Machine Learning for Data Streams with
CapyMOA

Yibin Sun'-2, Heitor Murilo Gomes?, Anton Lee?, Nuwan Gunasekara?®,
Guilherme Weigert Cassales', Jia Justin Liu', Marco Heyden*, Vitor
Cerqueira®, Maroua Bahri®, Yun Sing Koh”, Bernhard Pfahringer!, and Albert
Bifet!:3

L AI Institute, University of Waikato, New Zealand
2 Victoria University of Wellington, New Zealand
3 Halmstad University, Sweden
4 Karlsruhe Institute of Technology, Germany
5 University of Porto, Portugal
5 Sorbonne Université, CNRS, LIP6, France
" University of Auckland, New Zealand
8 LTCI, Télécom Paris, IP Paris, France

Abstract. The exponential growth of data in recent decades has un-
derscored the need for high-speed, real-time, and adaptive processing
in machine learning. Data stream learning provides an effective frame-
work to address this challenge. This article introduces CapyMOA, an
open-source library designed specifically for data stream learning, of-
fering powerful tools for building and deploying adaptive ML models.
GitHub: https://github.com/adaptive-machine-learning/CapyMOA.
Website: https://capymoa.org.

Keywords: Open-source - Data Streams - Machine Learning - Concept
Drift - Online Continual Learning - Semi-supervised Learning.

1 Introduction

CapyMOA [2] is a cutting-edge open-source framework for machine learning
on data streams, evolving beyond its origins as an extension of MOA [1] to
offer a more comprehensive ecosystem for real-time analytics. It supports a di-
verse range of streaming algorithms while integrating modern machine learn-
ing libraries such as PyTorch [3] and Scikit-learn [4]. With optimized perfor-
mance, scalable processing, and advanced evaluation strategies, CapyMOA en-
ables seamless experimentation with high-velocity data streams. By continuously
incorporating novel algorithms and state-of-the-art tools, it provides researchers
and practitioners with a powerful platform for developing and benchmarking
next-generation stream learning models. In this work, we provide code snippets
and screenshots to demonstrate CapyMOA’s abilities. A demonstration video is
presented at: https://youtu.be/0EYUe6q04us.


https://github.com/adaptive-machine-learning/CapyMOA
https://capymoa.org
https://youtu.be/OEYUe6q04u4

2 Y. Sun et al.

2 CapyMOA Key Features

Integration with Established Tools. CapyMOA provides a straightforward
Python interface to the well-established algorithms and functionalities available
in MOA by utilizing JPype as a bridging library. Additionally, CapyMOA inte-
grates algorithms, datasets, and utilities from PyTorch and Scikit-learn, further
expanding its applicability.

High Level Evaluation Functions. CapyMOA provides standard evaluation
loops in stream learning as evaluation functions.

from capymoa.evaluation import prequential_evaluation
result = prequential_evaluation(stream, learner, window_size=500)

Concept Drift. CapyMOA simulates different types of concept drift using the
DriftStrean class and stores the drifting information in the stream. The follow-
ing code defines a stream possessing an abrupt drift after 5,000 instances, and a
gradual drift happening between 9,000 and 11,000 instances.

from capymoa.stream.generator import SEA
from capymoa.stream.drift import
(DriftStream, AbruptDrift, GradualDrift)
stream = DriftStream(stream=[SEA(1), AbruptDrift(position=5000),
SEA(3), GradualDrift(position=10000, width=2000), SEA(1)1)

Dedicated Visualization Functions. CapyMOA offers a variety of visual-
ization functions that are specifically designed for streaming scenarios. Fig. 1
exhibits a plotting example. The stream data used in this plot is the same as
in the previous subsection, and the associated drifts are highlighted by a red
vertical line (abrupt drift) a shaded area (gradual drift).

from capymoa.evaluation.visualization import plot_windowed_results
plot_windowed_results(knn_result, ht_result, arf_result,
metric='accuracy')

Pipelines. Building a pipeline is challenging in data stream scenarios because it
requires continuous updates and synchronization, especially when concept drift
occurs. CapyMOA tackles this by introducing the PipelineElement class —
a modular component that supports feature selection, normalization, missing-
value imputation, parameter searching and tuning, and more.

from capymoa.stream.preprocessing import
(ClassifierPipeline, MOATransformer)
from moa.streams.filters import NormalisationFilter
from capymoa.drift.detectors import ADWIN
normalisation = MOATransformer (schema=stream.get_schema(),
moa_filter=NormalisationFilter())
pipeline = ClassifierPipeline().add_transformer(normalisation)
.add_classifier(learner) .add_drift_detector (ADWIN())


https://github.com/jpype-project/jpype/

CapyMOA 3

accuracy

accuracy
= 0 o )
- o =3 ]
s L

[
ES
L

)
[¥]

HoeffdingTree
—e— AdaptiveRandomForest

©
=1
L

T T T T T T
0 2000 4000 6000 8000 10000 12000 14000 16000
# Instances

Fig. 1: Prequential Accuracy Over Time Highlighting Two Concept Drifts

3 Learning Tasks

Since learning on data streams is the main focus of CapyMOA, plenty of stream-
ing tasks and functionalities are provided.

Supervised Learning. The supervised learning procedures are wrapped into
the prequential evaluation function (aforementioned in Section 2), including clas-
sification, regression, and prediction interval.

Semi-supervised Learning. CapyMOA also supports the under-explored Semi-
supervised learning for data streams, including algorithms and evaluation func-
tions.

from capymoa.ssl.classifier import OSNN

from capymoa.evaluation import prequential_ssl_evaluation

osnn = OSNN(schema=stream.get_schema(), optim_steps=10)

results_osnn = prequential_ssl_evaluation(stream=stream,
learner=osnn, label_probability=0.01)

Unsupervised Learning.

— Data Stream Clustering. CapyMOA supports most clustering algorithms
from MOA while introduces a redesigned evaluation framework for a more stream-
lined process. It visualizes the evolution of micro- and macro-clusters over time
for 2D datasets (as illustrated in Fig. 2) and supports the extraction of clustering
metrics based on established methods from the literature.

from capymoa.cluster import Clustream_with_kmeans as WithKmeans

from capymoa.cluster.visualization import plot_clustering_evolution

from capymoa.stream.generator import RandomRBFGeneratorDrift

plot_clustering_evolution(RandomRBFGeneratorDrift (), WithKmeans(),
frame_duration=1000)



4 Y. Sun et al.

Clustering from Clustream with KMeans

Clustering from Clustream with KMeans Clustering from Clustream with KMeans
25

0.0 0 0
. 2 £ 20
20 50 s
75 20 . s
15 0 2 . s 50
. . 150 15 M 10 O . Y
10 . g P 2 P o 7 £
. 2o £ { )
@ A S .o ) . ® (G g Bes
0 . 125§ g 10 s 155 g 05 . R s 2
o5 . JIRC H o S R . 5 5
3 . 4 Py . . M E IS 5 5
& e 1003 g o 08 . o g g = oo 5 2 03
00 . PRI E 2 B ; ] El . 2 =
R H N 00 ve T . 0s H g 8
. g g e g 05 S @ o 48 ]
- 75 8 ] e S Wog +
o5 . . g 3 . e H £
3
2
1

f 2
100 Inslmnces 200 Insltances 300 Insltanccs

luster Weights
luster Weights

Micro cluster Weight

Time Evolving

Fig. 2: Clusters Evolving Over Time

— Anomaly Detection. CapyMOA includes a wide range of anomaly detection
algorithms from MOA. In addition, it features cutting-edge algorithms and is
constantly updated with the latest ones.

from capymoa.evaluation import prequential_evaluation_anomaly

from capymoa.anomaly import HalfSpaceTrees

from capymoa.stream import NumpyStream

stream_ad = NumpyStream(X, y, "AD_Dataset", feature_names,
target_name, "categorical')

hst = HalfSpaceTrees(schema=stream_ad.get_schema())

results_hst = prequential_evaluation_anomaly(stream=stream_ad,

learner=hst, window_size=1000)

AutoML for Data Streams. CapyMOA provides AutoML capabilities for
streaming data by the introduction of the AutoClass class, which reads a json file
containing algorithm configuration options and automatically selects the best-
performing one for prediction.

from capymoa.automl import AutoClass
autoclass = AutoClass(schema=schema,
configuration_json="./settings_autoclass.json")
results_autoclass = prequential_evaluation(stream=stream,
learner=autoclass)

AutoML in CapyMOA can also be applied using Random search to find
the best configuration for a combination of a preprocessor and a learner in a
streaming scenario. This is achieved via the use of pipelines, enabled by the
RandomSearchClassifierPE class, which facilitates the composition of prepro-
cessing steps, learning algorithms, and automated hyperparameter optimization.

from capymoa.stream.preprocessing import RandomSearchClassifierPE
randomsearch_pe = RandomSearchClassifierPE(HoeffdingTree,
hparams_ranges, n_combinations, rng)



CapyMOA 5

Online Continual Learning. In a recent release, CapyMOA introduced sup-
port for Online Continual Learning (OCL), an advanced research area that inte-
grates continual learning with stream learning. Similar to the previously intro-
duced stream learning interface, OCL in CapyMOA also offers high-level evalu-
ation and additional functionalities. An example code snippet is shown below.

from capymoa.classifier import HoeffdingTree

from capymoa.datasets.ocl import TinySplitMNIST

from capymoa.evaluation.ocl import ocl_train_eval_loop

scenario = TinySplitMNIST()

model = HoeffdingTree(scenario.schema)

metrics = ocl_train_eval_loop(model, scenario.train_streams,
scenario.test_streams)

4 Conclusions

CapyMOA is an open-source platform for machine learning and continual learn-
ing on streaming data, supporting both Java and Python. It offers essential tools
for building, training, and evaluating models in real-time environments.
Education. CapyMOA helps students learn stream learning concepts through
hands-on experience.

Research. Its transparency and flexibility support reproducible and extensible
experimentation.

Development. Developers benefit from easy prototyping and integration into
real-world applications.

Overall, CapyMOA serves as a valuable resource across education, research,
and development, lowering the barrier to effective streaming data analysis. Please
refer to the CapyMOA website for more information and tutorials, and [2]| for
an empirical comparison of CapyMOA against other frameworks.

References

1. Bifet, A., Holmes, G., Pfahringer, B., Kranen, P., Kremer, H., Jansen, T., Seidl, T.:
MOA: Massive online analysis, a framework for stream classification and clustering.
In: Proceedings of the first workshop on applications of pattern analysis. pp. 44-50.
PMLR (2010)

2. Gomes, H.M., Lee, A., Gunasekara, N., Sun, Y., Cassales, G.W., Liu, J.J., Heyden,
M., Cerqueira, V., Bahri, M., Koh, Y.S., Pfahringer, B., Bifet, A.: CapyMOA: Ef-
ficient machine learning for data streams in python (2025), https://arxiv.org/
abs/2502.07432

3. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing sys-
tems 32 (2019)

4. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine
learning in python. the Journal of machine Learning research 12, 2825-2830 (2011)


https://capymoa.org
https://arxiv.org/abs/2502.07432
https://arxiv.org/abs/2502.07432

	Machine Learning for Data Streams with CapyMOA

