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Abstract. School attendance is an important factor in educational suc-
cess and plays a key role in shaping students’ academic and social de-
velopment. Longitudinal surveys provide valuable insights into factors
affecting attendance patterns, yet analysing such data presents unique
challenges. First, the variation in survey questions across data collec-
tion waves complicates the application of standard temporal modelling
techniques that assume consistent features over time. Second, conven-
tional methods often one-hot encode survey responses, stripping away
contextual meaning within questions and responses. Lastly, open-ended
responses are typically omitted, leading to a loss of valuable qualitative
insights. To address these challenges, we propose Survey-as-Text Mod-
elling (STM), which represents multi-wave survey questionnaires as co-
herent textual sequences. By maintaining the textual format, STM allows
similar questions across different years to be compared directly rather
than existing as independent features. STM also retains the meaning
within question-response pairs, preventing loss of information from one-
hot encoding and enabling the incorporation of open-ended responses.
We apply STM to survey data from Growing Up in New Zealand and
link it to official attendance records from the New Zealand Ministry of
Education. We leverage large language models (LLMs) to predict future
school attendance from text-based surveys, outperforming existing tem-
poral methods. Beyond predictive accuracy, we propose gradient-guided
counterfactual analysis to identify key survey questions influencing the
model’s decision-making. Our findings highlight the potential of LLMs
for survey analysis and provide data-driven insights that can inform pol-
icy and intervention strategies.

Keywords: Longitudinal Survey - Large Language Models - School At-
tendance.
1 Introduction

School attendance is an important determinant of academic achievement, social
development, and long-term well-being [20]. Attendance is shaped by a wide
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[WAV] Data Collection Wave at 12 Years Old
[Q] To what extent does the following statement apply
—>to you? I feel supported by my friends. [A] Sometimes... > post-analysis
[Q] Are there things you are particularly worried about
in the next few years? [A] I'm really overwhelmed about

keeping up with schoolwork and exams... = Q

[Q] ..My teacher respects me. [A] Somewhat...

Fig. 1. In Survey-as-Text Modelling, survey data from multiple data collection waves
is retained as natural text representation where special delimiters are used to separate
survey waves, questions, and responses. The text representation is processed by a fine-
tuned large language model for attendance prediction.

range of factors, including mental health [I0], parental support [31], socioeco-
nomic status [21]], school experiences [22], and external disruptions such as the
COVID-19 pandemic [29]. Data from Growing Up in New Zealand (GUINZ) [34],
the country’s largest ongoing longitudinal study on child well-being, which tracks
over 6,000 children from before they were born, provides an opportunity to ex-
amine these influences. GUINZ collects data through repeated data collection
waves, where participants provide survey responses at different ages, capturing
evolving socioecological factors over time. By linking this data with official at-
tendance records from the New Zealand Ministry of Education, we are able to
analyse how multiple factors interact over time to shape attendance patterns.

Analysing longitudinal survey data presents challenges to existing temporal
modelling methods. First, the variation in survey questions across waves dis-
rupts the assumption of the same features being collected over time at regular
intervals. This poses difficulties for existing methods such as Recurrent Neural
Networks (RNNs) [42] and Transformers [56153], which often assume structured
input sequences with consistent features across observations or time steps. How-
ever, in longitudinal surveys, questions evolve due to shifting research priorities
and external factors; for instance, earlier waves from GUINZ include questions
on experience starting school, while later waves focus on the impact of COVID-
19 on schooling. Additionally, data collection occurs at irregular intervals, with
some variables collected at certain waves but omitted in others; for example,
the New Zealand index of socioeconomic deprivation [2] is recorded at ages six,
eight, and twelve, while questions about material hardship are asked at ages
six and twelve but not at age eight, further complicating feature alignment.
Second, conventional methods often one-hot encode survey responses, leading
to a loss of contextual meaning within questions and responses. For example,
responses to “children feel they belong to school when they start school” and
“children feel they are connected to school during lockdown” may be treated as
entirely separate variables, losing their relationship in meaning, or collapsed into
a single category, ignoring the differences in context. One-hot encoding forces
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models to rely on statistical associations rather than textual meaning, limiting
their ability to capture nuanced relationships in survey data. Lastly, conventional
approaches struggle to incorporate open-ended responses, which often contain
valuable qualitative insights. Since these responses cannot be easily one-hot en-
coded, they are frequently excluded from analysis. For example, responses to
“What is the most worrying thing during the COVID-19 lockdown?” can reveal
key concerns affecting school attendance, but existing methods lack a structured
way to integrate this information. These limitations highlight the need for a more
flexible approach that can preserve contextual meaning, handle irregular survey
structures, and incorporate qualitative responses into predictive modelling.

To address these limitations, we propose Survey-as-Text Modelling (STM),
which represents longitudinal survey data in its natural textual format rather
than converting it into structured tabular variables. By leveraging large lan-
guage models (LLMs), which have been pretrained on vast amounts of text
data, STM can model survey data while preserving its original structure and
meaning. STM mitigates the challenge of irregular survey structures caused by
evolving questions across waves. Instead of treating missing or modified vari-
ables as a structural problem requiring imputation or manual feature alignment,
STM processes survey responses as continuous textual sequences, allowing sim-
ilar questions asked at different waves to be compared within context rather
than treated as separate features. This enables the model to generalise across
changes in wording or focus of questions, ensuring better alignment of infor-
mation across survey waves. The time information of each wave can also be
described within the text representation, indicating the time duration between
each wave. Furthermore, STM retains the contextual meaning of survey ques-
tions and responses and leverages LLMs’ ability to understand texts to maintain
the conceptual connection between similar but distinct questions (e.g., school
engagement at different time points) and to recognise differences in phrasing
and context. This allows the model to capture deeper relationships between re-
sponses rather than treating them as isolated categorical variables. Additionally,
STM directly incorporates open-ended responses by integrating them naturally
within the textual representation, allowing LLMs to extract meaningful insights
alongside structured survey responses. This provides a richer understanding of
subjective factors influencing attendance, such as personal experiences, concerns,
and motivations, that would otherwise be omitted from quantitative models.

Beyond predictive modelling, interpretability is essential for deriving insights
from survey data. Therefore, we propose gradient-guided counterfactual analy-
sis to identify the most influential survey items in attendance predictions. By
aggregating gradients at the question level, we highlight which questions and
responses contribute most to the model’s decision. However, gradient-based at-
tribution alone provides only ranked importance of survey items and does not
determine which specific responses can consistently influence model decisions.
To address this, we assess model sensitivity by iteratively swapping responses
with values sampled from participants in the opposite attendance category, fol-
lowing the ranked importance of survey items based on question-level gradients.
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We identify the minimal number of swaps required to flip a participant’s clas-
sification and analyse which questions appear most frequently in these minimal
swaps, highlighting the key factors influencing attendance predictions. Our main
contributions are as follows:

1. We propose Survey-as-Text Modelling (STM), which preserves the tex-
tual format of surveys and leverages LLMs to predict future school atten-
dance. The text representation allows STM to address challenges in feature
alignment, evolving contexts, and open-ended responses.

2. To improve interpretability, we introduce gradient-guided counterfac-
tual analysis to identify influential survey items and evaluate how response
variations impact model decision-making.

3. By linking Growing Up in New Zealand survey data with official attendance
records from the Ministry of Education, our approach provides insights into
potential factors influencing school attendance, supporting policymakers in
data-driven decision-making and targeted interventions.

2 Related Work

Longitudinal Analysis. Longitudinal studies provide valuable insights by track-
ing individuals or groups over time, enabling researchers to identify temporal pat-
terns, developmental changes, and underlying trends [49]. Conventional statisti-
cal methods, such as latent growth models and autoregressive approaches, rely
on strong assumptions, including lack of multicollinearity, specific data distribu-
tions, and homoscedasticity [9]. These methods struggle with high-dimensional
data, limiting flexibility in complex real-world applications [41]. Machine learn-
ing and deep learning offer a more adaptable alternative by capturing non-linear
and higher-order relationships. Jin et al. [18] used Long Short-Term Memory to
predict malnutrition from longitudinal patient records. Adler et al. [I] applied
gradient boosting to track mental health symptoms using longitudinal mobile
sensing data. Nitski et al. [36] explored Transformers, Temporal Convolutional
Networks, and Recurrent Neural Networks for long-term mortality prediction
in liver transplant recipients. These methods rely on fixed feature sets across
time, making them less suited to longitudinal surveys where questions evolve,
responses carry contextual meaning, and open-ended data remains underutilised.
Our approach treats survey responses as natural text, enabling LLMs to address
these challenges within a unified framework.

LLMs for Time Series. LLMs have been increasingly explored for time series
modelling, demonstrating their ability to capture complex temporal dependen-
cies. Existing approaches aim to enhance LLMs’ ability to process numerical
time series directly or align time series data with LLMs’ natural language ca-
pabilities. Xue et al. [51] encode numerical inputs and outputs within prompts
to adapt LLMs for time series tasks, while Zhou et al. fine-tune LLM input and
output layers for time series modelling. Cao et al. [5] decompose trend, seasonal,
and residual components within prompts to improve distribution adaptation.
Other methods attempt to bridge time series with language processing: Jin et
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al. [I9] align time series patches with text modality and supplement inputs with
textual dataset descriptions, Sun et al. [44] map time series embeddings to LLM
token spaces, and Pan et al. [37] employ semantic-informed prompt learning for
cross-modal alignment. While these methods adapt LLMs for structured time se-
ries data, they primarily treat time series as numerical sequences and lack direct
contextual information. In contrast, our approach models longitudinal surveys as
text, leveraging LLMs’ language understanding to handle evolving questions, ir-
regular structures, and open-ended responses, making it fundamentally different
from numerical time series modelling.

LLMs Interpretability. Interpreting the predictions of LLMs has been a grow-
ing area of research, with various methods developed to explain model decisions.
Local surrogate models [12] and local interpretable models [II] approximate
LLM predictions using simpler models, but they rely on sampling-based approx-
imations and do not directly reveal which variables drive predictions in struc-
tured survey responses. Concept bottleneck models [45] enforce interpretability
by mapping predictions to predefined concepts; however, in our setting, survey
questions already serve as well-defined interpretable variables, making additional
concepts unnecessary. Self-explanation techniques [I6/39] generate textual justi-
fications for LLM outputs but can suffer from hallucination and may not consis-
tently align with the true decision-making process. Attribution-based methods
such as Shapley values [33] estimate the contribution of individual input compo-
nents, while gradient-based attribution [43] analyses the sensitivity of predictions
to input perturbations. However, these techniques operate at the token level,
making it difficult to aggregate influence at the question-response level, which
is essential for understanding survey-based predictions. Our approach, gradient-
guided counterfactual analysis, first aggregates gradients at the question level to
identify influential survey items, then iteratively swaps responses and observes
prediction changes to reveal their impact on model decisions.

3 Survey-as-Text Modelling

We introduce Survey-as-Text Modelling (STM), a framework that leverages
LLMs to process survey responses in their natural textual form. Section [3.]]
details STM’s text-based modelling and fine-tuning for classification, while Sec-
tion[3.2]introduces gradient-guided counterfactual analysis to identify influential
survey items and assess response swaps’ impact on predictions.

3.1 Modelling Survey with LLMs

Problem Definition. Given a longitudinal survey collected over T" waves, each
wave is represented as X! = {(qﬁ,xﬁ)}gl, where each (g}, x!) denotes a survey
question ¢! and its corresponding response z!. The number of questions D! varies
across waves, meaning that certain questions may be missing in some waves. The
objective is to train a classification model C with parameters @¢ to predict a
categorical target variable Y using responses from past survey waves as input:
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Fig. 2. Survey-as-Text Modelling processes longitudinal surveys as text. A Low-Rank
Adaptation (LoRA) fine-tuned LLM is used for classification, where pretrained weights
W € R** remain frozen, and low-rank adaptation matrices A € R¥*" and B €
R"** are learned during finetuning. Here, d represents the input embedding dimension,
k is the output dimension of the layer, and r is the rank of LoRA. Gradient-based
attribution identifies potential influential questions, and counterfactual swaps reveal
key variables that impact classification.

Y =C{X', X2,..., XT=1};0¢). The classification output Y is a discrete label
corresponding to predefined categories. Unlike time-series classification, where
the input consists of structured numerical sequences X € RP*T with a fixed
set of D features across all time steps, our formulation allows the number of
features to vary per wave, meaning D! # D' for some t # t', reflecting the
evolving nature of survey design.

Text Representation. We represent each wave X' as a structured text se-
quence. As shown in Fig. [I] each wave begins with a textual description that
explicitly marks the data collection period, such as “Data Collection Wave at 6
Years Old (2015)”, providing temporal context and allowing the model to dis-
tinguish between different survey waves. Each question-response pair (¢!, z!) is
structured in its natural form and concatenated sequentially within each wave.
We introduce a set of special delimiter tokens: [WAV] is inserted before each
wave description to explicitly mark temporal boundaries, [Q] is placed before
each question ¢}, and [A] precedes its corresponding response z!. This structured
encoding ensures that the model preserves semantic relationships between ques-
tions and responses while maintaining the sequential flow of information across
survey waves. Missing responses are explicitly represented using the placeholder
text “missing”, allowing the model to recognize patterns of missingness without
relying on statistical imputation. This structured text representation allows the
model to leverage its pretraining on natural language, effectively handling survey
evolution across waves while preserving semantic and temporal coherence.
LLMs Finetuning. As shown in Fig. 2] to model longitudinal survey data in its
natural textual format, we fine-tune a pretrained LLM using Low-Rank Adap-
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tation (LoRA) [I5], a parameter-efficient tuning method that introduces train-
able low-rank update matrices while freezing the original model weights. This
approach allows adaptation to survey-based classification tasks with reduced
computational overhead. During fine-tuning, we appended a classification head
to the LLM to predict attendance categories based on past survey responses.
The model is optimised using cross-entropy loss.

3.2 Gradient-guided Counterfactual Analysis

Gradient-Based Attribution. To identify the most influential survey ques-
tions and responses in determining the model’s decision, we compute the gra-
dient of the model’s output probability with respect to the input tokens. Given
a trained classifier C with parameters ©@¢, the predicted probability is denoted
as P(ff | X;6¢). During inference, we first perform a forward pass through
the model, encoding the survey input X = {(¢f, ) gl,t € 1,...,T, which
consists of concatenated question-response pairs formatted in text. The final
classification probability P(Y | X;O¢) is obtained from the softmax layer over
the logits. To determine the impact of each response z! on the prediction, we
compute the gradient of P(Y | X;6¢) with respect to the input embeddings
VE(JEDP(Y | X;60¢), where E(x!) is the embedding representation of the re-
sponse z! after tokenization. Since the gradient is computed at the token level,
we must aggregate it to obtain an importance score for each question-response
pair. We achieve this by leveraging our special delimiter tokens, which explicitly
separate each survey item in the text format. Let 2! denote the response to the
i-th question ¢! in wave ¢, and let its corresponding tokenized representation
be {vi}{%,, where v} is the k-th token of x!, and 7T} is the total number of to-
kens in the response after tokenization. To determine the contribution of each
question-response pair to the classification decision, we compute a question-level
importance score S(z!) by aggregating the gradient magnitudes of all tokens
within x!:

1 &
S(a;) = T Z
v =1

Here, V B )P(f/ | X;6¢) represents the gradient of the predicted class prob-

‘VE(U,Q)P(? | X;QC)Hl-

ability with respect to the embedding of a token v}, and || - ||; denotes the
L1 norm, capturing the absolute contribution of each token. Normalising by T;
ensures that responses of different token lengths do not disproportionately influ-
ence ranking, allowing fair comparison across survey items. To obtain an overall
ranking of influential survey items, we further aggregate S(z!) across all partic-
ipants, computing the mean importance of each question-response pair across
the dataset. This allows us to determine which survey items contribute most to
attendance classification, guiding interpretability and further analysis.

Minimal Response Swaps. While gradient-based attribution identifies which
survey responses influence predictions, it does not directly determine their effect
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on classification outcomes. To address this, we conduct counterfactual evalua-
tion through minimal response swaps, measuring how sensitive predictions are
to changes in survey responses. For each participant classified as an at-risk at-
tendee, we iteratively replace responses with alternative responses observed in
participants classified as regular attendees. The swaps are performed in order of
importance, starting with the question-response pair with the highest gradient-
based attribution score. Given a participant’s survey representation X, we define
a modified version X’ in which responses are systematically substituted. At each
step, the most influential response x! is replaced with an alternative response
z! drawn from a pool of responses observed in the regular attendee group. The
classification model C(X'; O¢) is re-evaluated after each swap, and the process
continues until the prediction flips to a regular attendee: C(X;0¢) # C(X';0¢).
The same process is repeated for participants classified as regular attendees. The
number of swapped questions required to induce this change, denoted as the
minimal swap count, provides a measure of how easily a classification outcome
can be altered for each participant. This counterfactual evaluation complements
gradient-based attribution by refining the identification of survey responses with
the greatest impact on classification outcomes. By analysing the distribution of
minimal swap counts across the dataset, we gain further insight into the relative
importance of different survey items in shaping attendance classification.

Aggregating Insights Across Participants. To derive population-level in-
sights, we measure the importance of each question by counting how often it
appears in the minimal swap sets across all participants. A question appear-
ing frequently across many minimal swap sets suggests it plays a key role in
distinguishing attendance categories, whereas less frequent occurrences indicate
factors that are influential only for specific subgroups. This approach provides a
measure of which survey items most consistently impact classification outcomes.

4 Experiments

We evaluate Survey-as-Text Modelling (STM) for school attendance classifica-
tion using longitudinal survey data from Growing Up in New Zealand (GUINZ),
linked with official attendance records. We detail experimental settings in Sec-
tion[41] To benchmark STM, we compare it against machine learning, recurrent,
convolutional, transformer-based, and LLM-based models in Section Be-
yond predictive performance, we introduce gradient-guided counterfactual anal-
ysis to interpret STM’s decision-making by identifying influential survey items
that can flip the model’s prediction. Additionally, we analyse the effectiveness of
parameter-efficient fine-tuning techniques, compare various missing data imputa-
tion strategies, and evaluate the fairness of classification results among ethnicities
in Section 3]

4.1 Experimental Settings

Dataset. We use longitudinal survey data from GUINZ [34], linked with official
school attendance records from the Ministry of Education (MoE). Our study
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focuses on three survey waves collected at ages six, eight, and twelve, capturing
key socioecological factors influencing school attendance. Attendance rates are
derived from MoE’s administrative records, calculated as the percentage of total
recorded minutes present rather than the Ministry’s half-day classification sys-
tem. This granular, minute-based approach results in a slightly lower attendance
percentage than MoFE’s official business rules. We categorise students into two
groups: regular attendees, with attendance above 90%, and at-risk attendees,
which includes all students below this threshold. The at-risk attendee category
encompasses students with varying levels of absenteeism, including irregular,
moderate, and chronic absenteeism. After filtering for students who participated
in all three waves and removing those with missing attendance records, our final
dataset consists of 3,844 participants, comprising 3,077 regular attendees and
767 at-risk attendees. We include variables related to mental health, socioeco-
nomic status, parental support, school experiences, and COVID-19 disruptions,
including open-ended questions such as asking what the biggest worry is for the
future. The selected variables have an average of 3% missing rate.

Baseline Methods. We evaluate our approach against five categories of base-
line models: machine learning models, Recurrent Neural Networks (RNNs), con-
volutional models, transformer-based models, and LLM-based approaches. For
Machine learning models, we include XGBoost [6], and Random Forest (RF)
[4]. We exclude logistic regression due to its reliance on manual feature en-
gineering and the high dimensionality introduced by interaction terms. Simi-
larly, traditional longitudinal methods, such as mixed-effects models and latent
growth models, are not included because they are primarily designed for mod-
elling individual trajectories or estimating population-level trends rather than
performing multivariate temporal classification. RNN-based models, including
RNN [32], Long Short-Term Memory (LSTM) [13], and Gated Recurrent Unit
(GRU) [8], capture sequential dependencies in structured time series data. Con-
volutional models, such as Temporal Convolutional Networks (TCN) [48], use
hierarchical convolutions to model temporal patterns. Transformer-based mod-
els, including Transformer [47], Autoformer [50], Crossformer [55], FEDformer
[57], Informer [56], iTransformer [26], Nonformer [27], and PatchTST [35], lever-
age self-attention mechanisms to enhance long-range dependency modeling. Fi-
nally, LLM-based models, such as TEST [44], S?IP-LLM [37], FPT [58], and
Time-LLM [19], adapt pre-trained language models for time series tasks through
reprogramming, embedding alignment, or prompt-based learning.

Evaluation. We evaluate model performance using standard classification met-
rics, including accuracy, precision, recall, F1 score, Area Under the Receiver Op-
erating Characteristic Curve (AUROC), and Area Under the Precision-Recall
Curve (AUPRC). We apply stratified splitting with 60% for training, 20% for
validation, and 20% for testing across attendance categories.

Data Preprocessing. For STM, we describe each wave in text and use special
delimiters to separate questions and responses, maintaining the natural struc-
ture of survey data. In contrast, for other methods, we transform the data into
a tabular format by merging similar questions across waves into the same vari-



10 Authors Suppressed Due to Excessive Length

Table 1. Performance comparison of baseline methods for attendance prediction.

Model Accuracy Precision Recall F1 Score AUROC AUPRC
RF [4] 735 +£.3 69.0+.2 704+ .4 69.7+ .4 698+ .3 68.6 .4
XGBoost [6] 72+.2 T114+.1 714+ .4 7124+ .4 T25+£.2 704+.3
RNN [32] 0+ .4 T752+.3 73.6+X.2 T44+.3 752+ .4 726 +£.3
LSTM [13] 803+ .4 769+ .4 765+.2 76.7+.3 773+ .4 7514+ .3
GRU [8] 796 +.3 75.7+.2 76.0x.5 75.8+.4 759+ .4 749+ .5
TCN [48] 812+ .4 781+ .4 780+.2 780+£.2 780+.2 76.2+£.1
Transformer [47] 80.1 £.3 764+ .5 762+ .2 763+.3 774+ .3 76.0+ .2
Informer [56] 83.5+.2 81.0£.5 796+ .4 796 .1 79.7£.1 793 £ .2
Autoformer [50] 84.0+.1 809+.2 798+.1 798+ .2 81.3+.4 793 +.3
FEDformer [57] 829+ .4 797+.1 796+.5 796 +.1 802+ .2 776+ .5
Nonformer [27] 83.8+.3 804+.3 79.3+£.3 79.8+.2 80.1 .2 788+ 4
PatchTST [35] 8.2+ .2 81.0+.2 80.8+.2 809+.2 822+.2 793 +.1
Crossformer [55] 845+ .3 812+ .4 81.1+.1 81.1+.3 81.6 .2 80.7+ .2
iTransformer |26] 83.3 +.3 789+ .5 795+.3 792+ .5 8.6+ .2 782+ .3
FPT [58] 8.8+ .1 81.8+ .4 81.2+.1 815+.4 832+.4 805+.5
TEST [44] 864+ .1 833+.3 824+ .4 828+.2 824+.3 810+ .4
Time-LLM [19] 872+ .4 82.7+.1 827+.3 8.7+.4 8.0+ .4 81.5+.3
S2IP-LLM [37] 86.1 £ .2 843+ .3 827+ .3 835+ .2 84.7+ .4 824+ .2

STM (Ours) 92.0 + .1 89.2 4+ .290.9 + .490.0 + .4 89.7 + .288.3 + .1

able and interpolating variables that were not collected in certain waves from
past waves to ensure alignment across time points. For handling missing data,
STM preserves missing responses as explicit text “missing” to allow the model
to learn patterns around missingness, while for tabular models, we apply KNN
imputation [25] to estimate missing values based on similar participants.

Experimental Setup. Given the sensitive nature of the survey data, we em-
ploy a locally hosted model to ensure data privacy and compliance with ethical
guidelines. We fine-tune LLaMA-3.1-8B using LoRA with a classification head
for school attendance prediction. The same backbone model is used for all LLM-
based time series methods to ensure a fair comparison. The model is trained for
10 epochs with a batch size of 16 and a learning rate of 1 x 10~*. We optimise the
model using the AdamW optimiser with weight decay regularisation to prevent
overfitting. For evaluation, we perform 30 independent runs with different ran-
dom seeds (1-30) and report the mean and standard deviation of classification
metrics. Statistical significance is assessed using the Wilcoxon signed-rank test,
and the best-performing results with statistical significance are highlighted in
bold. All experiments are conducted on NVIDIA A100 GPUs.
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Fig. 3. Survey items most frequently appear in minimal swaps when flipping classifi-
cation labels. Minimal swaps refer to the smallest number of response changes needed
to flip a model’s prediction between at-risk and regular attendees.

4.2 Main Results

Attendance Level Classification. Table [I| presents the performance compar-
ison of STM against baseline methods. STM outperforms all baselines across all
evaluation metrics. These results demonstrate the effectiveness of STM in cap-
turing complex relationships in longitudinal survey data. Unlike baseline models
that rely on fixed tabular structures or numerical encodings, STM attempts
to preserve the contextual meaning of survey responses and adapts to evolving
question formats. This flexibility allows STM to outperform existing temporal
modelling methods, which are not designed to process survey data in their nat-
ural textual form.

Influential Survey Questions. To examine the model’s decision-making pro-
cess, we analyse the most influential survey questions identified through gradient-
guided counterfactual analysis. Across all participants, the number of minimal
swaps required to flip an at-risk attendee to a regular attendee is, on average,
four swaps, with a maximum of eight. Conversely, flipping a regular attendee to
an at-risk attendee requires a mean of three swaps and a maximum of six. Fig-
ure [3] presents the frequency of survey items appearing in minimal swaps when
flipping classifications in either direction. The model is most sensitive to mental
health, followed by bullying experiences, family support, and teacher fairness,
all from Age 12. The deprivation index also plays a significant role, along with
residential mobility from Wave Eight, suggesting that past relocations still con-
tribute to classification shifts. Open-ended concerns about the future and sleep
quality only appear in the maximal swaps for at-risk attendees transitioning to
regular attendees, indicating they contribute to fine-grained adjustments rather
than early decision shifts.
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Table 2. Performance comparison of different finetuning methods for LLMs.

Method Accuracy Precision Recall F1 Score AUROC AUPRC
Zero-shot 752+.5 70.1+£.6 654+.7 677+ .4 728+ .5 649+ .6
Few-shot 785+ .4 733£.5 6976 Tl5+£.5 762+ .4 681+.5
Full Fine-Tuning 91.5 +£.1 887+ .2 9024+ .3 894 +.3 892+ .2 878+ .1
Adapters [14] 911 £ .2 83 +.3 89.8+ .4 8.0+.3 89+£.3 873+ .3
Prefix [24] 90.8 +.2 88.0+.3 8.4+ .4 8.7+.2 8.5+.3 87.0+£.3
Prompt [23] 905+ .3 876+ .4 89.0+.5 8.3+.2 82+ .4 8.7+ 4
LoRA [15] 92.0 + .1 89.2 4+ .290.9 + .490.0 + .1 89.7 + .288.3 £+ .1

Table 3. Comparison of imputation methods with explicit “missing” text.

Method Accuracy Precision Recall F1 Score AUROC AUPRC

Mean 89.0£ .5 8.5+ .4 872+ .5 8.8+ .4 87.0+.585.5=L.5
Median 892+ 4 8.8+ .4 874+ 4 871£.3 873+ .485.8=L.5
KNN [25] 91,7+ .2 88.5+£.3 901+ .4 89.3£.3 89.0+£ .3 87.5%.3
XGBoost [28] 91.8 £.2 838+ .3 90.3+.3 895+ .2 8.3+ .387.9+.3
MIWAE [30] 91.7 +.2 88.6+ .3 90.2+ .3 894+ .2 8.2+ .3 87.7+.3
GAIN [52] 916 £.3 8.4 +£.3 90.1+.3 89.2+.3 89.1 £.3 87.6 .3
Text (Ours) 92.0 £.1 89.2 4+ .290.9 + .490.0 + .1 89.7+ .2 883 £ .1

4.3 Further Analysis

Parameter-efficient Finetuning Methods. Table[2]presents the performance
of different fine-tuning approaches for LLMs in longitudinal survey classifica-
tion. Zero-shot learning achieves the lowest performance, indicating that using a
pretrained LLM without task-specific finetuning is insufficient. Few-shot tuning
provides a moderate improvement but remains limited in effectively capturing
survey patterns. Full fine-tuning demonstrates strong performance but requires
significantly more computational resources. Among parameter-efficient methods,
LoRA achieves the highest accuracy at 92.0% and the strongest recall at 90.9%,
outperforming adapters, prefix-tuning, and prompt-tuning, which exhibit slightly
lower but comparable performance. While full fine-tuning performs well, LoRA
matches or surpasses it across all metrics with substantially reduced computa-
tional overhead. These results highlight the effectiveness of LoRA in adapting
LLMs for longitudinal survey classification while maintaining efficiency.

Missing Data. Table [3] compares different missing data handling methods in
longitudinal survey classification with STM. Traditional imputation techniques,
such as mean and median imputation, yield the lowest performance, indicating
their limited effectiveness in reconstructing missing information. More advanced
methods, including KNN [25], XGBoost-based imputation [28], Monte Carlo
Importance-Weighted Autoencoder (MIWAE) [30], and Generative Adversarial
Imputation Nets (GAIN) [52], leverage statistical and machine learning-based
imputation strategies to infer missing responses, improving overall classification
performance. However, our approach, which retains missing responses as explicit
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tokens rather than imputing values, achieves similar performance, demonstrat-
ing that LLMs can implicitly model missingness without requiring explicit data
reconstruction. These results suggest that imputing missing responses may not
be necessary when using LLMs, as they can naturally infer meaningful patterns
from the surrounding context.

Fairness Evaluation. While ethnicity is not included as a predictor in our
model, we assess fairness by evaluating Equal Opportunity, which compares
true positive rates across ethnic groups, and Equalised Odds, which ensures
both false positive and false negative rates remain consistent [54]. We examine
classification performance across five major groups specific to the New Zealand
setting: European, Maori, Pacific, Asian, Middle Eastern, Latin American, and
African ethnicities (MELAA) and Others. For the children belonging to more
than one ethnic group, we record their ethnicity in the priority order of Maori,
Pacific, Asian, MELAA and others, and Europeans. These groups reflect the di-
verse composition of the GUINZ cohort, which aligns with birth demographics in
Auckland at the time of recruitment [34]. Statistical analysis using the Kruskal-
Wallis test finds no significant differences in true positive rates or false positive
rates across ethnicities, indicating that classification outcomes are consistent
across demographic groups.

5 Conclusion

We proposed Survey-as-Text Modelling (STM) to address challenges in analysing
longitudinal survey data, including irregular feature alignment, evolving con-
text, and the integration of open-ended responses. By representing survey data
as text and leveraging LLMs, STM preserves contextual meaning and enables
more flexible predictive modelling compared to conventional tabular approaches.
Our results demonstrate that STM significantly outperforms traditional machine
learning models, transformer-based methods, and LLM-based time-series mod-
els across all evaluation metrics. Additionally, we introduced gradient-guided
counterfactual analysis to enhance interpretability by identifying the most in-
fluential survey items affecting attendance classification. This analysis revealed
that recent social, emotional, and economic factors play a crucial role in distin-
guishing attendance patterns. These findings contribute to the methodological
advancement of longitudinal survey analysis and provide data-driven insights for
policymakers seeking to improve school attendance.
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List of Variables

. New Zealand Deprivation Index (NZDep): an area-based measure of

socioeconomic deprivation in New Zealand based on nine Census variables.
Crowding groups: how many people live in the house.

Easy access to school: whether this is a deciding factor for choosing a
school.

Resource provided by the school: whether the ability of the school to
provide good resources is a deciding factor for choosing a school.
Children’s physical needs: degree of satisfaction from mother.
Children’s learning needs: degree of satisfaction from mother.
Children’s social and emotional needs: degree of satisfaction from mother.
Children’s culture needs: degree of satisfaction from mother.
Difficulty starting school: level of difficulty and how long the difficulty
lasts.

Parental support: whether the mother is confident she knows how to help
her children do well at school.

Belong to school (mother): mother feels comfortable and welcomed when
visiting the school.

Belong to school (children): children feel they belong to their school.
Number of moves after the last wave.

Form of transport and duration of transport.

Put up with feeling cold.

Gone without fresh fruit or vegetables.

Centre for Epidemiologic Studies Short Depression Scale (CES-D-
R 10): a concise self-report tool to assess depressive symptoms, comprising
10 items rated on a 4-point Likert scale, with higher total scores indicating
greater depressive symptomatology.

Work status of the mother.

Household income groups.

Housing tenure.
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Table 4. Performance comparison of different LLM backbones for school attendance
classification.

Backbone Accuracy Precision Recall F1 Score EiCAT
BERT [7] 8324+ .3 805+ .4 81.0%x .5 80.7+.4 59+£.3
GPT-2 [40] 8.0+ .3 82.7+.3 83.1+.4829+.3 16+ 4
Mistral-7B [17] 92.0 +.2 893+ .3 91.04+ .3 90.1 + .3 11.5+ .3
Qwenl.5-7B [3] 9214+ .1 892+ .3 909+ .4 90.0 £ .3 109 £ .3
LLaMA-3.1-8B [46] 92.0 £.1 89.2+ .2 909+ 4 90.0 £+ .1 11.2 £+ .1

21. Rurality.

22. Time and energy for parenting.

23. Home atmosphere.

24. Children have enough friends and are treated well by them.
25. Children are bullied at school.

26. Culture acceptance at school.

27. Gender acceptance at school.

28. Sleeping quality.

29. Children feel supported by their family.

30. Children feel supported by their friends.

31. Miss school due to COVID-19.

32. Financial stress due to COVID-19.

33. People getting along at home during COVID-19.

34. Worries and fears of social mixing during COVID-19.

35. Teachers respect and are fair to children.

36. School work stress.

37. Things the children look forward to for the next few years.
38. Things the children worry about for the next few years.

B LLM Backbones

To assess the impact of different language model architectures on school at-
tendance classification, we evaluate STM using a range of local, smaller-scale
LLM backbones. This experiment ensures that our approach remains effective
across different models while addressing data privacy constraints by using lo-
cally hosted models. Table [d] presents the results, showing that STM achieves
consistent performance across various backbones, with all models in the LLM
category performing within a close range. Smaller models such as BERT [7] and
GPT-2 [40] exhibit lower performance. Apart from performance metrics, we also
measured the bias within the LLMs in the New Zealand context through the
EiCAT score [38]. We found that LLMs tend to have lower biases than smaller
models such as BERT and GPT-2, as shown by the larger EiCAT scores.
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