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Abstract. Traffic forecasting, a core technology in intelligent trans-
portation systems, has a broad range of applications. The fundamental
challenge in traffic prediction lies in effectively modeling the complex
spatio-temporal dependencies inherent in traffic data. Spatio-temporal
graph neural network (GNN) models have emerged as one of the most
promising approaches to address this challenge. However, GNN-based
models for traffic forecasting have two significant limitations: i) Most
methods model spatial dependencies in a static manner (predefined or
self-learning), which fails to capture the time-varying nature of spatial de-
pendencies in real-world scenarios; ii) It is unreliable to capture temporal
and spatial dependencies in entangled temporal patterns. To this end, we
propose a Progressive Decomposition-enhanced Time-Varying Graph
Neural Network, namely PDTVGNN, for accurate traffic forecasting.
Specifically, we design a time-varying graph generator that incrementally
generates a series of adjacency matrices to capture the time-varying spa-
tial relationships. Moreover, we adopt a novel progressive decomposition
idea where the decomposition blocks are embedded as internal blocks
to decouple the entangled temporal patterns gradually. The decoupled
trend and seasonal parts are modeled via the proposed spatio-temporal
normalization module and attention mechanism, respectively. Extensive
experimental results on four real-world public traffic datasets demon-
strate that the proposed method outperforms state-of-the-art baselines.

Keywords: Graph neural network · Traffic forecasting · Seasonal-
trend Decomposition

1 Introduction
Traffic management systems are facing growing pressure as vehicles on road net-
works increase. There is a pressing need to develop Intelligent Transportation
Systems (ITS) to achieve efficient traffic control. As a core technology and essen-
tial prerequisite for ITS implementation, traffic forecasting is pivotal in enabling
effective traffic management [1].
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The primary challenge in traffic forecasting is effectively capturing and mod-
eling the complex and dynamic spatio-temporal dependencies in traffic data [2].
Over the years, researchers have explored various approaches, with deep learning
techniques increasingly being adopted to uncover these spatio-temporal correla-
tions. Graph neural networks (GNN) have gained popularity for spatial correla-
tion modeling due to their strong capability in handling graph-structured data
[3,4,5].

However, traffic forecasting has its characteristics in modeling temporal cor-
relations within time series and capturing spatial dependencies between time se-
ries. Despite the effectiveness of existing methods, GNN-based models still have
two significant limitations in traffic prediction. On the one hand, in real-world
scenarios, the spatial dependencies between traffic sensors are highly dynamic,
and the change of spatial relationships in a one-time step is closely related to the
spatial relationships in the time step before it, which we call time-varying. For ex-
ample, as shown in Fig. 1(b), the correlation between nodes A and B decreases in
the morning and becomes more potent at other times. Existing methods mainly
model spatial dependencies in a static way (predefined or self-learning), which
obviously cannot handle such dynamic changes. Therefore, existing work does
not fully harness the potential of graph neural networks on this problem. On
the other hand, most existing methods capture potential dependencies directly
from traffic sequences, which fails to uncover the intricate spatio-temporal de-
pendencies masked under entangled temporal patterns. Specifically, they ignore
that traffic data are composed of complex periodic patterns coupled with trend
components in real-world scenarios, as shown in Fig. 1(c) and (d). This entangle-
ment limits the capability of existing methods and is a performance bottleneck
for traffic forecasting.

To address the above limitations, we propose a Progressive Decomposition-
enhanced Time-Varying Graph Neural Network, namely PDTVGNN, for traffic
forecasting. Unlike previous methods, this paper introduces a novel progressive
decomposition idea to disentangle complex temporal patterns by gradually de-
composing the hidden sequences using the time series decomposition module
throughout the forecasting process. For the seasonal part obtained after de-
coupling, we use the Fourier temporal attention to capture the temporal cor-
relations. Additionally, we propose a time-varying graph generation module to
construct a series of adjacency matrices that model the time-varying nature of
the spatial structure, rather than maintaining a static graph structure. Sub-
sequently, we employ a time-varying graph convolution module to extract the
spatial dependencies. For the trend part obtained after decoupling, we propose a
spatio-temporal normalization module to address the temporal and spatial non-
stationarity information in the trend data. In summary, the main contributions
are as follows:

– To cope with the intricate spatio-temporal dependencies masked by the
entangled temporal patterns, we embed the decomposition blocks as internal
blocks to progressively decouple the entangled temporal patterns. Moreover, the
trend and seasonal parts obtained after decoupling are modeled separately.
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Fig. 1. The findings about traffic prediction.

– We propose a time-varying graph generator that produces a series of re-
current adjacency matrices to capture the dynamic and time-varying nature of
spatial relationships.

– We validate the effectiveness of our method through extensive experiments
on four real-world datasets, demonstrating its superior performance and signifi-
cantly outpacing competitive baseline methods.

2 Related Work

2.1 Traffic Forecasting

Traffic forecasting has been extensively studied in intelligent transportation sys-
tems [6]. Early work focused on statistical methods like ARIMA [7] to predict
traffic indicators. Later, machine learning models, such as VAR [8], were intro-
duced with some success but were limited by assumptions of static conditions,
hindering their ability to capture the complex nonlinear relationships in traf-
fic data. Furthermore, these models neglected spatial dependencies, restricting
their accuracy. Unlike earlier methods, deep neural networks, which capture both
temporal and spatial features, have become popular. For example, FC-LSTM [9]
combines CNNs with LSTM for traffic prediction. However, these models remain
less effective in graph-based node data scenarios.

2.2 Spatio-Temporal Graph Neural Networks

In recent years, Graph Neural Networks have gained increasing attention due
to their advanced performance. Therefore, researchers have begun to incorpo-
rate them into traffic prediction models to enhance predictive accuracy. Models
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such as DCRNN [10] and STGCN [11] are among the most prominent works
in this area. These models capture spatial dependencies between nodes through
predefined graph structures and temporal dynamics through CNNs or RNNs.
However, these approaches heavily rely on manually defined graph structures,
with the quality of the predefined graph structure directly influencing model per-
formance. To address this limitation, frameworks such as Graph WaveNet [12],
MTGNN [3], and AGCRN [13] have been proposed. These frameworks gener-
ate graph structures adaptively in a data-driven manner and have demonstrated
remarkable results as a result. In recent work, PDFormer [14] utilizes three atten-
tions to form spatial-temporal feature extraction blocks, which can model local
geographic and global semantic information from neighbors, thus improving pre-
diction accuracy. However, maximizing its performance depends to some extent
on these three features. STPGNN [5] defines pivotal nodes based on the aggre-
gation and distribution capabilities of traffic nodes and proposes a pivotal graph
convolutional network to predict traffic. However, the performance of the model
depends on how accurately the pivotal nodes are identified. In addition, DGCRN
[15] designs hypernetworks that utilize and extract dynamic features of node at-
tributes and dynamic filters to generate dynamic graphs. In general, traffic data
contains strong dynamic spatio-temporal correlations. Therefore, modeling dy-
namic nonlinear spatio-temporal correlation is crucial for accurately predicting
traffic flow. The dynamic generation of dynamic graphs has become a new re-
search direction.

3 Preliminaries

In this section, we first present the task definition and then briefly review the
core idea of attention mechanism.

3.1 Definition and Problem Statement
Traffic Topology Graph. A traffic topology graph is defined as G = (V, E ,A)
within certain road network. Where V denotes the set of nodes(|V| = N) and each
node corresponds to a road sensor; E denotes the set of edges, which represents
the physical connectivity of the sensors; and A denotes the adjacency matrix of
the graph, whose elements are the connectivity between any pair of nodes in the
graph.

Traffic Signal Tensor. The traffic signal tensor of N nodes over P time steps
is denoted as X = (X1, ...,Xt, ...,XP ) ∈ RP×N×C . Here, Xt ∈ RN×C denotes the
traffic signal of N nodes in the road network at time step t, and C is the number
of traffic features (e.g., C = 3 for features traffic flow, speed, and occupy.).
The traffic forecasting problem can be formalized as Eq. (1). Given a series of
observations from N sensors in the graph G over the past P time steps, our goal
is to predict the traffic signals at the next Q time steps via a mapping function
F :

[XP+1, ...,XP+Q] = F([X1, ...,XP ;G]). (1)
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3.2 Attention Mechanism

The attention mechanism is a fundamental operation frequently employed in
various modeling tasks. Its core principle involves assigning distinct weights to
different segments of the input data, thereby emphasizing relevant information
while disregarding less important details [16]. In essence, the attention mecha-
nism operates by mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are represented as vectors. The output
is computed as a weighted sum of the values, with each weight being determined
by the interaction between the corresponding key and the query. These weights
reflect the degree of association between the query and each key-value pair. In
this work, we employ Scaled Dot-Product Attention [17], a widely used variant
of the attention mechanism, specifically:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V. (2)

where Q, K, V , and dk are the query, key, value, and their dimensions, respec-
tively.

4 Methodology

4.1 Model Overview

The framework of our PDTVGNN is illustrated in Fig. 2. This section pro-
vides a detailed discussion of its technical components. It consists of stacked L
spatio-temporal layers and an output layer. For each layer, this paper adopts
a novel progressive decomposition idea, where the series decomposition module
gradually disentangles hidden series throughout the forecasting process. This en-
ables the model to separate complex temporal patterns and generate predictions
based on the more predictable seasonal and trend components. For the sea-
sonal part, we extract temporal correlations using Fourier temporal attention,
as shown in Fig. 2(b). Furthermore, we utilize the time-varying graph generator,
as shown in Fig. 2(c), along with the time-varying graph convolution module
to capture spatial correlations over time. For the trend component, we develop
a spatio-temporal normalization module to address the temporal and spatial
non-stationarity in the trend component. The extracted trend information is
progressively accumulated and serves as the final trend representation learned
by the model. Each spatio-temporal layer is skip-connected to the output layer.
The computation process for layer l ∈ {1, ..., L} can be formalized as follows:

Sl
1, T l

1 = SeriesDecomp(X l−1)

Sl
2, T l

2 = SeriesDecomp(FFT-Attention(Sl
1))

Sl
3, T l

3 = SeriesDecomp(Time-VaryingGCN(Sl
2))

Sl
3 = FeedForward(Sl

3) + Sl
3

X l = Sl
3 + STNorm(T l

1 ) + STNorm(T l
2 ) + STNorm(T l

3 )

(3)
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Fig. 2. Detailed framework of PDTVGNN.

where X l denotes the output of layer l. Sl
i and T l

i denote the seasonal and
trend components obtained from the i-th time series decomposition module of
layer l. The first layer input data X 0 ∈ RP×N×D is the high-dimensional spatial
projection of the historical traffic observation data X ∈ RP×N×C through the
linear layer, and D is the dimension of the hidden state.

4.2 Series Decomposition Module

Series decomposition [18], has been applied to time-series forecasting models
such as the Autoformer [19] and FEDformer [20] to capture complex temporal
patterns. To improve accuracy, we decompose the traffic series into trend and
seasonal parts, which represent the long-term trend and potential periodicity of
the traffic series, respectively. Specifically, moving averages is used to smooth
out cyclical fluctuations, and the seasonal part is obtained by subtracting the
trend from the original time series. As in Eq. (4), for input data X ∈ RP×N×C

of length P , the trend and seasonal parts Xsea, Xtre ∈ RP×N×C are obtained,
respectively.

Xtre = AvgPool(padding(X ), w),

Xsea = X − Xtre.
(4)

AvgPool(·) is a moving average operation with window size w and uses the
operation padding to keep the length of the series constant.

4.3 Temporal Correlation Extraction

The series decomposition module decomposes the input of the P time steps into
trend parts and seasonal parts. For the decomposed results, the seasonal part
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and the trend part are modeled using Fourier temporal attention and spatio-
temporal normalization module.

Fourier Temporal Attention for Seasonal Parts. The seasonal component
of the time series corresponds to high-frequency values. The Softmax opera-
tion amplifies larger values and diminishes smaller ones, concentrating attention
on dominant frequencies and improving seasonal information capture [21]. In
contrast to time-domain attention, frequency-domain attention offers superior
performance, as the primary frequency patterns are directly accessible in the
frequency domain. Consequently, as illustrated in Eq. (5) and (6), Fourier atten-
tion is first computed in the frequency domain by transforming the query, key,
and value through Fourier transformation. The result is then mapped back to
the time domain through an inverse Fourier transformation.

Qf = FFT (Q) = FFT (XseaWQ),

Kf = FFT (K) = FFT (XseaWK),

Vf = FFT (V ) = FFT (XseaWV ),

(5)

X̂sea = iFFT (softmax(QfK
T
f )Vf ). (6)

where WQ, WK , WV are learnable parameters. With the help of Fast Fourier
Transform (FFT), the computational complexity can be reduced from O(n2) to
O(n log n).

Spatio-Temporal Normalization for Trend Parts. The attention mecha-
nism fundamentally operates by modifying and adding to the contextual history,
resulting in the inevitable loss of temporal information and poor generalization
of trend data [21]. This limitation motivates the decomposition of time series into
trend and seasonal parts. To address real-world scenarios where traffic data series
exhibit non-stationarity and dynamic changes in data distribution, we propose a
spatio-temporal normalization method (STNorm), which includes both tempo-
ral and spatial normalization. This method is designed to handle the temporal
and spatial non-stationarity of the trend part, respectively.

Specifically, for the given trend input Xtre = {{Xtre(t,v)}Pt=1}Nv=1, the mean
and standard deviation of the particular instance along the time axis are com-
puted as follows:

µT [Xtre(t,v)] =
1

P

P∑
i=1

Xtre(i,v),

σ2
T [Xtre(t,v)] =

1

P

P∑
i=1

(Xtre(i,v)−µT [Xtre(t,v)])
2,

(7)

We then normalize the trend input across the time dimension as follows:

XT
tre(t,v) = αT

Xtre(t,v) − µT [Xtre(t,v)]√
σ2
T [Xtre(t,v)] + ε

+ βT , (8)
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where αT , βT are learnable parameter vectors and ε is a small constant that
maintains numerical stability. Similarly, we compute the mean and standard
deviation of a particular instance along the spatial axis and then perform spatial
normalization:

µS [Xtre(t,v)] =
1

N

N∑
j=1

Xtre(t,j),

σ2
S [Xtre(t,v)] =

1

N

N∑
j=1

(Xtre(t,j)−µS [Xtre(t,v)])
2,

(9)

XS
tre(t,v) = αS

Xtre(t,v) − µS [Xtre(t,v)]√
σ2
S [Xtre(t,v)] + ε

+ βS , (10)

With spatio-temporal normalization, the model extracts non-stationary in-
formation while preserving a consistent distribution for forecasting. The two
normalized inputs are then combined and passed through a two-layer MLP to
predict future trends:

X̂tre = MLP ([X T
tre,XS

tre]). (11)

4.4 Time-Varying Graph Structure Generator

In real-world scenarios, the spatial correlations between nodes are not always
constant, and the graph structure changes smoothly over time. To account for
this inherent property, we propose a time-varying graph structure generator
(TVGG) to capture the dynamic correlations between nodes. This module takes
into account both the dependencies on the current input values and the graph
structure from the previous time step, which is modeled recurrently:

A(t) = Fd(A(t−1), γ(t)). (12)

where A(t) ∈ RN×N denotes the adjacency matrix representing the spatial cor-
relations at time step t, γ(t) refers to the node features, and Fd is the function
for extracting change correlations. For simplicity, we omit the subscript l, which
denotes the layer number, both in this equation and throughout the rest of this
subsection.

However, directly parameterizing the adjacency matrix A and the mapping
function Fd introduces significant computational overhead. To address this is-
sue, we assume that the nodes have a time-varying representation e over time,
and the time-varying graph structure can be derived from this dynamic node
representation.

We use the Gated Recurrent Unit (GRU), a simple but powerful variant of
recurrent neural networks, to model the dynamics of time-varying representa-
tions. Define e(t) ∈ RN×De as the hidden state and the update process of the
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GRU as:
z(t) = σ(Wz[γ

(t), e(t−1)] + bz),

r(t) = σ(Wr[γ
(t), e(t−1)] + br),

ẽ(t) = tanh(We[γ
(t), (r(t) ⊙ e(t−1))] + be),

e(t) = z(t) ⊙ e(t−1) + (1− z(t))⊙ ẽ(t),

(13)

where r(t) and z(t) denote the reset gate and update gate, respectively, ⊙ rep-
resents the Hadamard product, Wz, Wr and We are the learnable parameters,
and σis the sigmoid function.

Inspired by [22], we adopt a spatial embedding method to extract node fea-
tures as the initial state of the GRU. First, an additional embedding vector is
assigned to each node, and then a graph convolution layer is applied for Laplace
smoothing. This process enhances the representation of each node by incorpo-
rating information from its neighbors, explicitly modeling the spatial structure
while reflecting the graph structure information. The resulting spatial represen-
tation, e ∈ RN×De , encapsulates the rich features of the nodes, which are then
combined with a fully connected layer to form the initial hidden state e(0).

Â(t)
ij,v =

(Wve
(t)
i ·Wve

(t)
j )

δ
,

A(t)
ij,v = conv2D(Â(t)

ij,v) + Â(t)
ij,v,

(14)

where A(t)
ij,v denotes the value of the graph structure learned by the v-th subspace

at time step t in the i-th row and j-th column. Wv is the learnable matrix that
maps the spatial correlation information to the v-th subspace. The operation ·
represents the inner product of vectors, and δ is used to prevent the correlation
values from deviating excessively. In the above formulation, we introduce a 2D
convolutional layer along with residual connections to enhance the information
exchange between different subspaces, where the number of channels in the con-
volutional kernel corresponds to the number of subspaces. Finally, the matrices
of all subspaces are summed:

A(t)
ij = f(

V∑
v=1

A(t)
ij,v). (15)

where f(·) represents a normalization process designed to prevent training in-
stability, it yields the time-varying graph structure A(t) at time step t.

4.5 Time-Varying Graph Convolution Module

Formally, the output γl of the l-th layer of temporal attention is passed into the
l-th TVGG, as presented in Section 4.4, generating a series of adjacency matrices
as follows:

[A(1)
l ,A(2)

l , ...,A(P )
l ] = Fa

l (γl). (16)
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where Al = [A(1)
l ,A(2)

l , ...,A(P )
l ], P is the historical time step.

After learning the adjacency matrices, spatial dependencies are extracted us-
ing a graph convolution-based spatial propagation method. First, initial residual
connections [23] are employed in graph convolution. By emphasizing the initial
features, the learned features become more discriminative after multiple graph
convolution layers. The layer-wise propagation rule can be expressed as:

H(m) = (∂H(0) + (1− ∂)AH(m−1))W (m−1), (17)

where H(0) = γl denotes the initial node features and ∂ is a hyperparameter that
controls the proportion of initial information. Then, the component achieves the
changing locality property by adaptively aggregating information from neighbors
at different hops [24]. The output of the graph convolution is the combination
of the representations obtained from all previous layers:

H(M) =

M−1∑
m=0

H(m). (18)

5 Experiments

This section presents a comprehensive evaluation of our proposed PDTVGNN
framework. Specifically, we aim to address the following research questions:

– RQ1. How does PDTVGNN perform in the traffic prediction task?
– RQ2. How does each component of PDTVGNN contribute to the prediction?
– RQ3. How do key hyperparameters influence model performance?
– RQ4. Does PDTVGNN provide interpretability in the spatial dimension?

5.1 Setting

Datasets & Processing. To evaluate the performance of the PDTVGNN
method, we conducted comparative experiments on four real-world datasets.
Table 1 provides detailed information on the selected datasets, including the
Los Angeles PEMS series (PEMS-BAY, PEMS04, PEMS08) and the California
Metro Traffic Los Angeles (METR-LA). These datasets were chosen due to their
distinct characteristics. Given the differences in sampling periods and regions,
each dataset has unique time spans and node sizes, making them representa-
tive in their own right. Traffic flow data is aggregated at 5-minute intervals,
resulting in 12 sample points per hour. The datasets are divided into training,
validation, and test sets. In line with the most contemporary solution, METR-
LA and PEMS-BAY are split in a 7:1:2 ratio, while PEMS04 and PEMS08 are
split in a 6:2:2 ratio. Additionally, we utilize data from the previous hour (12
time steps) to predict traffic flow for the following hour (12 time steps), thereby
performing multi-step prediction.
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Table 1. Datasets description.

Datasets Time steps Nodes Time windows Data Type

METR-LA 34272 207 5 min speed
PEMS-BAY 52116 325 5 min speed

PEMS04 16992 307 5 min flow
PEMS08 17856 170 5 min flow

Baselines. We selected 13 baselines and categorized them into 4 classes: (1)
Methods that do not consider spatial correlation: VAR [8], SVR, FC-LSTM [9].
(2) Methods based on predefined graphs: DCRNN [10], STGCN [11], STSGCN
[4]. (3) Methods considering dynamic spatial correlation : GWnet [12], AGCRN
[13], MTGNN [3], DGCRN [15]. (4) Other superior methods based on spatio-
temporal graphs: GMAN [25], PDFormer [14], STPGNN [5].

Evaluative Metrics. Three commonly used evaluation metrics are employed:
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean
Absolute Percentage Error (MAPE). All experiments are repeated five times,
and the results were averaged.

Implementation Details. The implementation environment for PDTVGNN is
Python 3.8 and PyTorch 2.2.1. The evaluation environment is a server equipped
with a V100-PCIe-32. To train our model, an Adam optimization is used with
an initial learning rate of 0.001, a batch size of 16, and a maximum of 60 epochs.
Hyperparameters and their optimal values are determined on the validation set:
the model dimension is 64, the number of attention heads is 8, and the number
of model layers is [3, 3, 5, 5], respectively.

5.2 Predictive Performance (RQ1)

Table 2 and 3 show the results, where the bolded values are optimal and the
underlined values are suboptimal.

We find the following observations. (1) PDTVGNN outperforms all other
state-of-the-art baselines on all datasets. We note that PDTVGNN’s MAPE re-
sults on PEMS04 are slightly lower, but all other metrics are more favorable, such
as the 0.38% decrease under MAE metrics. (2) The traditional statistical model
performs poorly because it only considers temporal correlation and ignores spa-
tial dependence. (3) In GNN-based models, those that account for dynamic spa-
tial correlations in time series, such as MTGNN and DGCRN, demonstrate more
competitive performance than static graph embeddings. However, these models
still rely on static graph structures and do not consider the spatial structure as
time-varying and dynamic. In contrast, our PDTVGNN model incorporates the
time-varying graph convolution module, which effectively captures the dynamic
correlations among nodes by generating a series of time-varying graph structures,
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Table 2. Performance comparison of different methods on PEMS-BAY and METR-
LA.

Datasets Methods 15 min 30 min 60 min
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

PEMS-BAY

VAR 1.74 3.16 3.60% 2.32 4.25 5.00% 2.93 5.44 6.50%
SVR 1.85 2.59 3.80% 2.48 5.18 5.50% 3.28 7.08 8.00%

FC-LSTM 2.05 4.19 4.80% 2.20 4.55 5.20% 2.37 4.96 5.70%
DCRNN 1.38 2.95 2.90% 1.74 3.97 3.90% 2.07 4.74 4.90%
STGCN 1.36 2.96 2.90% 1.81 4.27 4.17% 2.49 5.69 5.79%

STSGCN 1.44 3.01 3.04% 1.83 4.18 4.17% 2.26 5.21 5.40%
GWNet 1.30 2.74 2.73% 1.63 3.70 3.67% 1.95 4.52 4.63%
AGCRN 1.37 2.87 2.94% 1.69 3.85 3.87% 1.96 4.54 4.64%
MTGNN 1.32 2.79 2.77% 1.65 3.74 3.69% 1.94 4.49 4.53%
GMAN 1.34 2.91 2.86% 1.63 3.76 3.68% 1.86 4.32 4.37%

DGCRN 1.28 2.69 2.66% 1.59 3.63 3.55% 1.89 4.42 4.43%
PDFormer 1.32 2.83 2.78% 1.64 3.79 3.71% 1.91 4.43 4.51%
STPGNN 1.35 2.88 2.85% 1.72 3.83 3.90% 2.10 4.72 5.03%

PDTVGNN 1.26 2.67 2.62% 1.55 3.53 3.48% 1.85 4.30 4.34%
Improv. 1.59% 0.75% 1.53% 2.58% 2.83% 2.01% 0.54% 0.47% 0.69%

METR-LA

VAR 4.42 7.89 10.20% 5.41 9.13 12.70% 6.52 10.11 15.80%
SVR 3.99 8.45 9.30% 5.05 10.87 12.10% 6.72 13.76 16.70%

FC-LSTM 3.44 6.30 9.60% 3.77 7.23 10.90% 4.37 8.69 13.20%
DCRNN 2.77 5.38 7.30% 3.15 6.45 8.80% 3.60 7.60 10.50%
STGCN 2.88 5.74 7.62% 3.47 7.24 9.57% 4.59 9.40 12.70%

STSGCN 3.31 7.62 8.06% 4.13 9.77 10.29% 5.06 11.66 12.91%
GWNet 2.69 5.15 6.90% 3.07 6.22 8.37% 3.53 7.37 10.01%
AGCRN 2.87 5.58 7.70% 3.23 6.58 9.00% 3.62 7.51 10.38%
MTGNN 3.31 7.62 8.06% 4.13 9.70 10.29% 5.06 11.66 12.91%
GMAN 2.80 5.55 7.41% 3.12 6.49 8.73% 3.44 7.35 10.07%

DGCRN 2.62 5.01 6.63% 2.99 6.05 8.19% 3.44 7.19 9.73%
PDFormer 2.83 5.45 7.77% 3.20 6.46 9.19% 3.62 7.47 10.91%
STPGNN 2.83 5.52 7.73% 3.25 6.59 8.91% 3.72 7.61 10.66%

PDTVGNN 2.59 4.93 6.51% 2.96 6.02 8.10% 3.39 7.15 9.62%
Improv. 1.16% 1.62% 1.84% 1.02% 0.50% 1.11% 1.47% 0.56% 1.14%

Table 3. Performance comparison of different methods on PEMS04 and PEMS08.

Datasets Metric VAR SVR FC-LSTM DCRNN STGCN STSGCN GWnet AGCRN MTGNN GMAN DGCRN PDFormer STPGNN OURS Improv.

PEMS04
MAE 24.44 26.18 23.60 24.42 23.90 21.52 19.91 19.36 19.50 19.25 18.80 18.32 18.34 18.25 0.38%

RMSE 37.76 38.91 37.11 37.48 36.43 34.14 31.06 31.28 32.00 30.85 30.65 29.97 29.64 29.59 0.17%
MAPE 17.27% 22.84% 16.17% 16.86% 13.67% 14.50% 13.62% 12.81% 14.04 % 13.00 % 12.82 % 12.10% 12.49% 12.14% -0.33%

PEMS08
MAE 19.83 20.92 21.18 18.49 18.79 17.88 15.57 15.65 15.31 14.87 14.60 13.58 13.90 13.50 0.59%

RMSE 29.94 31.23 31.88 27.30 28.20 27.36 24.32 24.99 24.42 24.06 24.16 23.51 23.05 22.59 2.04%
MAPE 13.08% 14.24% 13.72% 11.69% 10.55% 11.71% 10.32% 10.17% 10.70 % 9.77% 9.33% 9.05% 9.01% 8.98% 0.33%

resulting in improved performance. (4) Most models utilizing attention mecha-
nisms improve significantly over traditional time series and GNN-based models.
Among them, GMAN and PDFormer outperform other baselines across different
dataset metrics. However, our PDTVGNN model surpasses both, achieving su-
perior performance. We attribute this to the intrinsic progressive decomposition
capability provided by the series decomposition module in PDTVGNN, which ef-
fectively untangles entangled temporal patterns and enhances the model’s ability
to capture spatio-temporal dependencies.

5.3 Ablation Study (RQ2)

To further evaluate the effectiveness of modules of PDTVGNN, we compare it
with the following variants on the METR-LA dataset.
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Fig. 3. Ablation study on METR-LA.
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Fig. 4. The effect of model layers L and window size w on PEMS04 and PEMS08.

– w/o SD-FA removes the series decomposition and uses only the STNorm
module to extract temporal features from the entangled traffic series.

– w/o SD-STNorm removes the series decomposition module and uses only
the Fourier temporal attention to extract temporal features from the entangled
traffic series.

– w/o FA replaces the Fourier temporal attention with the STNorm for
seasonal parts.

– w/o STNorm replaces the STNorm with the Fourier temporal attention
for trend parts.

– w/o TVGG removes time-varying graph generator and directly uses a
predefined geographic adjacency matrix for graph convolution.

From the results presented in Fig. 3, all components contribute to the final
result to some extent, and we draw the following conclusions. (1) The significant
drop in performance for w/o SD-FA and w/o SD-STNorm emphasizes the impor-
tance of progressive decomposition and separately modeling trend and seasonal
parts. (2) PDTVGNN outperforms w/o FA, demonstrating the effectiveness of
the STNorm module in modeling trend components accurately. (3) PDTVGNN
further improves performance over w/o STNorm, suggesting that the Fourier
temporal attention aids the model in capturing seasonal information better. (4)
w/o TVGG, which relies on static geographic distance-based graphs, exhibits
large standard deviations, highlighting the need for dynamic spatial dependen-
cies modeling.



14 J. Ji et al.

8:00 9:00 10:00 11:00 12:00 13:00
Time

100

150

200

250

300

350

400

450

500

Tr
af

fic
 F

lo
w

Node 44
Node 100
Node 142
Node 168

(a) The original time series curve

44

100

142

168

44 100 142 168

08:00

44

100

142

168

44 100 142 168

09:30

44

100

142

168

44 100 142 168

11:00

44

100

142

168

44 100 142 168

12:30
0.02

0.04

0.06

0.08

0.10

0.12

(b) Weight visualization of several adjacency matrices

Fig. 5. Case study of time-varying graph (from traffic flow on PEMS08 dataset).

5.4 Parameter Sensitivity (RQ3)

A key advantage of the PDTVGNN model is its ability to disentangle com-
plex temporal patterns progressively, thanks to the progressive decomposition
capabilities provided by its embedded decomposition blocks. The model ensures
robustness and accuracy by modeling the different components separately. In
the series decomposition module, the parameter w represents the window size
for the moving average operation. Smaller window sizes tend to overfit short-
term fluctuations and neglect long-term trends, while larger window sizes may
excessively smooth the data, diminishing sensitivity to rapid fluctuations. In
our experiments, we set the values of w to 8, 12, 16, and 20 on the PEMS04
and PEMS08 datasets, respectively. The specific experimental results are shown
in Fig. 4(b) and (d). We found that the optimal performance on PEMS04 is
achieved with w = 16 and on PEMS08 with w = 12.

We also examined the impact of the number of layers L on model performance
by varying L from 2 to 5. The experimental results in Fig. 4(a) and (c) show
that performance improves as the model depth increases, with the best results
achieved when L = 5 for both datasets.

5.5 Case Study (RQ4)

To further validate the effectiveness of the time-varying graph structure genera-
tor and provide spatial interpretability, we selected four nodes numbered 44, 100,
142, and 168 from the PEMS08 dataset on August 14, 2016, for a case study.
Fig. 5(b) shows the adjacency matrices at 8:00, 9:30, 11:00, and 12:30, visualized
as heatmaps. The intensity of the purple grids indicates larger weights. Fig. 5(a)
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also presents the original time series curves. As the relationships are one-way,
we did not enforce symmetry in the adjacency matrix.

For node 142, before 11:00 and especially at 9:00, we observe a strong corre-
lation between node 168 (represented by the red line) and node 142 (represented
by the green line), with similar magnitudes of change. However, after 11:00, node
168 shows a decreasing trend while node 142 continues to increase. Adjacency
matrixes effectively capture this shift in correlation, with corresponding matrix
values decreasing over time. This supports our hypothesis that the spatial cor-
relation of traffic data is time-varying. In contrast, when comparing the series
trends of nodes 44 and 100, the correlation between them remains relatively
stable and generally stronger, as reflected in the matrices. These observations
provide compelling evidence for the effectiveness of the time-varying graph struc-
ture generator.

6 Conclusion

In this work, we propose a novel traffic forecasting model named PDTVGNN.
Specifically, we adopt a progressive decomposition idea throughout the fore-
casting process, where decomposed blocks are embedded as internal modules
to gradually decouple the entangled temporal patterns. The trend and seasonal
parts obtained after decoupling are then modeled separately. Additionally, we
introduce a time-varying graph generation module that constructs a series of ad-
jacency matrices that process the current inputs and retain hidden information
from the historical graph structure, capturing the time-varying nature of spa-
tial relationships. Extensive experiments conducted on four real-world datasets
demonstrate our proposed model’s superiority and highlight each module’s ef-
fectiveness.
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