
Fostering Responsibility in Email Marketing:
A Contextual Restless Bandit Framework

Ibtihal El Mimouni1,2 (�) and Konstantin Avrachenkov1

1 INRIA Sophia Antipolis, Biot, France {ibtihal.el-mimouni,
k.avrachenkov}@inria.fr

2 Smartprofile, Valbonne, France

Abstract. Email marketing is increasingly criticized due to ethical con-
cerns, as bulk email campaigns often result in spam, reduced engagement,
and negative user experiences. In addition, there is increasing awareness
of the environmental impact, as these large-scale campaigns contribute
to carbon emissions. To address these issues, we introduce QWIC-Fair
(Q-learning Whittle Index with Context and Fairness), an algorithm that
operates within a Contextual Restless Multi-Armed Bandit framework.
QWIC-Fair leverages implicit feedback to learn the dynamics of user
interactions and thus target users with relevant content. In this model,
each user represents an arm of the bandit, evolving as a Markov Decision
Process that captures state transitions reflecting their interactions with
email contents, while accounting for contextual information. The algo-
rithm also incorporates a fairness constraint to ensure balanced selection
and to avoid repetitive targeting of the same users. The experiments con-
ducted, using synthetic and real-world data, show that QWIC-Fair out-
performs existing email marketing approaches.

Keywords: Reinforcement learning · Restless bandits · Whittle index ·
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1 Introduction

In today’s digital landscape, email marketing has become an essential tool for
businesses to reach out to potential customers [12]. However, the volume of
emails sent daily raises ethical and environmental issues, particularly with tra-
ditional marketing strategies that often deliver generic content to large market
segments. This results in high spam rates [23], a negative user experience [22],
and a tarnished domain reputation [44]. Moreover, these practices also contribute
to digital carbon emissions: a typical email has a carbon footprint that ranges
between 0.3g and 26g of CO2, while an email with an attachment can reach up
to 50g of CO2 [5,36]. Individual emails may have a relatively small carbon foot-
print, but the cumulative effect of poorly targeted campaigns can be significant:
in 2023, an estimated 347 billion emails were sent and received around the world
[37].
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These challenges are compounded by the fact that user engagement is not
static: preferences and responsiveness shift over time due to factors such as sea-
sonal trends or changes in personal preferences. As a result, traditional static
or myopic approaches, which optimize only for immediate user response, often
fail to capture these evolving patterns. This can lead to over-targeting of ac-
tive users while neglecting others, resulting in disengagement and unfairness.
Moreover, bulk campaigns frequently deliver irrelevant content, which not only
contributes to user fatigue but also increases the carbon footprint by generating
unnecessary emails. To address these issues, personalization is key. It allows for
tailored offers that align with users’ interests, enhancing engagement [28,41] and
reducing the likelihood of emails being marked as spam. By targeting effectively,
marketers can achieve better results with fewer emails, thereby minimizing the
digital carbon footprint associated with mass campaigns.

Building on this principle of personalization, we propose to frame the prob-
lem as a sequential decision-making task using the Contextual Restless Multi-
Armed Bandit framework. We model each user as an evolving arm, represented
by a context-augmented Markov decision process that captures user’s state tran-
sitions based on their email interactions. Within this framework, we introduce
Q-learning Whittle Index with Context and Fairness (QWIC-Fair). The algo-
rithm operates in an episodic manner. Each episode consists of L time steps, dur-
ing which actions are taken using an epsilon-greedy strategy. This involves either
randomly exploring users or exploiting by selecting users based on the highest
Whittle indices, which are a measure of the value of activating a particular user.
QWIC-Fair functions on two distinct timescales: on a fast timescale, it updates
the Q-values by adjusting estimates of the expected cumulative reward for each
state-action-context triplet. On a slow timescale, it updates the Whittle indices.
At the end of each episode, the learning agent evaluates a fairness constraint to
ensure balanced targeting among users. Specifically, it identifies under-selected
users and prioritizes their selection in the following iterations. We showcase the
effectiveness of QWIC-Fair by comparing it to baselines often used in email
marketing, using two simulators: one built from real-world data and another
from synthetic data.

Our contributions can be summarized as follows: (1) We introduce a Contex-
tual Restless Multi-Armed Bandit framework designed for email Recommender
Systems (RS), where we consider each user as an arm of the bandit. (2) We design
a practically relevant algorithm called QWIC-Fair, which leverages context-
aware Whittle index-based Q-learning, and incorporates a fairness constraint,
thereby ensuring equitable selection of the users. (3) Our approach promotes
ethical email marketing practices by guiding user selection to prevent spamming
and to reduce the carbon footprint associated with bulk email campaigns. (4)
Experiments, using both real and synthetic data, demonstrate the effectiveness
of QWIC-Fair.

The paper is structured as follows: Section 2 reviews the related literature.
Section 3 presents restless bandits and introduces the Whittle index policy. Sec-
tion 4 formalizes the contextual restless bandit problem and explains the email
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recommender application. Section 5 details the proposed algorithm. Section 6
outlines the experiments conducted and discusses the results.

2 Related Work

2.1 Bandits in Recommenders

Recommender Systems (RS) [40] have proven to be an effective tool [24] in guid-
ing users through large pools of content, products, and services by suggesting the
most pertinent items. RS are now broadly implemented across multiple indus-
tries [16,30,43], using various methods such as collaborative and content-based
filtering [13,34]. Despite their popularity, these methods have some limitations,
notably when favoring some popular items and limiting the exploration of po-
tentially relevant ones. To address the exploration-exploitation dilemma, Multi-
Armed Bandits (MAB) [10,25,50] have been explored in recommenders. These
algorithms balance discovering new options, and exploiting previous knowledge
about items that have been previously recommended. A more advanced type
of bandits that incorporate contextual information (such as user demographics,
time, or device) are the Contextual Multi-Armed Bandits (CMAB). LinUCB,
proposed by Li et al. [27], is one the most popular CMAB algorithms. The
authors solve the problem of personalized news recommendations at Yahoo!.
However, even CMAB models may fall short in environments where user be-
havior keeps changing over time. To address this, Restless Multi-Armed Bandits
(RMAB) emerged, allowing arms to evolve over time, even when not selected by
the agent. Most bandit algorithms for recommenders consider each arm as the
item to recommend [27,31]. In our work, we model each user as an arm.

2.2 Restless Bandits

Restless bandits have become very popular over the years, finding applications
in different domains such as healthcare [6], web crawling [2], and communica-
tion networks [1]. For our RS use case, our study leverages seminal research on
RMAB: Whittle [51] introduced the Whittle index policy, which allows for the
activation of M arms on average by calculating an index for each arm and select-
ing top M arms with the highest indices. Building on Whittle’s work, there has
been a surge of interest in developing algorithms to calculate the Whittle index.
For instance, Avrachenkov and Borkar [3] focused on the time-average criterion
and developed a tabular algorithm that converges to the Whittle index. Various
other approaches have been proposed to tackle the RMAB problem, including
index policies [15,32,49] and Reinforcement Learning (RL) techniques [47,52].
Another line of research that is related to ours is the growing literature on
fairness in RMAB. Some authors focused on quota-based fairness [19,35], while
others studied satisfying the fairness among the allocated resources [7]. Other
works explored soft fairness where fairness constraints are considered on aver-
age [26,46].
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2.3 Contextual Restless Bandits

A particularly promising direction is the combination of contextual and rest-
less bandits, coined as Contextual Restless Multi-Armed Bandits (CRMAB).
While the incorporation of context has been explored in contextual MAB [27,9],
research on CRMAB remains limited. To the best of our knowledge, the only
works that address CRMAB are by Chen and Hou [11], who proposed a model-
based online learning algorithm that combines index policies with a dual de-
composition framework, allowing for simultaneous learning of the arm models
and decision-making. They applied their algorithm to smart grid optimization.
On the other hand, Liang et al [29], developed a Bayesian CRMAB approach
tailored to public health interventions. They used Thompson sampling and re-
lied on informative priors to model arm behavior. In contrast, our method is
model-free, using Q-learning to learn arm dynamics from observed interactions.
Moreover, in addition to reward maximization, our approach ensures balanced
exposure across arms by incorporating a fairness constraint.

3 Preliminaries

3.1 Restless Bandits

The RMAB problem is a generalization of the MAB framework. Unlike the classi-
cal bandit problems, restless bandits model a more realistic scenario where arms
evolve over time regardless of whether they are selected. As a result, computing
optimal policies becomes PSPACE-hard [33], and the exploration-exploitation
trade-off is further complicated by the need to balance learning both active and
passive arms.

Let us consider a RMAB with N arms, each evolving according to a Markov
Decision Process (MDP). At each time step t, the agent selects a subset of M
arms to activate, where M < N . The state of arm i at time t is denoted by
si(t) ∈ S, where S is the finite state space of the arm.

The state of each arm is controlled by the action chosen. Specifically, let ai(t)
be the action taken on arm i at time t, where ai(t) = 1 if arm i is activated, and
ai(t) = 0 if left passive. The state transition probabilities are defined as:

P (si(t+ 1) = s′|si(t) = s, ai(t) = a) = P i,a
s,s′ , (1)

where P i,a
s,s′ is the probability of transitioning from current state s to next state

s′ for arm i under action a.
Each arm generates a reward depending on its state and the action taken. Let

ri(si(t), ai(t)) denote the reward obtained from arm i at time t, at state si(t),
when action ai(t) is taken. The goal is to determine a policy π, that specifies
which arms to activate at each time step, to maximize the expected cumulative
reward. Under the total discounted criterion (γ ∈ (0, 1) being the discount factor)
and infinite horizon, the objective is to solve the following:

max
π

E

[ ∞∑
t=0

N∑
i=1

γt ri(si(t), ai(t))

]
, (2)
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subject to the constraint that no more than M arms can be active simultane-
ously:

N∑
i=1

ai(t) ≤M, ∀t ≥ 0. (3)

RMAB problems are computationally expensive [33]. Consequently, resea-
rchers have proposed approximation techniques to make these problems more
tractable. One particularly significant advancement in this area is the Whittle
index heuristic [51].

3.2 Whittle Index

Whittle’s index policy utilizes the concept of Lagrangian relaxation to address
the complexities of the RMAB problem. Whittle proposed to relax the con-
straint (3) to apply on average, rather than strictly, by incorporating a Lagrange
multiplier, denoted λ̃. The objective function becomes the following:

max
π

E

[ ∞∑
t=0

N∑
i=1

γt
(
ri(si(t), ai(t)) + λ̃(1− ai(t))

)]
. (4)

This relaxation allows the RMAB problem to be decoupled into N indepen-
dent subproblems, each solved by the associated Bellman equation for the state
value function:

Vi(s) = max
a∈{0,1}

[
a
(
ri(s, 1) + γ

∑
j

pi(j|s, 1)Vi(j)
)

+ (1− a)
(
ri(s, 0) + λ̃+ γ

∑
j

pi(j|s, 0)Vi(j)
)]
.

(5)

We rewrite Equation (5) as a function of the state-action pair, which deter-
mines the Q-values that reflect the expected future rewards of taking an action
in a given state:

Qi(s, a) =

{
ri(s, 1) + γ

∑
j pi(j|s, 1)Vi(j), if a = 1,

ri(s, 0) + λ̃+ γ
∑

j pi(j|s, 0)Vi(j), if a = 0.
(6)

Whittle interpreted the Lagrange multiplier λ̃ as a subsidy for passivity.
Accordingly, the Whittle index λ is defined as the smallest subsidy that makes
the agent indifferent between choosing an arm i (ai = 1) or not choosing it
(ai = 0). The RMAB problem is (Whittle) indexable if the set of states for
which it is optimal to activate the arm increases monotonically with λ. For a
given state k, λ(k) is determined such that the expected reward from activating
and not activating the arm are equal:

Q(k, 1) = Q(k, 0). (7)

The objective is to learn the Whittle indices λ by solving (7).
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4 Problem Formulation

4.1 An Email Recommender System

In RS, ethically collected user feedback [18], that respects user privacy and con-
sent, is crucial for enhancing personalization and improving the performance of
these systems. It is categorized into: Explicit feedback [4], which involves direct
inputs from users such as ratings, reviews, likes, or explicitly stated preferences.
This type of feedback offers precise insights into user preferences because it re-
flects their evaluations. However, explicit feedback is not always available as it
relies on users actively providing it. On the other hand, Implicit feedback [20]
is gathered passively through users’ interactions with the system. It includes
data such as browsing history, purchase frequency, shares, time spent on certain
items, etc. This form of feedback tends to be more abundant providing a rich
source of data for inferring user preferences.

An email RS benefits from a substantial amount of implicit feedback includ-
ing actions like opening emails, clicking on call-to-action buttons, unsubscribing,
etc.

In our work, we model an email RS as a sequential decision-making prob-
lem, specifically as a contextual restless bandit. Our goal is to maximize user
engagement while minimizing unnecessary emails. This not only enhances user
satisfaction and reduces the risk of email fatigue but also helps address the
environmental challenges discussed in Section 1.

4.2 A Contextual Restless Bandit

Fig. 1. Users are modeled as Markov decision processes, with state transitions reflecting
engagement levels (idle, open, click, purchase).

Let U = {u1, u2, . . . , uN} be the finite collection of N heterogeneous users, where
each user ui is an arm of the CRMAB. Each user behaves according to a Contex-
tual Markov Decision Process (CMDP) [17]. CMDP extends traditional MDP
by incorporating contextual information that influences both the dynamics of
the environment and the rewards associated with different actions.

We define a CMDP by the tuple (S,A, C, P, r), where the state space S =
{s1, s2, . . . , s|S|} represents the users’ implicit feedback. We consider fully ob-
servable states corresponding to four levels of engagement, as shown in Figure 1.
Open is when the user opens an email, click is when the user clicks on a link
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within the email, purchase refers to buying a product, idle indicates no interac-
tion.

The context space C = {c1, c2, . . . , c|C|} captures side information that could
include the special features of the campaign (e.g. seasonal promotions), user’s
features (e.g. age, location, segment). Contexts enrich the data from which the
system learns.

The actions correspond to the type of emails to send to users, each with a
different content, such as offering promotions, showcasing product features, and
inviting feedback, etc. This multi-action setup adds another layer of complexity,
which we will address in an extended version of the current work. To simplify,
for now, we only consider the two-action CRMAB framework. Thus, the action
space is A = {0, 1}, where a = 1 is the active action of sending a promotional
email, and a = 0 is the passive action of not sending it.

The probability that user u transitions from state s to state s′, given action
a, and context c is: Pu,a,c

s,s′ following the notation in Equation (1).
The reward is a function of the current state, context, action, and next state,

denoted as r : S×C×A×S 7→ R. It is designed by assigning a reward value for an
email open, a higher reward for a click, and a highest reward for a purchase, while
taking into account the contexts and the action taken. For instance, suppose we
have two users: u1, a young professional living in an urban area, and u2, a retired
individual living in a suburban area. Without adding context, the system might
treat both users the same way and send them identical offers, potentially leading
to lower engagement. Incorporating context into the reward function allows the
recommender to learn the types of actions (promotional offers) that yield the
best outcomes (user engagement) in different contexts.

The goal is to maximize the discounted cumulative reward over infinite time
horizon, subject to the constraint (3) that, at time step t, no more than M out
of N users can be chosen:

max
π

E

[ ∞∑
t=0

N∑
i=1

γt rui
(sui

(t), cui
, aui

(t), sui
(t+ 1))

]
. (8)

For ease of notation, we will refer to the reward as r.

5 Algorithm: QWIC-Fair

QWIC-Fair leverages Q-learning, a model-free RL technique [48], alongside
the Whittle index policy [51]. It uses a two-timescale stochastic approximation
scheme [8] where both control and parametric optimization occur simultaneously.
The algorithm incorporates contextual information to guide informed decision-
making based on user interaction dynamics. It also constrains selection with
fairness criteria to ensure balanced targeting, and to prevent repeatedly activat-
ing the same users.
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Algorithm 1 Q-learning Whittle Index with Context & Fairness (QWIC-Fair)
1: Initialize Q_table and λ_table, fairness threshold η, episodes Eepisodes, time steps

L, exploration parameter ϵ, discount factor γ, set of under-selected arms Ũ = ∅,
selection_count to track arms’ selections, average_reward to track arms’ average
reward across episodes, engagement threshold τ , interval to check inactive arms H

2: for e = 1 to Eepisodes do
3: for t = 1 to L do
4: /* Exploration-Exploitation*/
5: if Uni[0,1] < ϵ then
6: Randomly select M arms from the set Ũ
7: Fill remaining slots (if any) by selecting arms from the complement of Ũ
8: else
9: Select top M arms from the set Ũ with the highest Whittle indices

10: Fill remaining slots (if any) by selecting arms from the complement of Ũ
11: end if
12: /* Update selection counters and Ũ */
13: for each selected_arm do
14: selection_count [selected_arm]← selection_count [selected_arm]+1
15: Remove selected_arm from the set Ũ (if selected_arm ∈ Ũ)
16: end for
17: Take actions a(t), observe next states s(t+ 1), contexts c, and rewards r(t)
18: /* On a faster timescale, update the Q-values */
19: for k in S do

Q(s(t), a(t), k, c)← Q(s(t), a(t), k, c) + α(t)
[
(1− a(t))(r(t) + λ(k, c))

+ a(t)r(t) + γ max
a′∈{0,1}

Q(s(t+ 1), a′, k, c)−Q(s(t), a(t), k, c)
]

20: end for
21: /* On a slower timescale, update the Whittle indices */
22: for k in S do
23: for c in C do
24: λ(k, c)← λ(k, c) + β(t)

(
Q(k, 1, k, c)−Q(k, 0, k, c)

)
25: end for
26: end for
27: end for
28: /* Fairness constraint */
29: Ũ = {arm | selection_count[arm] < η L}
30: selection_count← {arm : 0} for all arms
31: /* Put non-engaging arms to sleep */
32: if e ≡ 0 mod H then
33: Z = {arm | average_reward[arm] < τ}
34: Ũ = {arm | selection_count [arm] < η L and arm /∈ Z}
35: end if
36: end for

QWIC-Fair operates in an episodic manner, where each episode is of length
L. The entire time horizon is denoted by T. Let Eepisodes be the total number
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of episodes until time T, hence we have: T = LEepisodes. The episodic structure
allows to periodically check the fairness constraint defined as follows:

Definition 1 (Fairness constraint). Let U = {u1, u2, . . . , uN} be the set of
N arms, and let L be the length of an episode. The fairness constraint is satisfied
if, in each episode, we have:

selection_count [ui] ≥ ηL, ∀ui ∈ U , (9)

where selection_count [ui] is the number of times arm ui is selected during an
episode e, and η ∈ [0, 1] is a fairness threshold. The fairness constraint ensures
that, at the end of each episode, each arm ui ∈ U was selected at least ηL times.
If selection_count [ui] < ηL, the arm ui is added to the set of under-selected
arms Ũ 1, and is prioritized in the subsequent episode.

In our QWIC-Fair algorithm, each arm ui corresponds to an individual user.
When clear from the context, we use the terms arms and users interchangeably.
Thus, in an episode e, the set of under-selected arms Ũ contains users who were
targeted less frequently than others during that episode.

Each episode consists of L time steps. At each time step t, the algorithm
employs an epsilon-greedy strategy to balance exploration and exploitation (see
lines 4 → 11 of Algorithm 1):

• With probability ϵ, it explores the state-action-context space by randomly
selecting arms from the set of under-selected users Ũ . If |Ũ | < M , the algo-
rithm fills the remaining slots by selecting additional arms from the set:
U \ Ũ = {ui ∈ U | ui /∈ Ũ}.

• With probability 1 − ϵ, the algorithm exploits its current knowledge by se-
lecting M users with the highest Whittle indices. Again, the algorithm first
considers under-selected users by selecting the top M from Ũ to ensure that
fairness constraints are met. If |Ũ | < M , the remaining slots are filled by
selecting arms with the highest Whittle indices from the complement of Ũ .
This way the Whittle index policy respects the constraint (3).

For every selected user, the algorithm increments their selection counter,
which tracks how often they are targeted during the episode. If the selected
user ∈ Ũ , they are removed from this set for the remainder of the episode. This
ensures that they are no longer prioritized as under-selected users for the rest of
the current episode (see lines 12 → 16 of Algorithm 1).

Once the users are selected, the algorithm executes the actions a(t), and
observes the resulting next states s(t + 1), contexts c, and rewards r(t). Next,
it updates the Q-values and Whittle indices, following a two-timescale stochas-
tic approximation approach with asynchronous iterates (see lines 17 → 26 of

1 The maximum size of Ũ is N−M . This occurs when the algorithm repeatedly selects
the same subset of M users. To ensure that all users in Ũ are covered throughout
the episode, the minimum number of time steps required is: L ≥

⌈
N−M

M

⌉
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Algorithm 1). Specifically, on a fast timescale, it updates the Q-values:

Q(s(t), a(t), k, c)← Q(s(t), a(t), k, c) + α(t)

[
(1− a(t))

(
r(t) + λ(k, c)

)
+ a(t)r(t) + γ max

a′∈{0,1}
Q(s(t+ 1), a′, k, c)−Q(s(t), a(t), k, c)

]
,

(10)

and, on a slow timescale, it updates the Whittle indices:

λ(k, c)← λ(k, c) + β(t) (Q(k, 1, k, c)−Q(k, 0, k, c)) . (11)

In the above, α(t) and β(t) are the learning rates for the Q-values and the
Whittle indices, respectively, with β(t) = o(α(t)), as the Whittle index estimates
need to be updated less frequently. We fix:

α(t) =
C⌈
t

5000

⌉ , β(t) =
C ′

1 +
⌈
t log t
5000

⌉I{t mod N ≡ 0}, (12)

This ensures that:

•
∑∞

t=0 α(t) =∞ and
∑∞

t=0 α(t)
2 <∞: α(t) must decrease sufficiently slowly

to ensure that the algorithm can explore the environment over time, while
also decreasing quickly enough to guarantee convergence to the optimal Q-
values.

•
∑∞

t=0 β(t) = ∞ and
∑∞

t=0 β(t)
2 < ∞: β(t) must decrease gradually enough

to allow continuous learning of Whittle index estimates, but also quickly
enough to ensure the estimates eventually converge to their true values.

The theoretical guarantees from [3] include convergence of the Q-values and
of the Whittle index estimates for each state. For our tabular setting, for time-
independent context, the learning process inherits these convergence guarantees.
Concerning time-dependant context, one may choose α and β to be small con-
stant values with the condition that β << α.

At the end of each episode, the algorithm checks the fairness criterion by
reviewing the selection count for each user. Users who were under-selected are
added to the set Ũ . The elements of this set are prioritized in the subsequent
episode, ensuring a more balanced targeting approach over time. The algorithm
resets the selection counter for all users, to prepare for the next episode (see
lines 28 → 30 of Algorithm 1). While fairness is important to ensure equitable
selection among users, strictly adhering to the fairness constraint can sometimes
lead to suboptimal outcomes. For instance, some users might consistently remain
in the idle state, showing little to no engagement. Continuing to target these
users can reduce system performance. To address this, after every H episodes, the
algorithm identifies a set Z of users who exhibit low engagement by calculating
the average reward of each user across previous episodes. If a user’s average
reward falls below a threshold τ , they are classified as non-engaging and added
to Z. We say that these users are put to sleep.
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The threshold τ can either be set as a constant, or it can be a dynamic
threshold that changes throughout episodes. For example, if we set τ to the
20th percentile of user rewards, it would be the value below which 20% of the
rewards fall. Meaning that, in an episode e, if the 20th percentile of user rewards
is 0.5, then τ would be 0.5. Users with rewards below this 0.5 threshold would
be considered non-engaged and added to Z. By periodically putting inactive
users to sleep, the algorithm shifts its focus to users that are more likely to
engage: users in Z are excluded from Ũ , so even though they would be flagged
as under-selected, they are deprioritized in the following episode due to their low
engagement (see lines 31 → 35 of Algorithm 1).

The episodic setting aligns well with the email RS, where campaigns are
typically sent at regular intervals. An episode could represent a week or a month,
with each time step corresponding to an email campaign or a decision to interact
with a user.

6 Experiments and Results

6.1 Baselines

In our experiments, we compare QWIC-Fair against the following baselines:

Table 1. Baseline policies used for comparison with QWIC-Fair2.

Policy Definition

Random
Selects users randomly without considering engagement
information, which is fair in expectation.

Myopic
Selects users who are most likely to result in
conversions, based on immediate rewards.

Fair-Myopic
Selects users based on immediate rewards, while
incorporating the fairness constraint.

Round-robin
Selects users in a cyclic order. This is by nature a fair
policy because it guarantees equal distribution of email
sends across all users.

We choose to compare with these baselines because they are currently used
by Smartprofile [42], our partner company specializing in B2B digital marketing,
and are often adopted by marketers in emailing. The objective is to demonstrate
the practical improvements of our proposed method over existing emailing in-
dustry standards.

6.2 Real Dataset

We use a real-world dataset provided by Smartprofile. The dataset is a sample
from one of their clients’ data, which was gathered with user consent and adheres
2 Code available at: https://github.com/cloud-commits/QWIC-Fair.

https://github.com/cloud-commits/QWIC-Fair
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(a) N=100 / M=10 (b) N=1,000 / M=100 (c) N=10,000 / M=1,000

Fig. 2. Average rewards of different policies over a time horizon of T = 1,000. (a)
shows results with real data; (b) and (c) show results with synthetic data. N is the
total number of arms, and M3 is the number of selected arms. The fairness threshold
is η = 10%, the exploration parameter is ϵ = 0.3, and the discount factor is γ = 0.9 .

to GDPR [14] regulations. The sample includes 10,000 distinct users, which is
representative of small to medium-sized email marketing businesses. However,
the proposed algorithm can scale to larger datasets involving millions of users.
In fact, once Whittle indices are inferred from the modest-sized dataset, they
can be immediately transferred to a dataset of million users: the application of
Whittle indices is just a sorting procedure with complexity of O(n log n).

Analyzing user logs revealed that more than 60% of users exhibit low en-
gagement. This indicates that most users are likely to remain in an idle state,
with low probabilities of transitioning to more active states such as clicking,
or purchasing. This results in data sparsity, which makes it challenging to have
accurate model predictions about user behavior. To overcome this limitation,
we developed a simulator that draws on the transitions observed in the real
dataset. Despite initially having data from over 10,000 users, we could only re-
liably construct irreducible MDPs for 100 users due to sparse interactions and
limited contextual features in the initial dataset. We used location as the primary
time-independent contextual feature in this model.

We also explored a publicly available dataset, "messages-demo", provided by
the REES46 Customer Data Platform project [38]. This dataset, accessible on
Kaggle [39], contains messaging campaigns from a medium-sized retail company,
delivered through various channels, including email, web and mobile push no-
tifications, and SMS. Each message in the dataset is associated with detailed
statistics, such as delivery, open, click, purchase events, and negative feedback
(unsubscribes, spam complaints, and bounces). While we initially considered this
dataset for our experiments, we encountered challenges when focusing solely on
email interactions. In fact, after filtering the data to include only email-related
events, we found that the number of interactions per user was insufficient to
construct representative transition matrices. This sparsity posed a challenge for

3 In a typical setup of Smartprofile, M represents 10% of N available users. We also
use this ratio in our experiments.
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our modeling framework, which requires adequate user interaction data to train
effectively.

The REES46 data structure and content are very similar to the data pro-
vided by Smartprofile, which we used in our experiments. We encourage readers
to explore this publicly available dataset as it is a useful resource for experi-
menting with similar algorithms and studying user interactions across multiple
communication channels.

6.3 Synthetic Dataset

The purpose of the synthetic simulation is to enhance the modeling of user be-
havior by generating a richer dataset. To achieve this, we collaborated with our
partner company Smartprofile, leveraging their expertise to accurately reflect
email industry standards in the simulator’s design. To provide a comprehensive
representation of varied user behaviors, we categorized users into four distinct en-
gagement levels: low, medium, high, and very high; and designed corresponding
transition matrices for each class. We incorporated time-independent contextual
features such as user location, age, and marital status, derived from distribu-
tions provided by INSEE [21]. Since the model is based on CMDP, having well-
calibrated transition matrices is essential. We tested various setups. Plots (b) and
(c) of Figure 2 illustrate the scenario where low user engagement is prominent,
just like in the real dataset.

6.4 Results and Discussion

Performance plots in Figure 2 show that QWIC-Fair exceeds the policies, pre-
sented in Table 1, in terms of average rewards, for both synthetic and real-world
data. In plot (a) of Figure 2, which uses real data, QWIC-Fair shows significant
improvement over the other policies, particularly in the initial time steps, where
it quickly converges to a higher average reward. Plots (b) and (c) of Figure 2, us-
ing synthetic data, also show that QWIC-Fair leads to higher rewards. The gap
between QWIC-Fair and the other policies widens as the data size increases.

If fairness is omitted, standard Whittle-index-based Q-learning (QWIC) fo-
cuses solely on maximizing cumulative reward and does not inherently prevent
repeated selection of high-reward arms. This can lead to fairness issues such as
over-targeting some users while neglecting others, especially in domains where
equitable exposure and long-term user engagement are important. While tuning
parameters like ϵ in the ϵ-greedy strategy may help broaden exploration, this
does not guarantee balanced exposure across users. QWIC-Fair addresses this
by enforcing an episodic fairness constraint that ensures under-selected users are
prioritized in subsequent episodes. This introduces a natural trade-off between
fairness and immediate reward: in some real-world scenarios, user engagement
follows a heavy-tailed Pareto distribution, where a small fraction of users drive
most conversions. Allocating recommendations to less engaged users can reduce
short-term reward, especially in early episodes when the system is still exploring.
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The relevance of this trade-off depends on application goals. In email market-
ing, fairness is operationally preferred as over-targeting users risks unsubscribes
and spam complaints, affecting both campaign effectiveness and sender repu-
tation. Thus, fairness is not only an ethical consideration, but also a strategic
requirement.

Smartprofile also provided data on carbon emissions from one of their email
campaigns, estimating that a bulk campaign sent to around 197,000 users re-
sulted in 789.16 kg of CO2 emissions, whereas targeting only 17,885 users pro-
duced an estimated 71.54 kg of CO2. This suggests that for a setting where
M ≃ 0.1N , carbon emissions are reduced by approximately 90%. These es-
timates highlight that shifting to a more targeted approach can significantly
reduce the environmental impact of email campaigns.

In this paper, we focused on a binary-action setting within the CRMAB
framework, where the two actions are either to send a recommendation (ac-
tive) or not send it (passive). However, the CRMAB framework can naturally
extend to a multi-action setting, where different actions correspond to recom-
mending various items. For instance, this is particularly relevant in sequential
recommender systems [45]. Such systems are widely used in e-commerce and
entertainment platforms, to suggest complementary or related products to users
based on their interactions: when a user shows interest in a product by clicking
on it (state S1), the system may recommend the item (e.g., a smartphone). If the
user purchases the item, they transition to a new state (S2). This process repeats
as the system dynamically recommends additional items, such as a smartwatch
or headphones, based on the user’s evolving engagement.

Beyond email marketing, this framework can be adapted for advertisements
across other channels such as web push notifications, mobile app notifications,
or even chatbot interactions. For example, in a mobile shopping app, the system
could recommend various items via in-app notifications depending on the user’s
browsing behavior, purchase history, or demographic profile.

A key advantage of the CRMAB framework is its ability to model user be-
havior as a dynamic, evolving process. By capturing state transitions, it allows
for personalized recommendations that adapt to changes in user preferences over
time. This is particularly valuable in dynamic environments where user interests
may shift rapidly, such as during seasonal sales or promotional campaigns.

7 Conclusion and Future Work

To our knowledge, we are the first to propose utilizing Whittle index-based Q-
learning for CRMAB, and we are the first to propose an application of restless
bandits for responsible email marketing. Our algorithm, QWIC-Fair, models
implicit user feedback as state transitions in a context-augmented MDP to learn
user interaction dynamics while ensuring equitable user selection through a fair-
ness constraint. Experiments on both synthetic and real-world data showed that
QWIC-Fair outperforms common email marketing approaches.
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Our solution leverages context information by incorporating it into the Q-
learning process, allowing the algorithm to adjust its actions based on both user
states and contextual factors. While we used a tabular Q-learning method for ini-
tial validation, this approach effectively demonstrates the integration of context
in decision-making. For larger context spaces, our future work will explore ad-
vanced methods such as function approximation to handle increased complexity.
Additionally, we aim to incorporate multiple actions and conduct A/B testing
to evaluate the algorithm’s impact on customer behavior.
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