly scalable. By incorporating evolving re-
lationships between stocks, InterDiff amplifies predictive signals in markets with
greater volatility and complexity, thereby offering a substantial advantage over
traditional methods that rely on static assumptions and data.

| CSI300
Methods IC RankIC
original augmentation T original augmentation T
MLP 0.0512+0.0005 0.0535+40.0008 4.49% | 0.0458+0.0011 0.0464+40.0005 1.31%
LSTM 0.0496+0.0012 0.0519+40.0011 4.64% | 0.0365+0.0012 0.0389+0.0021 6.58%
GRU 0.0480+0.0003 0.0502+0.0006 4.58% | 0.0334+0.0001 0.035140.0005 5.09%
SFM 0.0511+0.0005 0.0535+0.0008 4.70% | 0.0455+0.0009 0.0458+0.0011 0.66%
Transformer | 0.0530+0.0008 0.0536+40.0008 1.13% | 0.0451+0.0010 0.0454+40.0006 0.67%

(a) Performance comparison on CSI300. The better results are indicated in boldface.

CSI800
Methods IC RankIC
original augmentation T original augmentation 0
MLP 0.0269+0.0005 0.037740.0003 40.15% | 0.0334+0.0007 0.046740.0005 39.80%
LSTM 0.0241+0.0008 0.0348+40.0008 44.4% | 0.0256+0.0013 0.0409+40.0012 59.77%
GRU 0.0231+0.0006 0.0330+40.0014 42.86% | 0.0231+0.0009 0.0363+0.0017 57.14%
SFM 0.0270+0.0008 0.0379+40.0025 40.37% | 0.033140.0011 0.047140.0029 42.30%
Transformer | 0.0250+0.0005 0.037440.0007 49.60% | 0.0267+0.0007 0.045140.0012 68.91%

(b) Performance comparison on CSI800. The better results are indicated in boldface.

Table 2: Performance Comparison of Different Backbones on CSI300 and CSI800
with Original and Augmented Data

5.5 Ablation Study (RQ2)

To answer RQ2, we focus on the impact of guidance strength and the choice
of guidance variable on the fidelity and diversity of synthetic data generated
by InterDiff. Fidelity refers to how closely the synthetic data mirrors real data,
while diversity refers to the model’s ability to generalize by introducing variation
in the synthetic data. To evaluate fidelity, we use the Fréchet Inception Distance
(FID), a metric commonly used to assess the similarity between distributions of
real and generated data. Diversity, on the other hand, is assessed through model
performance in terms of Information Coefficient (IC), following [7].

As shown in Fig.4, we observe that as the guidance strength increases, the
FID decreases, indicating that the synthetic data becomes more faithful to the
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original data. Specifically, InterDiff is able to achieve an FID as low as 0.5004,
which suggests a high degree of fidelity in the generated data. This finding high-
lights the effectiveness of the correlation guidance mechanism employed by In-
terDiff. Furthermore, Fig.4 reveals a fidelity-diversity tradeoff: Beyond a certain
point (wgree>2), the performance starts to degrade. This may occurs due to over-
specialization, where the model becomes too focused on specific patterns and fails
to capture the broader, more diverse dynamics of the market. This highlights the
importance of finding the right balance between fidelity and diversity to ensure
that the synthetic data is both accurate and generalizable.
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Fig.4: Synthetic data quality (FID) and model performance (IC).

We compare InterDiff with two variants of DiffsFormer [7] guided by re-
turn labels (DiffsFormer-R) and another guided by static industry classifica-
tions (DiffsFormer-I), as well as Quant GAN [18]. As shown in Figure 5, In-
terDiff achieves improvements of 4.30% and 5.42% in IC over DiffsFormer-R
and DiffsFormer-I respectively, showing the effectiveness of InterDiff’s correla-
tion guidance mechanism for generating synthetic data that enhances predictive
performance. Quant GAN degrades IC performance compared to training on
original data, reflecting the instability in financial applications. This instability
aligns with our rationale for adopting diffusion models in InterDiff.
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.5: Comparison of InterDiff with DiffsFormer variants and Quant GAN.

5.6 Visualization (RQ3)

To analyze the learned inter-stock correlations, we visualize attention maps from
the inter-stock aggregation transformer in Fig.6. The figure depicts attention
scores across three trading dates for two target stocks (SH601857 and SH601398)
and 100 randomly sampled stocks. The red box shows regions where attention
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weights weaken over time, signaling shifting trend patterns, while the green box
marks persistent trends with consistently high attention. These observations
confirm that the intra-stock aggregation module effectively captures temporal
relationships within individual stocks. Notably, in the blue box, SH601857 ex-
hibits sparse correlations, whereas SH601398 shows strong dependencies with
multiple stocks, validating Inter-stock aggregation module’s ability to dynami-
cally capture asymmetric and evolving market relationships.

To evaluate InterDiff’s ability to maintain inter-stock correlations, we com-
pare real and synthetic data from the CSI300 on a randomly selected date (De-
cember 30, 2022). Fig.7 (top row) shows pairwise correlation heatmaps, where
denoising progressively removes noise while retaining correlation structures. The
histogram (bottom-left) confirms synthetic data’s correlation distribution in-
creasingly aligns with real data during denoising. The t-SNE plots (bottom-
right) visualize overall data distribution alignment by showing how synthetic
samples gradually converge to real data manifolds while maintaining controlled
variability, demonstrating InterDiff’s capacity to generate realistic yet diverse
sequences that generalize to out-of-sample scenarios.

SH601857 on 2022-10-31 00:00:00 SH601398 on 2022-10-31 00:00:00

i SHE01857 on 2022—11730:00 SH601398 on 2022-11-30 00:00:00
-o1s
I _

76543210

76543210

1 010

i SH601857 on 2022—12730:00 SH601398 on 2022-12-30 00:00:00

76543210

SARESBEENRRAZREERE

Fig. 6: Attention Map for target stocks SH601857 (left) and SH601398 (right)
across three dates, with source stocks (x-axis) and timesteps (y-axis).

5.7 Discussion

To examine how InterDiff helps mitigate overfitting caused by data scarcity, we
plot the training loss over time in Fig.8. The three subplots represent training
loss curves for models trained on (1) original data, (2) data augmented with
random noise, and (3) data augmented by InterDiff. Random noise addition is a
simple augmentation method used to improve model robustness.

During the 2020 stock market crash” triggered by the COVID-19 pandemic,
stock forecasting loss was notably low. We attribute this to the market’s tem-
porary simplification, where price movements were dominated by a few strong

" https://en.wikipedia.org/wiki/2020 stock market crash
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Fig. 7: Synthetic vs. real data distributions visualized via t-SNE, pair-wise cor-
relation heatmaps, and histograms across denoising steps (0-500).

factors, as highlighted by the red dots in Fig.8. However, a model that overfits
to this period may struggle to generalize in later years when market patterns be-
come more complex. Simply removing these data points is not an ideal solution,
as it would further exacerbate data scarcity. As shown in Fig.8, models trained
on InterDiff-augmented data exhibit smoother and more stable loss curves com-
pared to those trained with random noise augmentation. This suggests that In-
terDiff effectively reduces overfitting while preserving essential market patterns,
leading to a more generalizable forecasting model.

original Data Random Noise Addition InterDiff
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Fig. 8: Training loss for original, noise-augmented, and InterDiff-augmented data.

6 Conclusion

This paper introduces InterDiff, a diffusion-based framework that synthesizes
financial time series by dynamically modeling intra- and inter-stock relation-
ships through hierarchical transformers. By encoding these correlations into a
guidance vector and leveraging classifier-free guidance during diffusion, Inter-
Diff generates synthetic data that preserves realistic market dynamics while in-
troducing controlled variability. Empirical evaluations on CSI300 and CSI800
datasets demonstrate that InterDiff-augmented data consistently improves fore-
casting performance across diverse backbone models. Ablation studies confirm
the effectiveness of InterDiff’s correlation guidance mechanism, demonstrating



16

H.-W. Long et al.

its ability to balance fidelity and diversity in synthetic financial time series data,
while visualizations validate its capacity to capture evolving market correlations.
InterDiff mitigates overfitting, as evidenced by smoother training loss curves
compared to baseline augmentation methods. These results highlight the impor-
tance of dynamic correlation modeling in financial data augmentation, offering
a robust solution to enhance stock prediction models in real-world scenarios.
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