Automating Geospatial Vision Tasks with a Large
Language Model Agent

Yuxing Chen!, Weijie Wang?, Camille Kurtz!, and Sylvain Lobry® (<)

! Université Paris Cité, Paris 75006, France.
{yuxing.chen,camille.kurtz, sylvain.lobry}@u-paris.fr
2 Universita degli Studi di Trento, Trento 38122, Italy. weijie.wang@unitn.it

Abstract. Large Language Models (LLMs) have shown promise in au-
tomating code generation for data science tasks, yet they struggle with
complex task sequences, especially in geospatial vision tasks. These dif-
ficulties stem from challenges in managing stepwise dependencies, align-
ing diverse data sources with spatial constraints, and accurately applying
various geospatial libraries—often resulting in logical errors or hallucina-
tions. To address these limitations, we introduce GeoAgent, an interac-
tive framework designed to enable LLMs to automate geospatial vision
tasks effectively. GeoAgent integrates a code interpreter, static analy-
sis, and retrieval generation within a Monte Carlo Tree Search frame-
work, creating a robust solution tailored to the geospatial data process-
ing workflow. We introduce a new benchmark to evaluate GeoAgent’s
performances on single- and multi-turn tasks, including geospatial data
acquisition, analysis, and visualization across multiple Python libraries.
Our experiments reveal that GeoAgent significantly outperforms base-
line LLMs in function call accuracy, task pass rate and task completion,
marking a substantial advancement in automating geospatial vision tasks
and setting a new standard for LLM-driven geospatial data analysis.

Keywords: Large Language Model - Agent - Geospatial - Data Analysis.

1 Introduction

Large language models (LLMs) have demonstrated their potential to solve com-
plex tasks in the geospatial domain [13, 3, 28]. Current approaches mainly rely on
pre-defined, template-based prompts and third-party application programming
interfaces (APIs), enabling LLMs to utilize external tools as foundational com-
ponents for task completion. For instance, Remote Sensing ChatGPT [7] and
ChangeAgent [17] leverage independent remote sensing (RS) vision model APIs
while GEOGPT [31] uses geographic information system (GIS) API calls. These
APIs provide single-line calls for a specific task without an understanding of the
dependencies of their functionalities. Although GeoLLM-Engine [22| advances
by integrating multiple APIs into a sequential task within a real user interface,
it remains constrained by fixed task-level APIs. Recent efforts in NLP, such as
QwenAgent [2] and BigCodeBench [32], demonstrate LLMs’ potential to handle

2 Y. Chen and W. Wang et al.

open-domain data analysis utilizing any available Python libraries in code gen-
eration. These advancements suggest the potential for using LLM-based coding
to address open-domain geospatial vision tasks in code execution environments.

Geospatial vision tasks pose significant challenges for LLMs, requiring them
to understand complex instructions, manage interdependent inputs and out-
puts, and apply specialized libraries and models accurately [25]. These tasks
often demand expert intervention for decomposing tasks and selecting appro-
priate libraries, as LLMs typically struggle with multi-library function calls,
especially when under-trained with these libraries. Expert intervention is occa-
sionally necessary for task decomposition and dynamic adjustments, which may
involve fixing unsuccessful steps. General data analysis benchmarks [32, 30] rely
heavily on popular Python libraries, but these are often limited to single-turn
tasks and saturated by the recently released LLMs. These studies have a limited
scope in geospatial vision tasks, which often require using less common geospatial
Python libraries in sequential tasks. For less common geospatial Python libraries,
LLMs frequently exhibit "APT hallucinations" [11]. Retrieval-augmented gener-
ation (RAG) [8] has emerged as a method to supplement LLM’s coding capa-
bility by incorporating domain-specific knowledge. However, effectively tackling
specialized geospatial vision tasks still requires sequential reasoning and itera-
tive refinement guided by execution feedback. Advanced techniques like Monte
Carlo Tree Search (MCTS) further enhance LLMs’ sequential reasoning, enabling
feedback-driven, multi-step processing—a crucial aspect for handling complex
geospatial tasks [10].

In addition to standalone API calls, most existing works on geospatial vision
tasks leverage Vision-Language Models (VLMs) to process input data and task
descriptions in a single step [28,15,14]. While this approach simplifies execu-
tion, it restricts detailed analysis of individual outputs and hinders integration
of results across models and data sources. Key challenges arise with VLMs in
geospatial applications: First, geospatial data’s diverse modalities require exten-
sive model parameters for effective initialization. Second, interdisciplinary topics
often depend on domain knowledge—particularly physical models—that current
VLMs cannot access. Third, geospatial tasks often require compositional rea-
soning, involving multiple steps like image preprocessing and analysis that are
challenging to handle in a single prompt. Finally, many remote sensing data are
cloud-based and accessible only via APIs, limiting VLMs’ ability to query data
dynamically. Unlike VLMs, LLM-based code generation offers greater flexibility,
supporting multi-model integration and stepwise processing for more compre-
hensive geospatial data analysis.

To address these challenges, we introduce GeoAgent, an LLM-based agent
that combines a code interpreter, static analysis, and RAG within an MCTS
framework. We also propose a benchmark for evaluating diverse geospatial vision
and vision-support tasks. GeoAgent fulfills human requirements by translating
given tasks into executable Python code, utilizing dynamic task adjustment and
refinement through the MCTS. This iterative refinement enables GeoAgent to
manage dependencies among subtasks and dynamically refine them using execu-

Automating Geospatial Vision Tasks with a Large Language Model Agent 3

tion feedback within an MCTS framework, ensuring that each code segment is
logically consistent and well-developed with prior steps. The following outlines
our key contributions:

— We introduce a novel LLM agent that integrates an external knowledge
retriever, a code interpreter, and static analysis within an MCTS frame-
work tailored for geospatial vision tasks. This integration enhances problem-
solving, and logical capabilities in sequential task programming. Operating
within Jupyter Notebook, GeoAgent enables iterative user interaction, opti-
mizing code execution while ensuring compliance with Python libraries and
best practices;

— We present GeoCode, an execution-based benchmark comprising over 18,000
single-turn and 1,356 multi-turn geospatial data analysis tasks, involving
2,313 function calls from 28 widely-used libraries across 8 task categories.
GeoCode provides two evaluation models: single-turn task evaluation, which
measures function call accuracy and task pass rate, and multi-turn task
evaluation, which assesses task completion rates through either automatic
iterative refinement or human intervention;

— We evaluate multiple LLMs on the GeoCode benchmark, showing that general-
purpose LLM coders often produce incomplete workflows, while GeoAgent
achieves higher task pass and completion rates. This success is attributed
to its effective handling of specialized Python libraries within an MCTS
framework, guided by execution feedback. The study provides a more accu-
rate assessment of LLM coders in geospatial data processing and points to
a promising future for automating geospatial vision tasks.

2 Related Work

2.1 LLM-based Code Generation

LLMs exhibit strong abilities to generate standalone function codes while strug-
gling with multi-step and interrelated task programming. Recent works [27, 24,
30] have emphasized integrating tools like code interpreters and static analy-
sis to enhance code-based reasoning capabilities. For example, RepairAgent [4]
uses static analysis for code repair, and STALL™ [20] enhances generated code
fixes. Execution feedback approaches like CodeAct [24] iteratively improve code
through interpreter feedback, supporting symbolic computations and logical con-
sistency. RAG has also advanced code generation by connecting LLMs to exter-
nal databases, improving precision with evolving libraries [11]. However, there is
no geospatial RAG database for geospatial task programming. Tools like Tool-
Former [21] and CodeAgent [29] have enabled the invocation of standalone APIs
within code generation, though challenges remain for open-domain tasks. Ad-
ditionally, API hallucinations are prevalent, especially with less common APIs,
with rates reaching up to 15% in recent studies [18].

4 Y. Chen and W. Wang et al.

2.2 Geospatial Vision Tasks with LLMs

Researchers have explored integrating LLMs into geospatial vision tasks [31, 15,
3]. The preliminary attempt at bridging the gap between visual features and the
semantic reasoning capabilities of LLMs is large VLMs [15, 3|, which incorporate
LLMs into RS image captioning, Visual Question Answering (VQA), and visual
grounding tasks. Pioneering work RS-CLIP [15] created a human-annotated RS
image captioning dataset, advancing VLMs in the RS domain. To leverage LLM
capabilities, RS-LLaVA [3] developed the RS-instructions dataset, a benchmark
integrating captioning and VQA tasks in a LLaVA [19] framework. However, the
textual outputs of LLMs often fall short of meeting users’ expectations. Recent
advancements in GeoChat [13] have expanded VLM tasks to referring expres-
sion, region captioning, image description, and VQA. While significant progress
has been made in geospatial vision tasks, challenges persist in applying these
models to open-domain scenarios, especially in using multiple professional tools,
procedures, and multimodal data. Recent works [16, 31| shift LLMs from oper-
ational roles to decision-makers, enabling them to select appropriate tools. For
example, Change-Agent [17] directs LLMs to use segmentation and captioning
tools, while GeoLLM-Engine [22] calls geospatial APIs and external knowledge
bases to handle sequential tasks. However, these tools require pre-determined
task-level APIs, limiting their use in open-domain tasks, especially in sequential
tasks where tool calling integration becomes challenging.

3 Methodology

3.1 Framework

GeoAgent is an LLM agent designed to process geospatial vision tasks. Its archi-
tecture, shown in Figure 1, consists of two main components: 1) Task program-
ming (Figure 1 a): GeoAgent starts by leveraging the parameterized knowledge of
LLMs to generate code based on task instructions. External knowledge, such as
specific Python libraries, can be integrated with retrieved items through RAG
and execution feedback to enhance code generation. 2) Task refinement with
MCTS (Figure 1 b, ¢, d): GeoAgent executes code and collects feedback within
the MCTS framework. MCTS explores and evaluates multiple code candidates,
while LLMs serve as the reasoner, diagnosing errors, refining prompts, and cor-
recting failed code. This integration allows dynamic adjustments during task
programming.

3.2 Dynamic Refinement on MCTS

The GeoAgent employs an MCTS framework [12] to iteratively refine subtasks
within the task sequence. MCTS utilizes a tree structure where nodes represent
states s and edges denote actions a. The algorithm explores the state space
starting from the root s° to identify the terminal state s™ with the highest reward
r(s™). Each node contains: the visited times count v, probability p from LLMs,

Automating Geospatial Vision Tasks with a Large Language Model Agent 5

a) Task and Database

[Monte Carlo Tree Search
) Nodes®
Task Instructions nT :
5 . Sequence Score p
""" Chat History == Prob,
. Visit: vol+1

Human Human Intervention /\:xs.',-.')

I=!

E Code Generation
o ontmeDmas AX\ SN
Sy = u /N R
Daaser | [NESHORbRRIDOCHERSIN

| Update Reward Values

Data Acquisition

e Task Updati o
g_— ask Updating et Data Analysis
- Code Fix ‘ ’ % |:~_~ < J -
Feedback Visualization .
d) Update ¢) Action b) MCTS

Fig. 1. GeoAgent: A geospatial vision task programming agent. This agent comprises
four integral components: a) Task and Database, which provide LLM the task in-
struction and task-relevant items including Python library documents, online datasets,
and solutions; b) MCTS, explores and evaluates multiple possible code candidates to
optimize the selection of the most promising solution at each step through iterative
adjustment and refinement; ¢) Action, which is an execution environment integrated
with a code interpreter and static analysis and provides feedback on generated code;
and d) Update, which suggests potential error fixes on generated code and adjust-
ments on given tasks. In addition, the LLM functions as the code generator and the
intelligent reasoner to propose code solutions and iteratively diagnose detected errors.

and state-action value Q(s,a) (i.e., the maximum reward obtained by taking
action a from state s). The reward r of state s is updated by the backpropagation
of its children node’s reward. Nodes with higher rewards are prioritized indicating
high-quality generation. GeoAgent first transforms natural language instructions
into executable codes and then dynamically refines each subtask during the
MCTS selection, expansion, evaluation, and backpropagation. The full MCTS
process is illustrated in Figure 2.

First, in the selection phase, GeoAgent uses the probabilistic Upper Confi-
dence Bound (P) algorithm to select branches starting from root node s°, which
is defined as:

0
pi/log (v°)
P= arg max Q(s"a) +8(s") - \1/; e

Q (s°,aY) denotes the maximum reward obtained at action a) and is defined as:

S ass Sno e
Q(" 0) - ‘;jall - Snodi ’ (2)

where S,;; represents the total number of code steps generated during the look-
ahead phase, S,qss is the number of code steps that passed the evaluation test,
and S,oq4e is the number of code steps in node s°. In addition, 8(s%) is the weight

6 Y. Chen and W. Wang et al.

ST T T T AN l;ro_b'_p”_—\\ o)

/ Selec \ Expansmn \
® |

X

|
|
|
| S
|
Prob: pol Prob: p]l Prob: pz1 :
|
|
| P
! Prob: po Prob: p;” Prob: pzz

Visit: vg!' Visit: val+1 Visit: v,!
/ 2/
SN /Q Jisitve? _ Visit v Visit v
——————————————— N =
Back-. Z

\

propagatlon W, Evaluatlon\

Update: | |

max(Q(s”,a,”), r(s?)) : :

! |

! I

! |

: Test Uml |
|
|
\

- Is the task
\\ Terminate Reward: Q(s' dl) 7 ﬁmshed’

Execution X Execution Root Candidate Selected Unselected
Passed Failed Node Node Node Node

Fig. 2. Illustration of using the Monte Carlo Tree Search algorithm in geospatial vision
task programming.

!
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
\ !

|
|
|
|
|
|
|
|
|
|
|

M ulti-step Inference By

for exploration:

0
+ ase + 1
”cb> +e (3)

Chase

B(s°) = log (

It depends on the visited number (vo) and constants cpqse and c, where a higher ¢
encourages more exploration. In Equation (1), 3(s°) is weighted by the probabil-
ity p that is the LLM-determined sequence score. In the selection phase, GeoA-
gent begins at the root node s°, recursively selecting subtrees until it reaches
an unexplored node. This process uses P to balance exploration between known
and less-visited states. Then, in the expansion phase, after selecting the initial
node, potential codes for subsequent steps are generated and added to the child
node list until the next subtask is reached. We sample n code snippets generated
from the prompt and return the top & = 3 of them. These three code snippets
(53,52, 53) are added to the current node’s (s!) children list. For each child node,
the reward (@ is set to 0 for executable ones and —1 for non-executable ones. And
then, in the evaluation phase, the selected node s' must be assessed, despite the
node potentially representing only a partial program. Since the quality of par-
tial programs is uncertain, the LLM performs a look-ahead search, generating
a longer code snippet ("Test Unit"). This "Test Unit" is concatenated with the
code of the current node for execution test. Finally, the reward of the current
node is calculated based on the "Test Unit" and measured using Equation (2).
The node terminates and receives a reward of 1 if the test code unit fully over-
laps with its code. At last, in the backpropagation phase, this reward r(s') is

Automating Geospatial Vision Tasks with a Large Language Model Agent 7

________________ -
- N / Taskl Task2 New Task

= M

[T

@@%] O 1 @

Undefined ‘Nonexistent Other types of The completed There are Add anew task |
\ Variables functions errors \ « _task undefined variables to the pipeline /

Self refinement

Fig. 3. The self-refinement algorithm in Fig. 4. Addition of new tasks to the task
MCTS. pool in MCTS.

then backpropagated through the tree, updating the values of its ancestor nodes
accordingly.

The proposed MCTS framework incorporates an error traceback and analysis
mechanism to refine subtasks. As shown in Figure 3 and Figure 4, it assesses the
initial code using a code interpreter and static analysis tools. When undefined
variables arise, the framework removes the affected subtree, adds a new subtask
to define the variable at the top of task stacks (see Figure 4), and retries. If
non-existent functions are called, tools such as Python Jedi [9] retrieve alterna-
tive functions, which are added to the prompt to guide the LLM in correcting
the function call. For other errors, the interpreter provides traceback details,
allowing the LLM to diagnose and suggest fixes, such as syntactic errors, logical
errors, or issues with Python libraries. The failed code snippet, with suggested
corrections and original instructions, is reintroduced into the task stack. This
process continues until the generated code is successfully executed or the maxi-
mum number of attempts is reached.

However, even with the integration of static analysis and execution feedback,
ensuring the success of task programming remains challenging due to the non-
deterministic nature of LLM inference. GeoAgent addresses this by setting a
maximum attempt limit. Meanwhile, manual editing is also introduced to en-
hance task completeness. If the problem remains unsolved, GeoAgent generates
a report detailing the task, code, and encountered errors for human intervention;
these modifications are then integrated as contextual inputs in subsequent runs.

4 Benchmark Setup

4.1 Benchmark Construction®

We outline the process of constructing the benchmark, which involves three pri-
mary steps: code collection, code refactoring, and instruction generation. Cre-
ating a high-quality, execution-based benchmark for geospatial vision tasks is
challenging, as finding naturally self-contained geospatial tasks with detailed in-
structions is rare. GeoAgent gathers code snippets that utilize geospatial Python

3 See Supplement 8 for additional details and 9.1 for used prompts.

8 Y. Chen and W. Wang et al.

Table 1. Illustration of Python libraries in GeoCode. This table categorizes Python
libraries used in GeoCode according to their respective domains. Each domain is asso-
ciated with specific tasks.

Domain Library

earthengine-api, cubo, pystac,
GOES-2-Go, meteostat, pystac_client,
pytesmo, planetary computer
earthengine-api, eemont, geetools, GeoUtils,
wxee, xarray-spatial

Data Acquisition,
and Data Preparation

Raster Processing

Vector Processing GemGIS, GeoPandas, GeoUtils
3D analysis Gempy
Machine Learning scikit-eo, Verde
Deep Learning segment-geospatial, srai

geeet, gstools, sen2nbar,
pylandtemp, eradiate, spectramap
Visualization geemap, leafmap, Lonboard

Specific Alogorithm

libraries and creates corresponding task descriptions for each code segment.
Given the limited resources for geospatial vision tasks using Python libraries,
we employ tutorials from various Python libraries and leverage LLMs to con-
struct code-instruction pairs. In addition, we also constructed the RAG library
to assess the function call performance under RAG assistance. Notably, we split
GeoCode into two subsets: Google Earth Engine library-based tasks (GeoCode-
GEE) and the other library-based tasks (GeoCode-Other).

4.2 Benchmark Statistics?

The proposed GeoCode benchmark, summarized in Table 1, encompasses 28
widely-used Python libraries across 8 key domains. These libraries extensively
facilitate or support geospatial vision tasks, with code snippets often combining
multiple library functions, thereby requiring considerable compositional reason-
ing ability. Table 2 compares GeoCode with existing executable Python pro-
gramming benchmarks, highlighting the libraries and function calls referenced
in these benchmarks. Notably, GeoCode includes 18,148 single-turn tasks and
1,356 multi-turn tasks as well as 2,313 function calls from 28 external libraries,
reflecting a broader diversity compared to other benchmarks. This indicates that
GeoCode offers diverse task prompts, which involve complex instructions and de-
mand intricate implementation logic.

We provide a simple taxonomy of GeoCode-GEE single-turn tasks with-
out context: Data Acquisition (4.4%), Data Analysis (73.6%), and Visualiza-
tion (22%). Unlike common data science programming tasks where users give
clean and simple data (e.g., tables or images), GeoCode works with thousands
of online geospatial datasets in many different formats. These tasks often require

4 See Supplement 8.1 for the library version and 9.2 for task examples.

Automating Geospatial Vision Tasks with a Large Language Model Agent 9

Table 2. Python programming benchmark statistics: analysis by external library usage,
function call frequency, task count, and task type.

Benchmark External Function Single-turn Multi-turn
Library Call Tasks Tasks
DS-1000 14 540 1000 0
ODEX 13 190 439 0
BigCodeBench 62 877 1140 0
CIBench 11 171 469 73
GeoCode 28 2313 18148 1356

combining multiple datasets, and the model—not the user—must decide which
data to use. This means the model must not only understand the task well, but
also know what data is available and how to use it. This makes GeoCode more
complex than standard data science benchmarks.

4.3 Experimental Settings

In this work, we select Llama 3.1 (8B) [5] as the LLM to support geospatial
vision task programming. Additionally, we consider CodeGemma 2 (7B) [23]
and Phi3.5-mini (3.8B) [1], Qwen2 (7B) [26] in our analysis of the impact of
different model sizes and specialized LLMs. Inference is performed using a sin-
gle NVIDIA GeForce RTX 4090 GPU, encompassing both the initial stage of
instruction generation and the subsequent stage of code generation. The pa-
rameters configuration includes setting the top-p value to 0.9, the temperature
parameter to 0.6, and a maximum token limit of 2048. The window size is set to
at least 32k tokens, thereby supporting the retrieval of extensive contexts. For
the Retriever modules, we employ the embedding model (BBAI-embedding-001)
to generate high-quality embeddings for both texts and codes, enabling efficient
similarity computations and retrieval processes. The constants cpase and c in
MCTS are set as 10 and 4, the maximum attempt of each subtask is set as 3.

4.4 Metrics

This section presents the evaluation metrics for assessing function calls and task
completion. To evaluate function calls in generated code, we apply multilabel
classification metrics: Precision, Accuracy, Recall, F1 score, and Hamming dis-
tance®. Functions referenced in the generated code are extracted as predicted
labels, aligning the evaluation with example-based multilabel classification [6],
where partial correctness is taken into consideration. The label differences are
averaged across all tasks in the test set. For a function call dataset T with n
tasks (X;,Y;) and k classes, let h denote LLM, and Z; = h(X;) = {0,1}* rep-
resent the set of label memberships predicted by the LLM for the task X;. The

5 See Supplement 8.7 for other metric definitions.

10 Y. Chen and W. Wang et al.

Table 3. Comparison of function call performance of Llama3.1 with zero (@0) and
three (@3) retrieval items across all benchmarks.

Accuracy F1 Hamming Loss

@0 @3 @0 @3 @0 @3

DS-1000 0.38 0.40 0.45 0.47 0.15 0.15
ODEX 0.49 0.53 0.50 0.55 0.28 0.26
BigCodeBench 0.37 0.61 0.45 0.72 0.11 0.10
CIBench 0.54 0.57 0.62 0.66 0.14 0.14
GeoCode-GEE 0.60 0.54 0.65 0.57 0.20 0.22
GeoCode-Others 0.61 0.67 0.66 0.72 0.19 0.17

F1 score is the harmonic mean of precision and recall, is defined as:

21V, N Z
Z|Y|+|Z\ @

For code completion, we consider task pass rate (pass@l) and task completion
rate, where the task pass rate is mainly for single-turn task evaluation and the
task completion rate is the primary measure of multi-turn tasks. For instance,
in a 10-step task, the model is prompted step-by-step to generate 10 code blocks
sequentially. The completion rate is calculated based on consecutive successful
executions; if the first five steps succeed, the rate is 50%. Furthermore, the
pass@1 metric, a standard for evaluating single-turn task execution correctness,
where sequential tasks were converted into single-turn tasks to facilitate this
evaluation.

5 Evaluation

This section presents the evaluation results for all benchmarks along with the
proposed GeoCode-GEE and GeoCode-Others. GeoCode-GEE focuses exclu-
sively on tasks within the GEE environment, while GeoCode-Others involves
multiple Python libraries. Additionally, we include benchmarks relevant to gen-
eral data science tasks, such as DS-1000, ODEX, BigCodeBench, and CIBench.
We first assess the function call performance with RAG using Accuracy, F1
score, and Hamming loss metrics. To assess GeoAgent’s performance on task-
level tasks, we evaluate the pass rate (pass@l) on single-turn tasks and the
qualitative function call (F1 score) while assessing the task completion rate on
multi-turn tasks. Notably, RAG is not included in task-level evaluation avoiding
introducing additional uncertainty.

5.1 Function Call Performance

We first evaluate the function call performances using Llama3.1 and RAG-
powered Llama3.1, with metrics reported under settings involving zero (Q0)

Automating Geospatial Vision Tasks with a Large Language Model Agent 11

and three (@3) retrieval items. As shown in Table 3, most benchmarks bene-
fit from including retrieved function documentation, leading to improved per-
formance across all metrics. The most significant improvement is observed on
BigCodeBench, where the @3 setting achieves a 0.275 increase in F1 score and
a 0.007 reduction in Hamming loss. Conversely, the improvement in F1 score
for other benchmarks is minimal: GeoCode-Others shows a gain of about 0.06,
CIBench and ODEX about 0.04, while DS1000 exhibits almost no increase. No-
tably, performance on GeoCode-GEE declines with RAG, likely because the GEE
Python library is heavily represented in Llama3.1’s training data. Adding RAG
in this context introduces noise, which detracts from generation quality. This
suggests that LLMs may not yet be robust in handling extensive context, which
can lead to undesired outcomes when processing varied inputs. Most geospatial
Python libraries are unlikely to reach saturation in future LLM releases due to
limited online documentation, making it crucial to include library documentation
in the LLM’s context for accurate function calls.

5.2 Single-turn Task Evaluation

To assess GeoAgent’s performance in single-turn tasks, we conducted experi-
ments on 100 randomly chosen single-turn tasks of each benchmark, given our
limited computational resources. We first evaluated the pass rate (pass@l) of
single-turn tasks using four different LLMs (Llama3.1, CodeGemma, Phi3.5-
mini, and Qwen2) both with and without GeoAgent. As shown in Table 4, most
benchmarks demonstrate a higher pass rate when using GeoAgent across all
four LLMs. This improvement is because LLMs sometimes fail by calling in-
correct or non-existent functions®. GeoAgent addresses this issue by allowing
multiple attempts when the initial attempt fails. The most significant improve-
ments are observed on the GeoCode and ODEX benchmarks. For GeoCode-GEE,
GeoAgent achieves a 13% improvement with Llama3.1, a 6% improvement with
CodeGemma, a 16% improvement with Phi3.5-mini, and a 20% improvement
with Qwen2. For GeoCode-Others, GeoAgent shows an 18% improvement with
CodeGemma, a 5% improvement with Phi3.5-mini, and a 21% improvement
with Qwen2. Similarly, on ODEX, GeoAgent achieves a 17% improvement with
Llama3.1, a 9% improvement with CodeGemma, a 7% improvement with Phi3.5-
mini, and a 10% improvement with Qwen2.

Among the different LLMs, Phi3.5-mini achieves the best performance on
general data science benchmarks while CodeGemma demonstrates the highest
performance on the GeoCode benchmark, achieving a pass@1 rate of 86% on
GeoCode-GEE and 59% on GeoCode-Others. This suggests that code instruction-
tuned LLMs may perform better on geospatial task code generation. Across all
benchmarks, DS-1000 exhibits a notably lower pass rate with both standalone
LLMs and GeoAgent, highlighting the challenge of generating executable so-
lutions for this benchmark. Nonetheless, GeoAgent still manages to improve
performance on DS-1000.

6 See Supplement 9.3 for error examples.

12 Y. Chen and W. Wang et al.

Table 4. Code generation pass rate (Pass@1) of the Llama3.1, CodeGemma, Phi3.5
mini, and Qwen 2 on all benchmarks.

Llama3.1 CodeGemma Phi3.5 mini Qwen 2
LLM Agent LLM Agent LLM Agent LLM Agent
DS-1000 0.05 0.34 0.10 0.19 0.03 0.06 0.15 0.18
ODEX 0.74 0.91 0.78 0.87 0.84 0.91 0.84 0.94
BigCodeBench 0.67 0.61 0.82 0.82 0.94 0.91 0.87 0.84
CIBench 0.93 0.92 0.93 0.96 0.94 0.99 0.96 0.93

GeoCode-GEE 0.76 0.89 0.86 0.92 0.66 0.82 0.61 0.81
GeoCode-Others 0.45 0.40 0.58 0.76 0.50 0.55 0.39 0.61

Table 5. Function call performance (F1 score) of the Llama3.1, CodeGemma, Phi3.5
mini, and Qwen 2 on all benchmarks.

LLama3.1 CodeGemma Phi3.5 mini Qwen 2
LLM Agent LLM Agent LLM Agent LLM Agent
DS-1000 0.83 0.86 0.75 0.75 0.80 0.80 0.79 0.79
ODEX 0.53 0.66 0.54 0.56 0.55 0.58 0.55 0.56
BigCodeBench 0.77 0.80 0.72 0.74 0.79 0.80 0.69 0.68
CIBench 0.80 0.82 0.76 0.76 0.83 0.83 0.78 0.79

GeoCode-GEE 0.78 0.86 0.75 0.71 0.70 0.77 0.76 0.74
GeoCode-Others 0.66 0.69 0.69 0.70 0.66 0.72 0.63 0.64

While the pass rate alone does not fully capture task-level performance, we
also evaluate function call performance using the F1 metric. As shown in Ta-
ble 5, most benchmarks benefit from GeoAgent, leading to improved function
call performance. The most significant improvements are observed on GeoCode-
GEE and ODEX with Llama3.1, where GeoAgent achieves a 0.08 increase on
GeoCode-GEE and a 0.13 increase on ODEX. Among the different LLMs, Llamag3.1
and CodeGemma demonstrated the highest function call performance on the
GeoCode benchmark. Overall, considering both pass rate and function call per-
formance, GeoAgent with Llama3.1 performs best on single-turn tasks in GeoCode-
GEE, while GeoAgent with CodeGemma is the top performer across the entire
GeoCode benchmark for single-turn tasks. Additionally, GeoCode-GEE consis-
tently outperforms GeoCode-Others across all standalone LLMs and GeoAgent
configurations, suggesting that tasks involving multiple libraries are more chal-
lenging than single-library tasks.

5.3 Multi-turn Task Evaluation

To assess GeoAgent’s performance on multi-turn tasks’, we use 30 randomly
chosen sequential tasks from three multi-turn benchmarks. Specifically, we eval-
uate the completion rates of these tasks under both self-debugging and human

7 See Supplement 9.4 for a multi-turn task case.

Automating Geospatial Vision Tasks with a Large Language Model Agent 13

CiBench GeoCode-GEE GeoCode-Others

Task 4 Task 3 Task 4 Task 3 Task 4 Task 3
(7 st.) (7 st.) (22 st.) (13 st.) (7 st.) (9'st.)
e ———

Task 9
(11'st)

K
(8st)

—— Aut. Llama3.1 Hum. Llama3.1 ~—— Aut. GeoAgent ~—— Hum. GeoAgent

Fig. 5. Code generation complete rate (Complete@1) of the Llama3.1, GeoAgent under
modes of self-debugging (Aut.) and Human Intervention (Hum.) across all benchmarks
from Task 1 to Task 10 where st. denotes task steps.

intervention modes (see Figure 5). When a problem remains unresolved, human
intervention is introduced to move the task to the next step. Consistent with the
single-turn task evaluations, GeoAgent achieves a higher completion rate on all
benchmarks under both the automatic and human intervention modes.

GeoAgent with Llama3.1 improves the completion rate by 20% and 6% on
CIBench, 9% and 10% on GeoCode-GEE, and 48% and 22% on GeoCode-Others,
under self-debugging and human intervention modes, respectively. The improve-
ment arises because code generated solely by Llama3.1 frequently includes unde-
fined variables, causing execution failures. In such cases, GeoAgent dynamically
adjusts by refactoring the undefined variables into new subtasks and updating
failed attempts within the current task loop. Compared to the automatic mode,
human intervention improves the completion rate by 20% and 7% on CIBench,
46% and 47% on GeoCode-GEE, and 40% and 14% on GeoCode-Others, un-
der LLMs alone and GeoAgent, respectively. Nearly all cases perform better
with human assistance across both vanilla LLMs and GeoAgents. These obser-
vations suggest that LLMs perform better with human interaction, highlighting
a promising direction for integrating LLMs to assist humans in geospatial data
analysis tasks. Although GeoCode-Others is the most challenging one among
the three benchmarks, with a zero completion rate for 7 out of 10 tasks using
Llama3.1 alone in automatic mode, GeoAgent significantly improves the pass
rate for these tasks. In contrast, CIBench is the easiest benchmark, achieving a
100% completion rate for 6 out of 10 tasks.

We compare the computational performance of Llama3.1 and GeoAgent on
the GeoCode-GEE benchmark, focusing on runtime and running steps per task
(Table 6). On average, Llama3.1 completes each task in approximately 6 min-
utes, whereas GeoAgent requires about 14 minutes. GeoAgent also tends to re-
quire more steps: across the 10 evaluated tasks, it uses an average of 14.3 steps,
compared to 11.7 steps for Llama3.l1—an increase of 2.6 steps per task. This
additional computational burden limited our evaluation to 10 tasks per dataset.

14 Y. Chen and W. Wang et al.

Table 6. Runtime and step counts for multi-turn tasks using Llama3.1 and GeoAgent
with self-debugging on the GeoCode-GEE benchmark.

Task No. 1 2 3 4 5 6 7 8 9 10

Aut. Llama3.1 (Steps) 16 8 13 22 12 7 11 8§ 11 9
Aut. GeoAgent (Steps) 6 10 15 27 16 7 15 9 11 17
Aut. Llama3.1 (Minutes) 9.0 5.5 52 150 44 26 65 29 58 2.7
Aut. GeoAgent (Minutes) 18.6 9.6 16.7 35.6 12.9 4.7 15.1 4.8 8.1 13.7

Furthermore, GeoAgent’s performance is affected by latency from remote data
access on the Google Earth Engine (GEE) server.

5.4 Discusssion®

Generating code with LLMs alone is challenging, as they lag behind evolving
Python libraries and datasets. Our RAG implementation, simply using vector
matching with metadata filters and a pre-trained embedder, limits the retrieval
performance. As shown in Table 3, function call performance shows minimal
improvement in DS1000 and declines in GeoCode-GEE, likely due to the satu-
ration of relevant libraries in recent LLMs and the noise introduced by RAG.
This suggests a need for selective RAG application only when LLMs cannot find
suitable functions. The proposed GeoAgent integrates RAG into a structured
decision-making framework that combines a code interpreter, static analysis,
and MCTS. As shown in Section 5.1, RAG improves function selection, while
Section 5.2 demonstrates that the code interpreter, static analysis, and MCTS
still contribute significantly to task-level performance even in the absence of
RAG. However, the independent effectiveness of MCTS remains unverified, as
its reward computation relies on feedback from the code interpreter.

For task-level evaluation, this study focuses on process-oriented assessment.
Although the generated code is executable, evaluating its performance based
on output is challenging due to the variability and complexity of results. Both
the quality of task instructions and the complexity of tasks can influence their
results. In single-turn task evaluations, benchmarks like ODEX and GeoCode-
Others exhibit the lowest function call performance, but ODEX achieves the
second-highest pass rate and GeoCode-Others has the lowest pass rate, apart
from DS1000 (Table 4). This suggests that ODEX contains more open-ended
problems that can be solved with certain Python libraries, whereas LLMs may
lack sufficient knowledge of the libraries used in GeoCode-Others. For DS1000,
despite having the lowest pass rate, it achieves the second-highest function call
performance (Table 5). This indicates that DS1000’s low pass rate stems pri-
marily from task instructions that are not well-suited to generating executable
solutions. The reasoning capabilities of LLMs further affect outcomes, as noise
may be introduced during multi-step inference. As shown in Table 4, GeoAgent

8 See Supplement 8.2 for further discussions.

Automating Geospatial Vision Tasks with a Large Language Model Agent 15

with Llamag3.1 appears to struggle with inference noise on ODEX and GeoCode-
Others. Similar issues are observed with GeoAgent using Phi3.5-mini on Big-
CodeBench and with Qwen2 on CIBench. Multi-turn task evaluations, such as
Task 1 in CIBench and Task 4 in GeoCode-GEE, show similar patterns. Addi-
tionally, even human intervention does not guarantee task success if tasks are
too complex, as seen in Task 7 of GeoCode-Others.

To better understand failure modes, we categorize common errors into four
types: (1) Instruction-following errors, where the LLM misinterprets or over-
simplifies the prompt due to insufficient domain knowledge; (2) Hallucination
errors, involving invalid function calls or undefined variables—often stemming
from reliance on less common geospatial libraries; (3) Lack of information errors,
where the prompt lacks critical input details or context; and (4) General code
errors, which reflect broader limitations in LLM reasoning or syntax handling
within the geospatial programming domain.

6 Conclusion

We introduce GeoAgent, an innovative approach designed to enhance access
to extensive geospatial datasets and facilitate automated geospatial vision task
workflows. By leveraging the capabilities of LLMs and a diverse set of evolving
Python libraries, GeoAgent transforms tasks into executable units and refines
the corresponding library usage through the MCTS framework. To assess the
efficacy of GeoAgent, we developed a benchmark, GeoCode, focused on geospa-
tial vision tasks using popular geospatial Python libraries. Our experimental
results on GeoCode, along with existing benchmarks, demonstrate that GeoA-
gent outperforms LLM baselines in both data science and geospatial vision tasks.
The findings highlight that GeoAgent significantly improves the pass rate and
task completion for geospatial tasks. Future work will proceed along two main
directions. First, we will scale GeoAgent by fine-tuning LLMs using reinforce-
ment learning with task completion rewards, aiming to enhance planning and
long-horizon decision-making. Second, we will extend the integration of geospa-
tial libraries and improve the LLM’s ability to dynamically generate new tools
based on available Python packages, thereby increasing the system’s adaptability
to more diverse and complex geospatial workflows. With GeoAgent, we envision
a future for advanced assistance tools that can seamlessly access relevant Python
libraries and extensive online data for various geospatial tasks, thereby generat-
ing tailored code for researchers. We hope this work contributes to advancing the
use of geospatial data in research aimed at societal benefits and environmental
conservation.

Acknowledgments. This work is supported by Agence Nationale de la Recherche
(ANR) under the ANR-21-CE23-0011 project. The GitHub repository for this work
will be made available at: https://github.com/Yusin2Chen/GeoAgent.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

16

Y. Chen and W. Wang et al.

References

10.

11.

12.

13.

Abdin, M., Jacobs, S.A., Awan, A.A., Aneja, J., Awadallah, A., Awadalla, H.,
Bach, N., Bahree, A., Bakhtiari, A., Behl, H., et al.: Phi-3 technical report: A
highly capable language model locally on your phone. CoRR abs/2404.14219
(2024). https://doi.org/10.48550/ ARXIV.2404.14219

Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., Fan, Y., Ge, W., Han,
Y., Huang, F., et al.: Qwen2.5 technical report. CoRR abs/2412.15115 (2024).
https://doi.org/10.48550/ ARXIV.2412.15115

Bazi, Y., Bashmal, L., Al Rahhal, M.M., Ricci, R., Melgani, F.: RS-
LLaVA: A large vision-language model for joint captioning and question
answering in remote sensing imagery. Remote Sensing 16(9), 1477 (2024).
https://doi.org,/10.3390/rs16091477

Bouzenia, 1., Devanbu, P., Pradel, M.: Repairagent: An autonomous, LLM-based
agent for program repair. In: 2025 IEEE/ACM 47th International Conference on
Software Engineering (ICSE), pp. 694-694. IEEE Computer Society, Los Alamitos,
CA, USA (2025). https://doi.org/10.1109/ICSE55347.2025.00157

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur,
A., Schelten, A., Yang, A., Fan, A., et al.: The Llama 3 herd of models. CoRR
abs/2407.21783 (2024). https://doi.org/10.48550/ ARXIV.2407.21783
Giraldo-Forero, A.F., Jaramillo-Garzon, J.A., Castellanos-Dominguez, C.G.: Eval-
uation of example-based measures for multi-label classification performance. In:
Bioinformatics and Biomedical Engineering: Third International Conference, IWB-
BIO 2015, Granada, Spain, April 15-17, 2015, Proceedings, Part I. Lecture
Notes in Computer Science, vol. 9043, pp. 557-564. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-319-16483-0 54

Guo, H., Su, X., Wu, C., Du, B., Zhang, L., Li, D.: Remote sensing ChatGPT:
Solving remote sensing tasks with ChatGPT and visual models. In: IGARSS 2024
- 2024 IEEE International Geoscience and Remote Sensing Symposium, pp. 11474—
11478. IEEE (2024). https://doi.org/10.1109/IGARSS53475.2024.10640736

Guu, K., Lee, K., Tung, Z., Pasupat, P., Chang, M.: Retrieval augmented lan-
guage model pre-training. In: Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event. Proceedings of
Machine Learning Research, vol. 119, pp. 3929-3938. PMLR (2020).

Halter, D.: Jedi: an awesome autocompletion tool for Python (2024), accessed:
2024-10-18. https://github.com/davidhalter/jedi

He, G., Singh, Z., Yoneki, E.: MCTS-GEB: Monte Carlo Tree Search is a Good
E-graph Builder. In: Proceedings of the 3rd Workshop on Machine Learning and
Systems, EuroMLSys 2023, Rome, Italy, 8 May 2023, pp. 26-33. ACM (2023).
https://doi.org/10.1145/3578356.3592577

Jain, N., Kwiatkowski, R., Ray, B., Ramanathan, M.K., Kumar, V.: On mitigating
code LLM hallucinations with API documentation. In: Proceedings of the 47th In-
ternational Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). To appear. IEEE/ACM (2025).

Jiang, X., Dong, Y., Wang, L., Fang, Z., Shang, Q., Li, G., Jin, Z., Jiao, W.: Self-
planning code generation with large language models. ACM Trans. Softw. Eng.
Methodol. 33(7) (2024). https://doi.org/10.1145/3672456

Kuckreja, K., Danish, M.S., Naseer, M., Das, A., Khan, S., Khan, F.S.:
GeoChat: Grounded large vision-language model for remote sensing. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Automating Geospatial Vision Tasks with a Large Language Model Agent 17

tion, pp. 27831-27840. IEEE Computer Society, Los Alamitos, CA, USA (2024).
https://doi.org/10.1109/CVPR52733.2024.02629

Li, X., Wen, C., Hu, Y., Yuan, Z., Zhu, X.X.: Vision-language models in remote
sensing: Current progress and future trends. IEEE Geoscience and Remote Sensing
Magazine 12(2), 32-66 (2024). https://doi.org/10.1109/MGRS.2024.3383473

Li, X., Wen, C., Hu, Y., Zhou, N.: RS-CLIP: Zero shot remote sensing scene
classification via contrastive vision-language supervision. International Jour-
nal of Applied Earth Observation and Geoinformation 124, 103497 (2023).
https://doi.org/10.1016/j.jag.2023.103497

Li, Z., Ning, H.: Autonomous GIS: The next-generation Al-powered
GIS. International Journal of Digital Earth 16(2), 4668-4686 (2023).
https://doi.org/10.1080/17538947.2023.2278895

Liu, C., Chen, K., Zhang, H., Qi, Z., Zou, Z., Shi, Z.: Change-Agent: To-
ward interactive comprehensive remote sensing change interpretation and anal-
ysis. IEEE Transactions on Geoscience and Remote Sensing 62, 1-16 (2024).
https://doi.org/10.1109/ TGRS.2024.3425815

Liu, F., Liu, Y., Shi, L., Huang, H., Wang, R., Yang, Z., Zhang, L..: Ex-
ploring and evaluating hallucinations in LLM-powered code generation. CoRR
abs/2404.00971 (2024). https://doi.org/10.48550/ ARXIV.2404.00971

Liu, H., Li, C., Li, Y., Lee, Y.J.: Improved baselines with visual in-
struction tuning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 26286-26296 (2024).
https://doi.org/10.1109/CVPR52733.2024.02484

Liu, J., Chen, Y., Liu, M., Peng, X., Lou, Y.: STALL+: Boosting LLM-based
repository-level code completion with static analysis. CoRR abs/2406.10018
(2024). https://doi.org/10.48550 / ARXIV.2406.10018

Schick, T., Dwivedi-Yu, J., Dessi, R., Raileanu, R., Lomeli, M., Hambro, E., Zettle-
moyer, L., Cancedda, N., Scialom, T.: Toolformer: Language models can teach
themselves to use tools. In: Proceedings of the 37th International Conference on
Neural Information Processing Systems (NeurIPS). Curran Associates Inc., Red
Hook, NY, USA (2023). https://doi.org/10.5555/3666122.3669119

Singh, S., Fore, M., Stamoulis, D.: GeoLLM-Engine: A realistic environment for
building geospatial copilots. In: Proceedings of the IEEE /CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops, pp. 585-594 (2024).
https://doi.org/10.1109/CVPRW63382.2024.00063

Team, C.: CodeGemma: Open code models based on Gemma. CoRR
abs,/2406.11409 (2024). https://doi.org/10.48550/ ARXIV.2406.11409

Wang, X., Chen, Y., Yuan, L., Zhang, Y., Li, Y., Peng, H., Ji, H.: Executable
code actions elicit better LLM agents. In: Salakhutdinov, R., Kolter, Z., Heller,
K., Weller, A., Oliver, N., Scarlett, J., Berkenkamp, F. (eds.) Proceedings of
the 41st International Conference on Machine Learning (ICML 2024), Proceed-
ings of Machine Learning Research, vol. 235, pp. 50208-50232. PMLR (2024).
https://doi.org/10.5555/3692070.3694124

Wu, J., Gan, W., Chao, H.C., Philip, S.Y.: Geospatial big data: Survey and chal-
lenges. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing 17, 17007-17020 (2024). https://doi.org/10.1109/JSTARS.2024.3438376
Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C., Li, C., Li, C., Liu,
D., Huang, F., et al.: Qwen2 technical report. CoRR abs/2407.10671 (2024).
https://doi.org/10.48550/ ARXIV.2407.10671

18

27.

28.

29.

30.

31.

32.

Y. Chen and W. Wang et al.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: ReAct: Syn-
ergizing reasoning and acting in language models. In: International Conference on
Learning Representations (ICLR 2023). OpenReview.net, Kigali, Rwanda (2023)
Zhan, Y., Xiong, Z., Yuan, Y.: SkyEyeGPT: Unifying remote sensing vision-
language tasks via instruction tuning with large language model. CoRR
abs/2401.09712 (2024). https://doi.org/10.48550/ARXIV.2401.09712

Zhang, K., Li, J., Li, G., Shi, X., Jin, Z.: CodeAgent: Enhancing code genera-
tion with tool-integrated agent systems for real-world repo-level coding challenges.
In: Ku, L.W., Martins, A., Srikumar, V. (eds.) Proceedings of the 62nd An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 13643-13658. Association for Computational Linguistics, Bangkok
(2024). https://doi.org/10.18653/v1/2024.acl-long.737

Zhang, S., Zhang, C., Hu, Y., Shen, H., Liu, K., Ma, Z., Zhou, F., Zhang, W., He,
X., Lin, D., et al.: CIBench: Evaluating your LLMs with a code interpreter plugin.
CoRR abs/2407.10499 (2024). https://doi.org/10.48550/ ARXIV.2407.10499
Zhang, Y., Wei, C., He, Z., Yu, W.: GeoGPT: An assistant for un-
derstanding and processing geospatial tasks. International Journal of
Applied Earth Observation and Geoinformation 131, 103976 (2024).
https://doi.org/10.1016/j.jag.2024.103976

Zhuo, T.Y., Vu, M.C., Chim, J., Hu, H., Yu, W., Widyasari, R., Yusuf, LN.B.,
Zhan, H., He, J., Paul, 1., et al.: BigCodeBench: Benchmarking code generation
with diverse function calls and complex instructions. (2025).

