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Abstract. Community-acquired pneumonia (CAP) remains a leading
cause of hospital admission and mortality requiring dynamic clinical de-
cision making as patients’ conditions evolve. In this work, we formu-
late the management of CAP as a sequential decision-making problem
and utilise reinforcement learning (RL) as a framework for discovering
improved treatment strategies. We leverage a large-scale repository of
routinely collected hospital data from the PIONEER hub and conduct
an offline RL investigation under real-world complexities such as irregu-
lar sampling, missingness and variable treatment patterns. Through an
extensive data transformation pipeline, we construct state-action trajec-
tories suitable for RL and then train and evaluate policies via conserva-
tive Q-learning and fitted Q-evaluation, achieving initial—though mod-
est—improvements in reducing 30-day mortality. In addition to these
preliminary outcomes, our findings underscore the need for refined of-
fline RL methods and rigorous validation to fully realize the potential
of using large routine healthcare databases like PIONEER for clinical
decision support.

Keywords: offline reinforcement learning · community-acquired pneu-
monia

1 Introduction

Pneumonia is an infection of the lungs that inhibits oxygen intake [13]. Although
most cases are mild-to-moderate and patients respond well to standard treat-
ments, serious complications can arise in vulnerable populations such as children,
older adults and those with comorbidities. Pneumonia is typically classified by its
site of initial infection—community-acquired pneumonia (CAP) versus hospital-
acquired pneumonia (HAP). In the UK, CAP incidence rises sharply with age,
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from 7.99 per 1,000 among those aged 65+ to 41.94 per 1,000 among those aged
90+ [25]. Pneumonia causes roughly 29,000 deaths per year, making it the third
leading cause of lung-disease mortality. In hospitalized patients, 5–15% of pa-
tients die within 30 days, increasing to 30% for those admitted to intensive care
units [5].

Dynamic treatment regimes (DTRs) provide individualized, time-adaptive
strategies to manage patients as their clinical status evolves [4]. Conventional
optimization often relies on sequential multiple assignment randomized trials
(SMARTs), in which treatments are re-randomized at defined decision points
[27]. However, these trials can be costly and typically require simplified inter-
vention timings and treatment options that limit their applicability in practice
[3]. Reinforcement learning (RL) has emerged as a powerful framework for dis-
covering more flexible DTRs, showing promise in areas such as drug dosing,
intervention timing, laboratory test scheduling and targeting, and more [41].
CAP presents a compelling case study for RL since it is both prevalent and
clinically complex, requiring repeated, individualised treatment decisions that
incorporate factors such as infection severity, comorbidities and changing clini-
cal characteristics [31].

One advantage of modelling the management of CAP as a sequential decision-
making problem is the existence of large repositories of retrospective data, which
RL can exploit offline—i.e. purely from existing patient trajectories—rather
than through prospective experimentation. Offline RL is particularly appealing
in healthcare because ethical, logistical, and safety constraints typically preclude
trial-and-error interactions or additional randomization [22]. By using historical
data, the RL agent can learn policies that might improve health outcomes with-
out placing patients at risk.

In this paper, we investigate whether offline RL applied to retrospective CAP
patient data can yield improved policies for reducing 30-day mortality. By fram-
ing CAP management as a sequential decision-making task, we report initial,
though modest, performance gains using RL-based approaches, highlighting how
conservative RL strategies help mitigate extrapolation errors arising when real-
world data only partially cover the space of possible actions. Our main con-
tribution is an in-depth exploration of the challenges involved in applying RL
to large-scale, routinely collected clinical data that exhibits features such as ir-
regular sampling, extensive missingness and highly variable treatment patterns.
Taken together, these findings underscore the promise of RL-based DTRs for
pneumonia management and the substantial methodological effort required to
transform retrospective health records into effective decision support tools.

2 Related work

Several studies have already investigated the use of RL to optimize distinct as-
pects of clinical care, demonstrating RL’s potential in guiding medical decisions
such as drug dosing and treatment timing. Examples include optimal intravenous
fluid and vasopressor dosing for sepsis [14], morphine titration for pain relief [23],
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heparin anticoagulation regimens [21], chemotherapy scheduling in cancer [40]
and radiotherapy scheduling [33]. Researchers have also applied RL to weaning
patients from mechanical ventilation [28], scheduling laboratory tests [6] and
targeting specific laboratory test values [36]. While these works showcase the
promise of RL in a variety of clinical contexts, they often either assume some
degree of ongoing interaction with an environment (e.g. simulations) or depend
on data-collection protocols not readily available in routine care.

Offline RL aims to learn optimal policies solely from retrospective data, ad-
dressing ethical, logistical and safety barriers that preclude further data gather-
ing in many settings such as healthcare. However, directly applying established
approaches such as Q-learning to fixed datasets can lead to severe overestima-
tion bias, particularly when the learned policy evaluates actions outside the
data distribution [19,9]. Many offline RL methods have thus been developed to
mitigate this bias. For continuous action spaces, solutions often involve policy
constraints [8], conservative value estimation [16], uncertainty estimation [1],
in-distribution learning [15] or hybrid approaches [2]. Several have been success-
fully adapted to discrete settings. For example, discrete BCQ [7] limits actions
for target Q-values to those with high probability under a learned behaviour pol-
icy. In CQL [16], Q-values for actions within the dataset are “pushed up” while
out-of-distribution actions are “pushed down.” Finally, discrete IQL [24] applies
in-distribution learning via expectile regression and infers policies using advan-
tage weighted behavioural cloning. These methods, while still emerging, offer
promising tools to address the unique challenges of working with static hos-
pital databases where patient safety and limited interaction make active data
collection infeasible.

3 PIONEER data hub

PIONEER is a health data research hub for acute care within University Hospi-
tals Birmingham (UHB) NHS Foundation Trust. The hub provide secure access
to routinely collected healthcare records that undergo a rigorous curation proce-
dure to ensure high quality, including removing malformed fields, de-duplicating
records, mapping items to standard ontologies and other cleansing processes.

For our study, we requested records of adults (18+ years) diagnosed with
pneumonia based on administrative coding of diagnoses (ICD-10 and SNOMED
codes) or searches of key terms in medical records (i.e. CURB-65), who received
antibiotics within 48 hours of admission. CURB-65 is a diagnostic metric used
to determine the severity of CAP upon presenting in hospital [20] while ICD-10
and SNOMED are medical classification systems used by the NHS. A full list of
codes is provided in the Appendix 1. This initial extraction yielded 47,972 care
spells for 36,885 patients for the time period April 2018 and September 2022.

Structure wise, each admission-to-discharge episode is identified by a care
spell id, allowing multiple spells per patient. Data is split into tables that in-
1 Appendix available here - https://github.com/AlexBeesonWarwick/
OfflineRLCAP/tree/main

https://github.com/AlexBeesonWarwick/OfflineRLCAP/tree/main
https://github.com/AlexBeesonWarwick/OfflineRLCAP/tree/main
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clude both time-dependent data (e.g. observations, interventions) and time-
independent data (e.g. demographics). Further details and an example of the
relational structure are provided in the Appendix.

As part of a cohort refinement procedure, we first excluded COVID-19 diag-
noses to avoid data inconsistencies arising as a result of the global pandemic and
the potential overlap with CAP. Next, to distinguish community- from hospital-
acquired pneumonia, we required that both a pneumonia diagnosis and a CAP-
specific antibiotic appeared within 24 hours of admission. These antibiotics were
taken from the CAP section of the Trust’s Adult Guidelines for Antimicrobial
Prescribing [32], namely: Amoxicillin, Co-amoxiclav, Clarithromycin, Doxycy-
cline and Levofloxacin. This refinement procedure resulted in a final cohort of
10,707 care spells for 9,147 patients. Of these, 88% had just one care spell, 9%
had two, 2% had three, and fewer than 1% had four or more.

4 Methodology

4.1 Offline reinforcement learning

We start by defining a Markov Decision Process (MDP) M =< S,A, T,R, γ >
where S is the state space, A the action space, T (s′ | s, a) the environment
dynamics, R(s, a) the reward function and γ ∈ [0, 1] the discount factor [29]. An
autonomous agent interacts with this MDP by following a state-dependent policy
π(s), with the objective of discovering an optimal policy π∗(s) that maximises
the expected discounted sum of rewards, Eπ [

∑∞
t=0 γ

tr(st, at)].
In discrete action spaces this objective can be achieved through Q-learning.

The Q-function Qπ(s, a) defines the value of taking action a in state s following
policy π thereafter and optimal Q-values can be obtained by repeated application
of the Bellman optimality equation:

Q∗(s, a) = r(s, a) + γ Es′∼T

[
max
a′

Q∗(s′, a′)
]
.

The optimal policy can then be extracted by taking the action that maximises
the optimal Q-value at each state, i.e. π(s) = argmaxa Q(s, a). Alternatively,
actions can be chosen stochastically based on Q-values, for example using a
softmax. The probability of action a at state s is denoted π(a | s).

The scale and complexity of real-world tasks often necessitates the use of
function approximation methods. To this effect, Q-functions are paramaterised
with learnable parameters θ, which are updated to minimise the following loss:

L(θ) =
1

|B|
∑

(s,a,r,s′)∼B

(Qθ(s, a)− y(r, s′))
2
,

where y(r, s′) = r+γmaxa′ Qθ(s
′, a′) is the target value and B is a replay buffer

of transitions which is uniformly sampled during training [26].
In offline scenarios, an agent can no longer interact with the environment

itself and must instead learn from a pre-existing set of interactions B collected
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from some (potentially unknown) behaviour policy or set of policies πβ [17].
With environment interaction prohibited, errors in Q-values estimates are free
to compound and propagate during training. Specifically, Q-value estimates for
out-of-distribution (OOD) actions (i.e. those not present in B) are prone to
overestimation bias as a consequence of the maximisation carried out when de-
termining target values [30]. The end result is spurious Q-value estimates and
by extension highly sub-optimal policies. In order to mitigate the deterimental
effects of overestimation bias, Q-values must be regularised by staying “close” to
actions within the existing set.

In conservative Q-learning (CQL) [16] Q-value estimates are regularised by
“pushing down” on estimates for out-of-distribution actions and “pushing up”
on estimates for in-distribution actions. Such an adjustment is effectively “gap-
expanding” in Q-values between in-distribution and out-of-distribution actions,
leading the agent to favour actions more like those in the data when updating
the Q-function.

The manner in which Q-values are pushed down can be varied. For each state
we can for example use the average Q-value for the all actions, but in practice
a more effective approach is to use a type of softmax, leading to the following
modified loss:

L(θ) =
1

|B|
∑

(s,a,r,s′)∼B

(Qθ(s, a)− y(r, s′))
2
+

β
∑

(s,a)∼B

[
log

∑
ai∈A

exp(Qθ(s, ai))−Qθ(s, a)
]
,

where β is a hyperparameter that controls the level of conservatism.

4.2 Off-policy evaluation

The most accurate and straightforward way to evaluate a policy is to deploy it
in the environment and record its return G(t) =

∑T
t=0 γ

trt. However, in settings
involving DTRs rolling out policies without prior assurances on their quality
would be considered unacceptable, not least because of the concerns regarding
patient safety. Instead, the policy must also be evaluated, not just learnt, in the
offline setting. This is the motivation behind off-policy evaluation (OPE), which
seeks to estimate the value of one policy using transitions collected from another.
In the context of offline RL, this equates to estimating the value of an offline
trained policy πe using transitions from the data set B, originally collected by
behaviour policy πβ

Off-policy evaluation is an important and active research area in its own right
and there have been many approaches put forward seeking to provide accurate
estimators with desirable properties [34]. For the purpose of this study we make
use of fitted Q-evaluation (FQE) [18], in which a Q-function is trained using the
Bellman expectation equation and the property V (s) =

∑
a∈A π(a | s)Q(s, a)

used as the basis for a policy value estimate.
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Specifically, a parameterised Q-function Qϕ(s, a) is learnt using the following
loss:

L(ϕ) =
1

|B|
∑

(s,a,r,s′)∼B

(
Qϕ(s, a)− r − γV (s′)

)2

,

where V (s′) =
∑

a′∈A π(a′ | s′)Qϕ(s
′, a′).

The estimate of the policy value is then:

V̂ (πe) =
1

N

N∑
i=1

∑
a∈A

πe(a | si0)Qϕ(s
i
0, a) ,

where s0 is the initial state.
Although this is a biased estimator of V (πe), in general it has low variance

since it only requires a one-step estimate during training. This contrasts to other
OPE methods such as importance sampling and its per-decision/weighted vari-
ants [29] which suffer from high variance due to importance weights becoming
either vanishingly small or exponentially large in cases where the evaluation and
behaviour policy are significantly different and/or trajectories are long. Further-
more, using FQE allows us to establish a relationship between Q-values and
mortality rate, which we can utilise as part of an evaluation protocol.

In order to apply RL methods to the PIONEER data, we must define states,
actions and rewards in an MDP framework. This necessitates a range of data
preprocessing tasks, including the aforementioned cohort refinement, as well as
variable selection and the derivation of clinically relevant features. We also need
to align each patient record with appropriate action labels (e.g. administered
medications) and design a reward function that captures 30-day mortality. Be-
low, we provide an abridged explanation of these steps, and direct the reader to
the Appendix for a full detailed description.

4.3 Variable selection and derivation

A crucial first step was to identify variables suitable for modelling patient states,
actions and rewards. To this effect, we conducted a table-by-table review guided
by four criteria:

1. Clinical relevance: Variables had to reflect a patient’s health (e.g. vital
signs, laboratory results) or administered treatments (e.g. antibiotics) rele-
vant to managing CAP.

2. Usability: We required data amenable to deep learning, excluding unstruc-
tured free text without consistent numerical or categorical encoding.

3. Coverage: Items needed sufficient coverage across the final cohort to enable
robust learning. Variables recorded in only a small fraction of care spells were
generally discarded.

4. Imputability: For potentially informative items with lower coverage, we as-
sessed whether missing data could be addressed with nominal values, derived
values or other proxies.
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Applying these criteria yielded 41 variables spanning observations, laboratory
tests, radiography, comorbidities, demographics and drug administration. Where
helpful, we derived additional features (e.g. mapping Troponin or D-dimer to
“normal/high/not-recorded”). This process established a broad foundation for
representing patient health and relevant clinical parameters.

4.4 Constructing the MDP

Once the pertinent variables were selected, we defined a MDP for offline RL.
Unlike simulated settings, real-world clinical data do not arrive in neatly spaced
intervals, nor does a reward event happen immediately after each clinical de-
cision. Hence, reconciling real-world complexity with the structure of MDPs
required several design decisions.

States. For each decision point, we aggregated the chosen variables into a sin-
gle state representation of the patient. However, since hospitals record different
measurements at different times, many entries appeared “missing” when pivoted
and joined into a uniform table. To handle this, we adopted a sample-and-hold
strategy [14], carrying the most recent observed value forward until a new mea-
surement arrived. Where no prior value existed (e.g. early in a care spell) or the
data were inherently sparse, we used nominal or median-based imputation.

Actions. We focused on antibiotic administration, concatenating a drug with
its route (enteral or parenteral) into a single drug-route action. In reality, pa-
tients could receive multiple antibiotics simultaneously or switch among them
at varying frequencies, which the data did not always capture explicitly. As
a compromise, we either (a) limited actions to single antibiotic-route pairs in
variable-length windows or (b) allowed up to two antibiotic–route pairs in fixed
windows (Section 4.5). If no antibiotics were administered for an extended pe-
riod (e.g. 36 hours), or no antibiotic was given in the first interval, we labeled
the action “no treatment.” These simplifications approximate real care patterns,
although they inevitably lose detail about multi-drug regimens.

Reward and terminal state. We used a sparse reward keyed to 30-day mortality, a
standard outcome metric for pneumonia [37]. If the patient was alive at 30 days,
we assigned a reward of +1, if not, −1. The terminal state was the patient’s final
recorded state on or before day 30.

4.5 Time-step definitions

Discretizing the data into steps for an MDP presents further challenges because
antibiotic schedules and patient evolution rarely conform to uniform intervals.
In light of this, we explored two main approaches:
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Fixed time step We partitioned each patient’s timeline into windows of 8, 12,
or 24 hours. Within each window:

1. State: Continuous variables were aggregated by median, categorical vari-
ables by mode, and missing values imputed via sample-and-hold or nomi-
nal/median substitution.

2. Action: Up to two drug-route pairs were concatenated. If no antibiotics were
administered for >36 hours or none appeared in the first window, the action
was “no treatment.”

This approach maintains a regular MDP structure but may misrepresent real
antibiotic timing and overlooks finer nuances like overlapping regimens.

Variable time step We subdivided each patient’s timeline at actual antibiotic
events, creating a new window whenever a drug was administered. If 36 hours
elapsed without any antibiotic, a “no treatment” window was inserted. States re-
flected the most recent measurement values at each event. This strategy captures
real scheduling more accurately yet violates the fixed-step MDP assumption and
does not easily allow antibiotic combinations in a single step.

4.6 Processed data sets

Having defined states, actions and rewards, we applied the above imputation
and time-step procedures to yield four final data sets: Fixed 8hr, Fixed 12hr,
Fixed 24hr and Variable windows (based on antibiotic events). They differ
primarily in how time is discretized and how multi-antibiotic use is handled. In
each, the terminal state is day 30 or earlier if the patient died or was discharged,
and the reward is set by 30-day mortality. Table 1 outlines key cohort charac-
teristics, with lists of ethnicity, comorbordities and antibiotic-routes provided in
the Appendix. While these transformations approximate real patient trajecto-
ries for offline RL, they inevitably sacrifice some detail due to irregular sampling,
missing data and partially documented regimens.

5 Experimental results

5.1 Set-up and implementation

We evaluate four offline policies for CAP management: a random policy that
selects actions uniformly from the entire action space; a behaviour policy that
replicates the empirical distribution of observed actions; a DQN policy trained
via standard Q-learning; a CQL policy trained using conservative Q-learning as
outlined Section 4.1. We use FQE as detailed in Section 4.2 to estimate each
policy’s expected return using the processed dataset.

For DQN, CQL and FQE each Q-function comprised a 2-layer MLP with
ReLU activation functions and 256 nodes, taking as input a state and outputting
a Q-value for each action. We set the discount factor γ = 1 and used the Huber
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Table 1. Overview of the patient cohort. FiO2 (OT): derived values for patients receiv-
ing oxygen therapy. D-dimer, Troponin-I, Troponin-T: N=Normal, H=High, NR=Not
Recorded. See Table O in the Appendix for additional details on ethnicity groups, co-
morbidity definitions and antibiotics (ABX).

Category Feature Mean (SD) Feature Mean (SD)

Demographics
Age 73.9 (15.7) Male (N, %) 5390 (50.3)
Non-survivors (N, %) 1727 (16.1) Ethnicity 7 types
Comorbidity 22 types

Observations

AVPU scale 3.96 (0.25) Respiratory rate 18.6 (3.3)
Diastolic BP 70.7 (12.9) Systolic BP 125.1 (22.6)
Heart rate 85.2 (17.4) Temperature 36.4 (0.7)
NEWS2 3.17 (2.6) O2 sats (%) 94.8 (3.3)

Lab Analysis

Base excess 0.15 (5.1) Blood K 4.21 (0.74)
Blood Na 138 (6.1) pCO2 6.01 (1.82)
pO2 8.04 (5.46) Basophils 0.05 (0.06)
Eosinophils 0.17 (0.38) Haematocrit 0.34 (0.07)
Haemoglobin 113 (22.5) Lymphocytes 1.72 (8.9)
Mean cell Hb 29.4 (3.0) Mean cell volume 89.6 (7.7)
Monocytes 0.87 (1.44) Neutrophils 9.01 (7.9)
Platelets 290 (143) Red cell count 3.83 (0.75)
White cell count 11.4 (11.2) Albumin 29.1 (6.8)
Alkaline phosphatase 134 (144) Calcium 2.2 (0.2)
Total protein 62.0 (8.8) C-reactive protein 101 (91.7)
Alanine transferase 35.7 (97.3) Urea 9.12 (6.94)

Imaging Chest X-ray (N, %) 8334 (77.9)

Derived FiO2 (OT) 0.28 (0.23) D-dimer N, H, NR
Trop-T N, H, NR Trop-I N, H, NR

Treatment ABX+Route 9 types

loss to update network parameters. We used a dual critic approach, taking the
mean across two Q-value estimates for target Q-values. We made use of sep-
arate target networks for estimating target Q-values, updating these networks
according to Polyak averaging with update rate 0.005. Networks were trained
via stochastic gradient descent using the Adam optimizer with learning rate
3e−4 and batch size 256. For CQL we trained networks for 500k gradient steps
and for FQE we trained networks for 1M gradient steps. For the conservative
hyperparameter in CQL we used β ∈ {1, 2, 5}.

We split the processed data into training and validation sets at a ratio of
80/20. Data was split based on trajectories as opposed to individual transitions
as the goal is to generalise treatment policies to new care spells. For each of the
processed data sets, we created five different training and validation splits and
we report policy value estimates using means ± one standard error. Numerical
state features were normalised to compensate for differences in scales between
measurement types.
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Table 2. Policy value estimates (mean ± standard error) computed by fitted Q-
evaluation across 5 training/validation splits. The β in CQL is a hyperparameter con-
trolling the level of conservatism (higher values equate to more conservatism).

Data set Behaviour Random DQN CQL
β = 1 β = 2 β = 5

Fixed 8hr 0.75 ± 0.00 0.42 ± 0.01 0.12 ± 0.21 0.76 ± 0.00 0.78 ± 0.00 0.79 ± 0.00
Fixed 12hr 0.76 ± 0.00 0.22 ± 0.02 0.17 ± 0.19 0.79 ± 0.00 0.79 ± 0.00 0.78 ± 0.00
Fixed 24hr 0.73 ± 0.00 0.21 ± 0.01 0.59 ± 0.17 0.76 ± 0.00 0.75 ± 0.00 0.76 ± 0.00
Variable 0.76 ± 0.01 0.41 ± 0.01 0.72 ± 0.04 0.79 ± 0.00 0.80 ± 0.00 0.81 ± 0.00

5.2 Policy evaluation and mortality prediction

In Table 2 we report the policy value estimates for each of our chosen policies.
Overall, we see CQL marginally outperforms the behaviour policy in most sce-
narios, whereas DQN often matches or falls below the random policy, especially
for shorter fixed length windows (i.e. 8hr and 12hr windows). This underscores
the importance of conservative regularization in alleviating overestimation when
data coverage is incomplete.

In order to interpret policy values estimates in the context of mortality, we
first have to establish a relationship between the two entities and then use this
relationship to make predictions. To establish a relationship, similar to previous
work [39] we create a set of bins for behaviour policy value estimates and within
each bin calculate the mortality rate (number of deaths divided by number of care
spells). In Figure 1 we visualise the results, which indicate an inverse relationship
between value estimates and mortality rates for each data set. To quantify this
relationship, we fit a logistic regression model and use it to predict the mortality
rate for each of our policies. We superimpose the models onto Figure 1 and
summarise predictions in Table 3 alongside the results of statistical significance
testing between CQL and the behaviour policy using a two-sided paired t-test.

Table 3. Mortality rates (mean ± standard error) across 5 data splits. For CQL, the
best-performing β value is shown. P-values obtained from two-sided paired t-test.

Data set Behaviour Random DQN CQL p-value
Fixed 8hr 16.4 ± 0.3 21.2 ± 0.4 28.6 ± 4.0 15.6 ± 0.4 0.009
Fixed 12hr 16.4 ± 0.3 25.2 ± 0.6 28.2 ± 3.8 15.6 ± 0.3 <0.001
Fixed 24hr 16.5 ± 0.3 24.4 ± 0.6 19.1 ± 3.0 15.8 ± 0.4 0.004
Variable 16.6 ± 0.3 21.7 ± 0.8 17.3 ± 0.6 15.8 ± 0.4 0.003

Although the resulting estimated mortality reductions are statistically sig-
nificant at the 5% significance level, they are relatively modest, consistently
favouring CQL over the observed (behaviour) policy. A breakdown by patient
age in Table 4 further suggests that older patients (those at higher risk) might
benefit more, with slightly larger reductions in predicted mortality. However, it
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Fig. 1. Policy value estimate vs. mortality rate. For each data set there appears to be
an inverse relationship between policy value estimates and mortality rate (blue). For
predictive purposes we model this relationship using logistic regression (green).

should be pointed out these reductions are not always statistically significant at
the 5% level when accounting for multiple testing using a Bonferroni correction
in which the significance level is (conservatively) adjusted to 1%, reflecting the
intrinsic complexities in real-world data and the offline setting’s constraints.

6 Discussion and conclusions

In this work we have conducted a feasibility study looking at whether offline RL
can be used to reduce 30-mortality for patients with CAP. We have undertaken
an extensive set of data pre-processing procedures to convert source data into
states, actions and rewards then used this processed data to train and evaluate
policies offline. Our initial results indicate that agents trained offline using CQL
are able to learn treatment policies that marginally improve overall mortality
compared to the behaviour policy, as evaluated using FQE and a logistic re-
gression model. Agents trained using DQN with no offline modifications fail to
improve over the behaviour policy and in some cases perform no better than a
random policy.
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Table 4. Mortality rates (mean ± standard error) across 5 splits. For each data set,
we list Behaviour vs. CQL (best β), the absolute reduction and associated p-values.

Data set Age group Behaviour CQL Reduction p-value

Fixed 8hr

<65 13.5 ± 0.4 13.3 ± 0.5 0.2 0.362
65–79 15.8 ± 0.4 15.1 ± 0.5 0.7 0.006
80–84 17.2 ± 0.3 16.2 ± 0.3 1.0 0.007
85–89 18.8 ± 0.4 17.4 ± 0.5 1.4 0.011
90+ 19.1 ± 0.3 17.9 ± 0.5 1.2 0.068

Fixed 12hr

<65 13.9 ± 0.4 13.4 ± 0.4 0.5 0.005
65–79 15.7 ± 0.4 15.1 ± 0.3 0.6 0.004
80–84 17.3 ± 0.1 16.1 ± 0.2 1.2 0.011
85–89 18.4 ± 0.4 17.3 ± 0.3 1.1 0.007
90+ 18.7 ± 0.5 17.8 ± 0.1 0.9 0.170

Fixed 24hr

<65 13.6 ± 0.3 13.5 ± 0.3 0.1 0.413
65–79 15.5 ± 0.4 15.4 ± 0.4 0.1 0.266
80–84 17.2 ± 0.2 16.9 ± 0.3 0.3 0.226
85–89 18.9 ± 0.5 17.3 ± 0.4 1.6 0.002
90+ 19.4 ± 0.3 17.6 ± 0.4 1.8 0.004

Variable

<65 14.2 ± 0.3 14.0 ± 0.4 0.2 0.300
65–79 16.1 ± 0.3 15.4 ± 0.4 0.7 0.005
80–84 17.4 ± 0.3 16.7 ± 0.3 0.7 0.034
85–89 18.4 ± 0.4 17.1 ± 0.4 1.3 0.018
90+ 19.1 ± 0.3 17.7 ± 0.4 1.4 0.017

Future work. Our study has generated several lines of enquiry for future work,
one of which is to investigate alternative approaches for aggregating state vari-
ables. In particular, including dispersion metrics (e.g. interquartile ranges, vari-
ances) or explicitly encoding temporal structure (e.g. concatenating previous
states or tracking state changes across timesteps) might yield a more expressive
representation of a patient’s evolving health status. Additionally, architectures
beyond a simple MLP, such as LSTMs [10] or transformers [35], could better
capture the time-series nature of clinical data.

We also see scope for more nuanced action spaces. Our current setup merges
an antibiotic with its route of administration, but escalation/de-escalation steps,
dose variations, oxygen therapy, or ICU admission could be treated as distinct
actions, possibly leading to more complete policies. Another direction lies in re-
thinking the reward structure. We used a sparse reward tied to 30-day mortality,
but additional outcomes (e.g. hospital length-of-stay, ICU admissions) or inter-
mediate measures (e.g. improving FiO2) could create a denser, more informative
signal for the agent.

Data preprocessing challenges. A key aspect of this work was the substantial
and iterative data-processing effort required to align routine hospital records
with the assumptions of RL. Although Section 4 points to an ordered sequence
of steps, in practice we repeatedly revisited earlier decisions. For example, our
initial patient selection excluded only COVID-19 cases, but this required mod-
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ification upon discovering diagnosis codes did not clearly distinguish between
CAP and HAP. Similarly, deriving variables like FiO2 required cross-referencing
multiple tables (Observations, Ventilation) that occasionally contradicted each
other. Each iteration demanded thorough testing to ensure consistency and avoid
introducing new errors.

Time-step definitions and antibiotic regimens. Defining the temporal granular-
ity for state-action pairs proved especially challenging. We explored two main
strategies: fixed-length windows (8, 12, or 24 hours) to preserve an approximate
Markov property, and variable-length windows that aligned with recorded an-
tibiotic administrations to reflect real-world treatment intervals. Each approach
had drawbacks. Fixed windows often failed to capture the actual frequency or
timing of drug administration, while variable windows lost regular time steps.
Neither method could fully capture multi-drug regimens because the data only
recorded drug administration at the singular level. Hence, our policy compar-
isons inevitably compare approximations rather than an exact record of patient
care.

Imputation strategies. Although a sample-and-hold approach populated most
state variables when new observations were temporarily absent, many tran-
sitions still lacked any recent value. We chose a median-based imputation in
these scenarios, on the premise that clinicians might initially assume typical or
population-level values before test results are available. Alternative approaches
(e.g. regression or k-nearest neighbours) might yield more tailored estimates but
would greatly increase the pipeline’s complexity, requiring separate predictive
models for each of the numerous clinical variables. In addition, sample-and-hold
itself is subject to limitations since it assumes values remain constant in between
time points, which may not necessarily be the case.

Comorbidities and cause of death. Including some comorbidity flags (i.e. past
diagnoses) in the state space enhanced our representation of patient risk. Yet it
remained difficult to fully represent the broader clinical ramifications of these
comorbidities, such as additional medications or whether a patient’s death was
unrelated to CAP. Designing a more expansive action space, or refining the
reward to account for other causes of death, would require careful modelling and
extensive data given the multifactorial nature of hospital mortality.

Policy evaluation and mortality prediction. To evaluate our learned policies, we
relied on FQE to estimate Q-values offline. We also modelled the relationship
between Q-values and 30-day mortality using logistic regression, observing an
inverse correlation that suggests our Q-function captures meaningful clinical sig-
nals. However, a more comprehensive validation could involve qualitative assess-
ments of suggested actions by domain experts or prospective trials in controlled
settings. The former would be a vital step in gaining assurances to facilitate the
latter, assessing not just the safety of proposed actions but also the plausibility,
both as a single treatment option and as part of a regimen. We did not have the
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resources available to conduct a formal qualitative assessment of actions for this
particularly study, however it is something we would seek to include as part of
future work.

Implications and next steps. Despite the inherent complexity and partial success
of our approach, this study highlights the promise of offline RL for the man-
agement of CAP. Building upon these findings might involve more advanced
RL formulations, such as semi-Markov decision processes (SMDPs), partially
observable Markov decision processes (POMDPs) and/or hierarchical reinforce-
ment learning (HRL). In a SMDP [11] the time between actions can vary, which
may better align with how treatment are administered in cases such as CAP.
In a POMDP [38] the agent cannot directly observe the underlying state, which
may better reflect the observational nature of healthcare data. In HRL [12] tasks
are split into high-level and low-level sub-tasks, which are governed by different
policies that operate together to achieve an overall objective. In a healthcare
setting this could equate to having a high-level policy that determines when to
treat a patient and a low-level policy that selects the specific treatment. Efforts
could also be directed toward curating data sets specifically with RL needs in
mind to avoid many of the pitfalls we encountered.

Concluding remarks. Overall, our feasibility study provides initial evidence that
offline RL can yield marginally better outcomes than historical practice for CAP
management, but it also illustrates the formidable challenges of adapting real-
world healthcare data to the structure demanded by RL algorithms. Address-
ing these challenges—through richer state spaces, refined action definitions, im-
proved reward signals, and more robust ways to handle missing data—will be
essential for unlocking the full potential of RL in clinical settings. By continuing
to refine data acquisition procedures and incorporate innovative RL techniques,
we can move toward safer, more effective data-driven decision support for pneu-
monia and other complex conditions.
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