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Abstract. Time series forecasting is pivotal across industries, as it fos-
ters data-driven decision-making, increasing the chances of successful
outcomes. Yet, certain instances that feature adverse characteristics, may
lead models to manifest stress through decreases in performance (e.g.,
large errors). Hence, the ability to preemptively identify such cases, while
establishing their root causes, would be advantageous to elevate the un-
derstanding of forecasting processes, informing users about the trust-
worthiness of predictions. Hence, we propose MASTFM, a method based
on meta-learning that leverages statistical characteristics of input time
series, and estimations of forecasting performance from model outputs,
to build a metamodel that learns conditions for stress. Given that such
occurrences are naturally rare, data augmentation is employed to en-
sure balance during training. Moreover, SHapley Additive exPlanations
(SHAP) are used to explain how features impact forecasting behaviour.
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1 Introduction

Time series forecasting remains highly practical for decision-makers, as it en-
ables statistically-based procedures [2], increasing the chances of success. Fore-
casts can be carried out with considerable accuracy and certainty, by leveraging
patterns found in past data. Nonetheless, data di�culties, such as missing values
or outliers, are prone to arise [10]. Di�cult instances, which can be described
as stress-inducing, may impact the underlying model negatively, resulting in ab-
normal behaviours such as large errors, high uncertainty, or hubris (i.e., large
errors and low uncertainty). Inevitably, these are only made apparent after the
fact, which leads users to distrust predictions. Hence, being able to preemptively
identify those cases, while establishing contributing factors, would substantially
elevate the understanding of forecasting mechanisms. It could also foster respon-
sible practices, for example, by informing users about poor forecasts to dismiss.

To this end, we present MASTFM, a Python package that leverages meta-
learning to explain which time series might induce model stress. It relies on
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patterns derived from feature extraction methods, and estimations of forecasting
performance based on model outputs. These are used to �t a metamodel, which
learns to classify new instances as stress-inducing or not. Given that such cases
are rare by nature, training a balanced, unbiased classi�er might be challenging.
Thus, resampling techniques, focused on data augmentation, are employed. The
probabilities predicted by the metamodel are then used to explain the behaviour
of the forecasting model. Moreover, SHAP [7] values are used to explain how fea-
tures a�ect the metamodel, and consequently forecasting performance. A video
demonstration 1 and the package 2, are available online.

2 MASTFM Speci�cation

2.1 Forecasting Model

Our solution operates as a wrapper around forecasting models, as a way to
identify which time series (and what speci�c feature values), might lead them to
manifest stress. Any supervised regression algorithm that is compatible with the
scikit-learn [8] API is also compatible with MASTFM. This implies that even
those not belonging to the scikit-learn [8] library, are also supported, as long
as compatibility with its API is ensured, such as LightGBM [6] or XGBoost [1].

2.2 Metamodel

A metamodel, in the form of a binary classi�er based on meta-learning, is the
central component of MASTFM. It leverages statistical features extracted from
time series via tsfeatures [3], and data augmentation methods, either via over-
sampling, or synthetic time series generation, to mitigate the e�ects of target
imbalance. Forecasting performance is estimated via SMAPE by default.

The binary label in each task (δ ∈ {δE , δU , δH} −→ errors, uncertainty,
and hubris, respectively), takes its corresponding threshold(s) in consideration:
τ −→ E, β −→ U , (τ, β) −→ H. These are de�ned by percentiles of forecasting
performance estimates ei, from a model f in a time series Yi, comprising infor-
mation of both errors (eei ) and uncertainty (eui ): ei = (eei , e

u
i ), to classify a time

series Yi ∈ Y as stress-inducing (δ̂i = 1) as follows: δEi = eei > τ , δUi = eui > β,
and δHi = (eei > τ) ∧ (eui < β). Stress-inducing time series are identi�ed using
the above schemes for each task, and used as ground truths for the metamodel.

2.3 Performance

The quality of the metamodel, in terms of the trustworthiness of its predictions
is measured in ROC AUC, which quanti�es its ability to discern from the two
established classes of instances: stress-inducing or not. A set of experiments
which showcases the results of several variants of the metamodel, each leveraging

1 https://www.youtube.com/watch?v=0bm99xHWBrs
2 https://pypi.org/project/mastfm/
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a di�erent augmentation technique, across six distinct datasets, is presented in
the paper that introduces the theoretical foundations behind this work. 3

Furthermore, analyses that compare how each metamodel variant performs
both on average and on each dataset individually, across increasingly stricter
stress settings, are also available on the paper. The reported outcomes indicate
that the method is generally able to identify and characterise conditions for
forecasting model stress, and that it performs more favourably when paired with
data augmentation, mainly with methods that directly generate synthetic time
series data, rather than generating features.

2.4 Explanations

The metamodel can then be applied to learn patterns present in time series
features, which might be correlated to stress. The predicted probabilities can
be used to explain forecasting behaviour, by employing explainability methods.
MASTFM uses SHAP [7], to indicate which are the most important features in each
meta-classi�cation task (i.e., E,U, or H), and how each contributes to the out-
comes. Visual explanations are made available to the user, as shown in Figure 1.

3 Applications

This package targets users who seek to identify conditions for stress in a time se-
ries dataset, which might lead a forecasting model to behave abnormally. There-
fore, given a model f , a set of time series Y, and the kind of stress to quantify
(E,U, or H), MASTFM can automatically determine which series might cause it,
explaining it via statistical features. Although many methods incorporate the
modules that comprise this work, as far as we are aware, this is the �rst that
integrates them in the context of stress testing based on meta-learning, to model
the characteristics of challenging scenarios. This leads to a practical understand-
ing of forecasting mechanisms, via state-of-the-art explainability approaches [7].

One use case is shown in Algorithm 1, where XGBoost is put to forecast time
series captured in a monthly frequency, with seasonal periods of length 12. The
user is interested in stress that manifests as large errors, and it considers those
above the 80th percentile as signi�cant. Besides point forecasts, the associated
prediction intervals are computed, with a con�dence level of 90%, via Conformal
Prediction [9], quantifying uncertainty. Imbalance is mitigated by generating
synthetic time series using Scaling [5], which adjusts data magnitude. It is also
possible to apply data transformations (e.g., �rst di�erences), to ease modelling.
The subsequent methods produce the explanations shown in Figure 1, which
not only illustrate the distribution of series across di�ering manifestations of
stress, but also how feature values a�ect the outcomes of the metamodel, and
consequently forecasting performance. In this example, time series showcasing
low trend and linearity values, lead the metamodel to classify them as stress-
inducing, meaning that the forecasting model struggles with that kind of data.

3 Meta-learning and Data Augmentation for Stress Testing Forecasting Models [4]



4 R. Inácio et al.

A practical example of how this method can be used, as showcased in the
previously mentioned video demonstration 4, can also be found in the open
repository of this project, in the form of a simple test notebook 5, which allows
the use of diverse augmentation methods from the two aforementioned categories.

Fig. 1. Visual explanations. On the left, a scatter plot shows each series coloured by
the respective stress class. On the right, SHAP values of the 5 most important features
for the metamodel are shown. Values to the right of the vertical line contribute to a
positive classi�cation, and colour denotes the feature value (red = high, blue = low).

Algorithm 1 Example of usage for the MASTFM package
mast = MASTFM( ▷ Initialize MASTFM class

forecasting_model=XGBoost(), ▷ Provide the forecasting regression model to wrap around
seasonality=12, ▷ Set the seasonality (e.g., 12 to monthly data)
frequency="M", ▷ Set the time series frequency
horizon=12, ▷ Set the forecast horizon
target="errors", ▷ Set type of stress to gauge
level=90, ▷ Set con�dence level between 0 and 100 for prediction intervals
quantile=80, ▷ Set quantile for the threshold of stress
augmentation_method="Scaling" ▷ Set a valid data augmentation method

)
mast.fit(df=df, target_differences=1) ▷ Fit the method and apply �rst di�erences
mast.plot_stress() ▷ Plot each series, across the error and uncertainty dimensions
mast.explanations() ▷ Explain how features a�ect the metamodel using SHAP
mast.show_large_errors_ids() ▷ List series that lead to large errors
mast.show_large_uncertainty_ids() ▷ List series that lead to high uncertainty
mast.show_hubris_ids() ▷ List series that lead to overcon�dent predictions
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4 c.f. footnote 1
5 https://github.com/ricardoinaciopt/mastfm/tree/main/test
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