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Abstract. A comprehensive understanding of traffic accidents is essen-
tial for improving city safety and informing policy decisions. In this
study, we analyze traffic incidents in Munich to identify patterns and
characteristics that distinguish different types of accidents. The dataset
consists of both structured tabular features, such as location, time, and
weather conditions, as well as unstructured free-text descriptions detail-
ing the circumstances of each accident. Each incident is categorized into
one of seven predefined classes. To assess the reliability of these labels,
we apply NLP methods, including topic modeling and few-shot learn-
ing, which reveal inconsistencies in the labeling process. These findings
highlight potential ambiguities in accident classification and motivate
a refined predictive approach. Building on these insights, we develop a
classification model that achieves high accuracy in assigning accidents to
their respective categories. Our results demonstrate that textual descrip-
tions contain the most informative features for classification, while the
inclusion of tabular data provides only marginal improvements. These
findings emphasize the critical role of free-text data in accident analy-
sis and highlight the potential of transformer-based models in improving
classification reliability.
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1 Introduction

Traffic accidents pose a substantial risk to human life and incur high economic
costs. Understanding their underlying causes and patterns is essential - not only
to mitigate their consequences but also to develop effective preemptive strategies
in the context of city safety and city planning. Numerous studies have investi-
gated various aspects of traffic accidents, from identifying their root causes to
assessing their severity using data analysis techniques [6, 14, 19, 27]. The foun-
dation of such studies is the availability of high-quality accident data. However,
⋆ These authors contributed equally to this work.
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real-world accident records are often affected by inconsistencies and human error
during data collection. These issues can lead to inaccuracies in how accidents
are categorized, potentially obscuring important insights and limiting the effec-
tiveness of data-driven safety measures.

Table 1. Classification of accidents and their explanations.

Code Classification Explanation
A1 Driving Accident Loss of control of vehicle.
A2 Turning / Crossing Accid. Conflict between turning vehicle and one moving in parallel direction.
A3 Turning Accident Conflict betw. (turning) vehicle and another moving perpendicularly.
A4 Crossing Accident Conflict between vehicle and crossing pedestrian.
A5 Stationary Accident Conflict where at least one party must be stationary/parking.
A6 Longitudinal Accident Conflict between parties moving in parallel, none of above applicable.
A7 Other Accident None of the above applicable.

In the city of Munich, Germany, policemen record accident information at the
location of the incident, which includes general information like date, time and
location, person-specific characteristics (age, drug involvement, injury severity)
as well as free-text description of the events leading up to the incident. The spe-
cific dataset used in this study is comprised of 105,217 unique traffic accidents
recorded between 01.01.2017 and 31.12.2022, of which 102,569 contain free-text.
Additionally, on-site, the policemen classify the accidents into one of seven dis-
tinct accident types (A1 – A7), listed in Table 1. This is done by (mentally)
matching the course of events to the definition of the respective accident types.
In order to avoid confusion later on, we define the following terms:

– label definition: A textual definition for each of the seven accident types (A1
- A7).

– example text or accident description: The free-text description of the accident
recorded by the policemen on-site.

– human label : The label (A1 - A7) assigned to an accident on-site by the
policemen.

– ground truth: 236 additional labels created by expert labelers for a small
subset of accidents.

In our data set, almost 50% of the human labels fall within the fallback
category A7. Given the high proportion of accidents in this category, a high
misclassification rate is suspected. This is further supported by comparison to the
city of Berlin, where only 25% of accidents fall into this fallback category. While
there may be inherent differences between the two cities, the large proportion of
accidents in the fallback category (A7) indicates a potentially high amount of
mislabeling.

In this work, we aim to gain insights into the reasons for mislabeling and to
improve the current classification system. This could lead to the implementation
of better and more accurate safety measures. To this end, we utilize multimodal
data, comprising free-text incident descriptions as well as tabular data.
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Using advanced Natural Language Processing (NLP) techniques that have
been successfully applied in various domains, including medical records, legal
documents, and police reports [8, 20, 28], we gain insights about missclassifica-
tion by applying transformer-based methods. Furthermore, we develop a classi-
fication model that achieves high accuracy in correctly assigning accidents. We
make the code publicly available.4

2 Related Work

2.1 Traffic Accident Analysis

With the growing popularity of NLP methods, recent research has increasingly
explored their application in accident data analysis [14, 19, 27]. While structured
data has been extensively studied (see, e.g., [6, 12]), the use of unstructured free-
text features has gained traction only in recent years. Free-text descriptions can
encode nuanced information that structured numerical data cannot fully cap-
ture, offering deeper contextual insights [27]. Early approaches to leveraging
free-text descriptions often relied on simple word-count-based methods, such as
[14], where text features were extracted based on keyword frequencies. Beyond
traffic accidents, similar methods have been applied in legal text analysis. For
instance, [13] achieved strong results using LSTMs for petition analysis and sug-
gested exploring transformer-based methods as a next step. Recent research has
increasingly focused on using word embeddings to capture richer semantic in-
formation. In this context, [19] employ BERT to incorporate free-text accident
descriptions, demonstrating promising performance in a classification setting.
Their findings suggest that further integrating free-text features could unlock
significant potential, as such descriptions are widely used across different coun-
tries [19]. Their work focuses on extracting specific information from the accident
descriptions and to compare classical and modern NLP approaches for classifi-
cation, assuming the human labels to represent ground truth. In contrast, we
investigate potential mislabeling of accident types and use multiple data modal-
ities for classification compared to text-based inputs only.

2.2 Large Language Models

The Transformer architecture, proposed in 2017 for machine translation tasks
[24], quickly became the dominant paradigm in the NLP domain [15]. The orig-
inal design consists of an encoder-decoder structure, but both components are
also independently used. While encoder-only models are utilized primarily for
learning text representations [3, 4], encoder-decoder and decoder-only models
are employed for text generation tasks [16, 17].

These models, often referred to as Large Language Models (LLMs), have a
large number of parameters and are trained on massive text corpora [2, 3, 4, 16,
22]. They can be fine-tuned for specific tasks, allowing for domain adaptation
4 https://github.com/enesozeren/enhancing-traffic-accident-classifications
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and improved performance [4, 16]. Alternatively, techniques such as few-shot and
chain-of-thought prompting have enabled the application of these models with
good performance without requiring any additional parameter updating [2, 25].
In this project, we utilized both approaches, few-shot classification for creating
a second opinion about accident categories, and also fine-tuning for predictive
modeling.

2.3 Topic Modeling

Topic models are designed to extract semantic themes from large volumes of
unstructured text [1]. Traditional approaches such as latent dirichlet allocation
(LDA) and non-negative matrix factorization (NMF) have been widely used
for topic modeling. However, their performance is limited by a lack of seman-
tic understanding, as they rely solely on bag-of-words representations and fail to
capture contextual information [5]. Therefore, novel methods incorporating text-
embeddings have been increasingly applied to topic modeling. In [5], BERTopic
is proposed, a framework to perform topic modeling by creating dense vector
representations of each document, which are then used for clustering. The frame-
work makes use of Sentence-BERT [18], a time-efficient alternative of BERT [4]
enabling to compare embeddings with cosine similarity. The resulting embed-
dings are dimensionally reduced and clustered. Finally, text representations for
each cluster are chosen by modifying the TF-IDF approach proposed by [7] in a
way that all documents within one cluster are treated as a single document [5].
This allows to extract class-related representative keywords. In our study, topic
modeling is used to identify relevant topics within misclassified accidents.

3 Semantic Clustering

To investigate potential mislabeling, we first evaluate what semantic character-
istics the free-text descriptions of accidents in a certain category show. This
enables us to discover patterns within each accident type, notably which topics
show up frequently within the fallback category A7.

3.1 Methods

In order to perform semantic clustering, we apply BERTopic [5] to extract topics
present in the text corpus. Clustering is performed in an unsupervised way using
the free-text accident descriptions only and without taking into account their
human labels (A1-A7).

The first step is to convert all texts into dense vector representations. While
BERTopic allows for direct usage without specifying a specific model, it is also
possible to encode the text independently and pass the resulting vectors as an
additional argument. One requirement for a suitable Sentence-Transformer is a
context window of at least 2000 tokens, as this is the maximal text length in the
dataset. Furthermore, the model is required to have German capabilities. For
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the study and given the two requirements, jiina-embeddings-v3 [21] is chosen
from the MTEB benchmark ranking [11]. The model performs mean-pooling by
default for combining all token-vectors into a single vector for each text.

Since the resulting embedding-vectors are 1024-dimensional, their dimen-
sionality can be reduced. UMAP has shown to be able to reduce the amount
of dimensions while maintaining more of the global structure than competing
methods like t-SNE or PCA [10]. Four hyper-parameters have to be specified
when using UMAP [10]. Number of dimensions controls the number of dimen-
sions the reduced vector should have. Number of neighbors influences the locality
of approximation patterns. If the parameter is increased, more global structures
will be captured. In the context of this study, if one would be interested in many
fine-grained topics, number of neighbors can be decreased. Minimal distance is
mainly important for plotting since it controls how densely points can be packed
together. It can be increased to avoid overplotting.

Next, the reduced embedding vectors can be clustered. For the study HDB-
SCAN is used, an extension of DBSCAN which allows for capturing clusters with
varying densities [9]. As a hyper-parameter, a minimal cluster size can be fixed.
Finally, for each cluster, representations have to be generated. The goal is to
find words which are relevant for certain clusters. In [5] it is proposed to employ
a variation of TF-IDF, such that documents within each cluster are considered
as single documents, giving rise to the c-TF-IDF approach.

Wt,c = tft,c · log
(
1 +

µ

tft

)
(1)

Here the term frequency tft,c indicates the frequency of word t in cluster c.
µ is the average number of words per class while tft is the frequency of term t
across all classes. Wt,c can therefore be interpreted as an estimated importance
score for word t within class c. It needs to be stressed that this formula does
not take into account word embeddings, but is only based on word frequencies.
Therefore it might fail to accurately capture the true semantic meaning of each
extracted topic [5].

3.2 Results

Due to computational constraints, we limited our analysis to a random subset of
50,000 accident descriptions. The topic model extracts 18 different topics, listed
in Table 2. It can be seen that multiple topics about parking accidents have
been extracted. Despite looking similar according to representative documents
and the selected c-TF-IDF representations, different nuances are captured within
some of those topics. To give one example, “Parking 3” has a relatively high
cosine similarity to the topic “Intox.” which is about accidents related to drug
influence. Considerations like this can give an idea of what different subtleties
the seemingly identical topics show.

As one objective of the study is to understand what kind of accidents tend
to get the fallback label A7 (other accident), the resulting topics can now be
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Table 2. Topics extracted by BERTopic (outliers excluded). Topic (column 1) shows
subjectively labeled topic names, based on representative documents and the extracted
c-TF-IDF terms for better readability. Topics are ordered in descending order with
regards to their counts (column 2), i.e., the number of observations per topic. The
third column includes the content of each topic.

Topic Count Content

Parking 1 13,846 Parking accidents
Bicycle 8,293 Bike accidents, falling from bikes
Crossroad/Crash 4,376 Accidents mostly in crossroads, many with crashes
Parking 2 2,374 Parking accidents
Parking 3 2,212 Parking accidents
Parking 4 1,457 Parking accidents
Truck 1,242 Truck accidents, mostly damaging parked vehicles
Parking 5 999 Parking accidents, damaged side mirrors
Bus 828 Bus accidents
Damaged city obj. 645 Damaged objects like traffic lights, fences or traffic signs
Scooter 540 Scooter- and motorcycle accidents
Landsbergerstr. 422 Accidents in spacial proximity to Landsbergerstreet
Schleißheimerstr. 418 Accidents in spacial proximity to Schleißheimerstreet
Intox. 399 Accidents connected to drug influence
Fürstenriederstr. 394 Accidents in spacial proximity to Fürstenriederstreet
Dachauerstr. 366 Accidents in spacial proximity to Dachauerstreet
Parking 6 305 Parking accidents
Tram 301 Tram accidents

compared to the human labels. To do this, the text corpus is clustered in two
different ways:

1. The texts are divided as suggested by the topic model, giving rise to 18
clusters.

2. The texts are divided as suggested by the human labels, i.e., the class as-
signment to one of the 7 categories is used as cluster indicator. This yields
7 clusters (A1 – A7).

Both clustering schemes are used in the following way. After encoding all texts
with the same model used for clustering, representative embedding vectors are
generated by applying mean-pooling within each cluster defined above. After
this, their cosine similarity can be calculated and summarized as depicted in
Figure 1.

First, we note that the lowest cosine similarity value is around 0.7, indicating
generally high similarity, as this measure ranges up to a maximum of 1. This
might be due to the fact that all texts are similar in the way that they all deal
with traffic accidents. What can also be seen, for instance, is a high similarity
between accident type A1 (driving accident), and the bicycle topic from the topic
model (column 1). In fact, this accident type represents the class among all 7
with the highest proportion of bikes involved. Looking at column five, which
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Fig. 1. Cosine similarity between BERTopic-generated and human-determined clusters.

includes accident type A5 (stationary accidents), a relatively high similarity to
all six extracted parking topics is visible. Finally, column seven, which represents
the fallback category A7 (other accidents) shows almost exactly the same color
pattern as column five. In other words, accidents labeled as “other accident”
seem to be similar to what our topic model identifies as parking accidents.

4 Classification with Few-Shot Prompting

In this section, labels are generated based on few-shot prompting techniques,
designed to mimic the human labeling process in that it matches an accident
description to the label definition of an accident type. The results are compared
to the human labels, revealing potential anomalies in the labeling behavior.

4.1 Methods

Few-shot prompting is performed by conditioning the LLM on a given task de-
scription and a small set of examples to solve a task [2]. This approach has
been proven to work better than zero-shot prompting, which relies only on task
description without examples [2]. Unlike fine-tuning, few-shot prompting does
not involve updating model parameters and a small number of examples (typi-
cally 2-10) is sufficient for effective task adaptation. This makes it more efficient
than fine-tuning, which generally requires hundreds or even thousands of labeled
examples for language tasks.
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To apply few-shot prompting for our accident classification, a suitable LLM
is selected based on three requirements. First, the model should be open-source
to ensure it can process confidential data locally. Second, it needs to have strong
proficiency in German, as all our text data is in German. Lastly, a technical re-
quirement is that the model should run on available hardware (two Nvidia RTX
A6000 GPUs with 48GB memory in each). Based on these criteria, we choose the
Gemma-2-27B-Instruct model by Google [22] as it meets our requirements and
demonstrated strong performance in five widely used German language bench-
marks [23].

4.2 Results

For our analyses, we use the label definitions that provide a high-level, repre-
sentative description of each accident type and select six exemplary accident
descriptions (with verified labels) for each non-fallback accident type (categories
A1 to A6) from our data set. We intentionally exclude an example for accident
type A7, which is the fallback category, to prevent the model from becoming
biased towards a specific instance of category A7 (e.g., an accident involving a
deer). We also refrained from including multiple examples per accident type to
maintain a manageable prompt length, given hardware constraints (two Nvidia
RTX A6000 GPUs). This decision was necessary to keep the inference time
feasible for classifying all the accidents in the dataset, which already required
approximately 24 hours with our current setup. The (shortened) prompt is given
in Figure 2.

We apply the few-shot prompting for each accident description individually
using the Gemma model and compare the results with human labels, as shown
in Figure 3. Overall, 44% of the LLM few-shot labels match the human labels.
The anti-diagonal indicates a high agreement ratio for most accident types, but
the large bubbles outside of the diagonal serve as an important signal for deeper
analysis.

There are three bubbles larger than 20% outside the anti-diagonal in Figure 3.
The first case represents 49% of accidents labeled as type A2 by humans but clas-
sified as type A3 by LLM few-shot approach. Since A2 and A3 accident types are
both variations of turning accidents with a small difference (the driving direction
of vehicles), we observe that LLM confused them easily. Upon reviewing exam-
ples, we find that humans could distinguish these cases more accurately than
the LLM few-shot approach, potentially because they have a physical view of
the accident scene which is not represented accurately in the textual description.
The second case represents 21% of accidents labeled as type A6 (longitudinal
accident) by humans but classified as type A3 (turning/crossing accident) by
the LLM few-shot approach. Similar to the first case, human judgment is more
reliable as they can interpret the temporal nature of events, whereas the LLM
misclassifies those longitudinal accidents occurring just after turning maneuvers.

The third and most notable case is where 69% of accidents labeled as A7
(other accidents) by humans are classified as A5 (stationary accident) by the
LLM. This case accounts for 34% of all traffic accidents. We observe that these
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Fig. 2. Few-shot prompt for classifying accidents. Some components of the prompt
shortened for illustration. The last part (text to classify) is changed for each accident
text and inference is performed with the Gemma-2-27B-Instruct model. This is the
translated English version; the original prompt is in German since accident texts are
also in German.

accidents consistently contain parking-related keywords such as ’garage’, ’park-
ing’, etc., as well as misspelled variations of them, indicating that they are related
to damaged parked vehicles (which is in line with our findings from Section 4.2).
This finding helps reduce uncertainty about accident characteristics in the fall-
back category A7. Before, 49% of all accidents in Munich fell into the fallback
category, “Other accident (A7)”, meaning their specific nature is unknown. Our
analysis reveals that most of these accidents involve damages to parked vehicles.
As a result, the proportion of accidents of unknown nature can be reduced sub-
stantially. This has practical implications. Only accidents of a known nature can
be counteracted by city planning. For example, if an accident of types A1-A6 oc-
curs frequently within a specific time span and location, countermeasures (e.g.,
traffic signs, etc.) can be implemented. For the fallback-category, this is not the
case, as accidents could be of heterogeneous nature. However, our analysis helps
to identify a large proportion of those as parking related, which can be mitigated
accordingly.

5 Predictive Modeling

In this section, we describe our approach to building predictive models for acci-
dent classification. Given the potential for mislabeling in the training data, we
explore different strategies for constructing training sets to improve label quality.
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Fig. 3. Distribution of LLM few-shot labels vs. human labels. Each column sums to
100%, and bubble sizes correspond to the intersection ratio between LLM few-shot and
human labels. The anti-diagonal represents the agreement ratio between the two.

Since both tabular and text data are available, we investigate these modalities
individually and in combination to assess their contributions to predictive per-
formance. Finally, we evaluate the models on an expert-labeled, ground-truth
test set to provide a reliable assessment of their accuracy.

5.1 Methods

Evaluation strategy

Training Set. One of the key motivations of this study is to detect mislabeled
data. Therefore, relying solely on human labels is not ideal for this purpose.
Instead, we explore two approaches to construct the training set, as illustrated
in Figure 4. The main objective is to select accident labels that are more likely
to be correct. To achieve this, we compare human labels with those generated
by an LLM using a few-shot approach (explained in Section 4).

Our first strategy assumes that all human-labeled instances for accident types
A1–A6 are correct, while for A7, only labels agreed upon by both humans and
the LLM are considered valid. This approach results in approximately 62,000
training labels, which we refer to as presumably low-quality labels since the
assumption about human labels being entirely correct is relatively weak. The
second strategy is more conservative, considering only those labels where both
the human annotators and the LLM agree. This produces a smaller but more
reliable set of approximately 45,000 labels, which we refer to as presumably
high-quality labels.

We train supervised models using both training sets and compare their per-
formance to assess the impact of label quality on model accuracy.
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Fig. 4. Two strategies for constructing the training set. The accidents used to create
the training set are highlighted in red. (a) Assuming all human-labeled instances for
types A1–A6 are correct, while for type A7, only labels agreed upon by both humans
and the LLM few-shot approach are considered correct. Due to the weaker assumption
in this approach, we name these 62K labels as low-quality. (b) Considering only labels
where both humans and the LLM few-shot approach agree as correct, resulting in 45K
high-quality labels.

Test Set. To ensure reliable evaluation of model performances, we ask domain
specialists from the city of Munich to carefully label 236 traffic accidents. We
use these expert-labeled examples as our test set to report results.

Models & Training Details

MLP Model. Without using any text data, we employ a multi-layer perceptron
(MLP) model to predict accident types based solely on tabular data. The model
consists of feed-forward layers with skip connections and layer normalization.
This model has 42 million parameters and is initialized randomly. The input is a
fixed-size vector derived from the tabular features of the accident, and the model
utilizes a softmax head to predict the accident type.

We train the MLP model on two Nvidia RTX A6000 GPUs. The optimization
is performed using AdamW with an initial learning rate of 0.001, which decreases
linearly by a factor of 0.9 every 5 epochs. We apply dropout with a probability
of 0.1 and use a weight decay of 0.01 for regularization. The model is trained
for 50 epochs, and we report the results from the best checkpoint based on the
lowest validation loss.

LLM Few-shot Labeling. We use the Gemma Few-shot labels for comparison
with the other supervised trained models. The details of few-shot labeling are
given in Section 4.
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Finetuned XLM-R. To predict accident types using text data, we employ an
encoder-only LLM. XLM-RoBERTa-Large (XLM-R), a multilingual model with
550 million parameters [3], serves as our backbone. We use a pre-trained version
of the model for transfer learning, fine-tuning it on our dataset. The model takes
the accident text description as input and predicts the accident type through
a softmax classification head with the model having 560 million parameters in
total.

For fine-tuning XLM-R, we use Hugging Face [26]. The model is fine-tuned
on two Nvidia RTX A6000 GPUs. We use an initial learning rate of 5 × 10−5,
a weight decay of 0.01, and train for 6 epochs. The effective batch size is set to
128. As before, we select the best checkpoint based on the lowest validation loss.

Multimodal Model. To effectively handle both tabular and text data modalities,
we design a multimodal model that integrates information from both sources.
The architecture follows a two-branch structure:

– Textual Input Pathway: The accident description is processed using the
XLM-R model, which transforms the text into a text embedding via mean
pooling.

– Tabular Input Pathway: The numerical and categorical accident-related
features are fed into a multi-layer perceptron (MLP) model, which encodes
them into a tabular feature embedding.

– Fusion and Prediction: The text embedding and tabular feature embed-
ding are concatenated and passed through another MLP model, which acts
as the final classifier with a softmax output layer to predict the accident
type.

The XLM-R model is initialized with pretrained weights to leverage prior knowl-
edge from multilingual text data, while the MLP components are randomly ini-
tialized. During training, all model parameters are updated.

The multimodal model is trained on two Nvidia RTX A6000 GPUs for 5
epochs with a batch size of 64. We use an initial learning rate of 1×10−5, which
decreases linearly by a factor of 0.7 every epoch. We apply a dropout rate of 0.2
and a weight decay of 0.01.

Table 3. Comparison of predictive models for accident classification using different
data sources and corresponding model sizes.

Model Data Modality Parameter Size

MLP Tabular 42 M
LLM Few-shot Labeling Text 27B
Finetuned XLM-R Text 560 M
Multimodal Model Tabular + Text 603 M
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Model Comparisons To assess the different approaches and data modalities
for accident classification, we compare the models using accuracy and weighted
F1 score metrics calculated on the test set. Accuracy measures the proportion
of correct predictions over all predictions. Weighted F1 score is computed as the
weighted mean of F1 scores for each accident type

Weighted F1 Score =
∑7

i=1 wi · F1,i

where F1,i is the F1 score of class i, calculated as the harmonic mean of precision
and recall, and wi = ni/(

∑7
j=1 nj) with ni the number of samples in class i.

5.2 Results

Label Quality Effect. As discussed above, we constructed two training datasets: a
larger one with lower-quality labels, containing approximately 62,000 accidents,
and a smaller one with higher-quality labels, consisting of around 45,000 acci-
dents. To examine the trade-off between dataset size and label quality, we trained
three supervised models (MLP, Finetuned XLM-R, and Multimodal model) with
the settings given in Section 5.1. We excluded the LLM few-shot approach from
this comparison, as it does not involve parameter updates during training.

Table 4 presents the performance of models trained on either low- or high-
quality labels, evaluated on a test set of 236 expert-labeled accidents. Despite
the smaller size of the high-quality label dataset, models trained on it achieve
comparable performance to those trained on the larger low-quality label dataset.
This highlights the importance of high-quality labels in model training. However,
one should take into account the additional cost associated with generating high-
quality labels—specifically, the computational expense of applying LLM few-shot
labeling to a larger set of accidents. In our case, this was not an additional
burden, as the few-shot labeling had already been applied to the full dataset for
the preceding analysis.

Model Comparisons. Comparing the different models and modalities, the results
indicate that the MLP model, which relies solely on tabular data, performs
the worst among all approaches (53% accuracy, 0.49 weighted F1 score). In
contrast, all models incorporating text data—whether alone or in combination
with tabular features—demonstrate better performance (≥ 61% accuracy, ≥ 0.58
weighted F1 score). This suggests that textual information is the primary source
of information for this classification task, whereas tabular data alone lacks the
necessary detail for accurate accident classification.

When comparing the LLM Few-Shot approach (61% accuracy) to the fine-
tuned XLM-R model (72% accuracy), we observe that finetuning leads to supe-
rior performance. Even though Gemma is a much larger model, with 27 billion
parameters in a decoder-only architecture, it underperforms relative to the 560-
million-parameter encoder-only XLM-R model. Two key factors likely contribute
to this outcome. First, encoder-only models like XLM-R leverage a bidirectional
attention mechanism, which is inherently more effective for text classification
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Table 4. Test set accuracy and weighted F1 scores for different models trained with
datasets containing either low-quality (Low-Q) or high-quality (High-Q) labels. LLM
Few-Shot Labeling is not explicitly trained, therefore presented in the center of both
columns. Best accuracy and weighted F1 score values are highlighted in bold.

Model Data Modality
Test Set Performance

Accuracy W. F1 Score

Low-Q High-Q Low-Q High-Q

MLP Tabular 0.53 0.53 0.49 0.48

LLM Few-Shot Labeling Text 0.61 0.58

Finetuned XLM-R Text 0.72 0.72 0.68 0.70
Multimodal Model Text + Tabular 0.73 0.70 0.68 0.68

tasks compared to the autoregressive nature of decoder-only models. Second,
finetuning allows the model to better adapt to domain-specific data, whereas
few-shot prompting, even with six examples, does not provide the same level of
task specialization.

Finally, comparing the Multimodal Model to the Finetuned XLM-R shows
no large difference in performance when both text and tabular data are used.
This suggests that textual data carries the most relevant information for accident
classification in our predictive models.

6 Conclusion and Future Directions

In this study, we analyzed Munich traffic accidents using multiple data modal-
ities to uncover meaningful patterns. Through semantic clustering, we identi-
fied distinct topics across seven accident categories, providing deeper insights
into their characteristics. To further investigate accident categorization, we em-
ployed an LLM with a few-shot approach and compared its results with human
labels. Disagreements between the two revealed that many cases in the “other
accidents” category involved damaged parked vehicles, supporting our findings
from semantic clustering.

We also explored predictive modeling. Our results showed that models us-
ing text data outperformed those relying solely on tabular data, demonstrating
the value of textual information for accident classification. Overall, our findings
highlight the importance of NLP techniques in understanding traffic accidents.
By leveraging textual data and machine learning, this approach offers valuable
insights that can inform safety measures and contribute to the development of
safer cities.

Future developments could focus on improving and incorporating data-based
classification into practice, for example by deploying such a model to make real-
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time suggestions to human labelers (human-in-the-loop) and use active learning
approaches to improve model-based classification over time.
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