
Machine Learning for Data Streams with
CapyMOA

Yibin Sun1,2, Heitor Murilo Gomes2, Anton Lee2, Nuwan Gunasekara3,
Guilherme Weigert Cassales1, Jia Justin Liu1, Marco Heyden4, Vitor

Cerqueira5, Maroua Bahri6, Yun Sing Koh7, Bernhard Pfahringer1, and Albert
Bifet1,8

1 AI Institute, University of Waikato, New Zealand
2 Victoria University of Wellington, New Zealand

3 Halmstad University, Sweden
4 Karlsruhe Institute of Technology, Germany

5 University of Porto, Portugal
6 Sorbonne Université, CNRS, LIP6, France

7 University of Auckland, New Zealand
8 LTCI, Télécom Paris, IP Paris, France

Abstract. The exponential growth of data in recent decades has un-
derscored the need for high-speed, real-time, and adaptive processing
in machine learning. Data stream learning provides an effective frame-
work to address this challenge. This article introduces CapyMOA, an
open-source library designed specifically for data stream learning, of-
fering powerful tools for building and deploying adaptive ML models.
GitHub: https://github.com/adaptive-machine-learning/CapyMOA.
Website: https://capymoa.org.

Keywords: Open-source · Data Streams · Machine Learning · Concept
Drift · Online Continual Learning · Semi-supervised Learning.

1 Introduction

CapyMOA [2] is a cutting-edge open-source framework for machine learning
on data streams, evolving beyond its origins as an extension of MOA [1] to
offer a more comprehensive ecosystem for real-time analytics. It supports a di-
verse range of streaming algorithms while integrating modern machine learn-
ing libraries such as PyTorch [3] and Scikit-learn [4]. With optimized perfor-
mance, scalable processing, and advanced evaluation strategies, CapyMOA en-
ables seamless experimentation with high-velocity data streams. By continuously
incorporating novel algorithms and state-of-the-art tools, it provides researchers
and practitioners with a powerful platform for developing and benchmarking
next-generation stream learning models. In this work, we provide code snippets
and screenshots to demonstrate CapyMOA’s abilities. A demonstration video is
presented at: https://youtu.be/OEYUe6q04u4.

https://github.com/adaptive-machine-learning/CapyMOA
https://capymoa.org
https://youtu.be/OEYUe6q04u4


2 Y. Sun et al.

2 CapyMOA Key Features

Integration with Established Tools. CapyMOA provides a straightforward
Python interface to the well-established algorithms and functionalities available
in MOA by utilizing JPype as a bridging library. Additionally, CapyMOA inte-
grates algorithms, datasets, and utilities from PyTorch and Scikit-learn, further
expanding its applicability.
High Level Evaluation Functions. CapyMOA provides standard evaluation
loops in stream learning as evaluation functions.

from capymoa.evaluation import prequential_evaluation
result = prequential_evaluation(stream, learner, window_size=500)

Concept Drift. CapyMOA simulates different types of concept drift using the
DriftStream class and stores the drifting information in the stream. The follow-
ing code defines a stream possessing an abrupt drift after 5,000 instances, and a
gradual drift happening between 9,000 and 11,000 instances.

from capymoa.stream.generator import SEA
from capymoa.stream.drift import

(DriftStream, AbruptDrift, GradualDrift)
stream = DriftStream(stream=[SEA(1), AbruptDrift(position=5000),

SEA(3), GradualDrift(position=10000, width=2000), SEA(1)])

Dedicated Visualization Functions. CapyMOA offers a variety of visual-
ization functions that are specifically designed for streaming scenarios. Fig. 1
exhibits a plotting example. The stream data used in this plot is the same as
in the previous subsection, and the associated drifts are highlighted by a red
vertical line (abrupt drift) a shaded area (gradual drift).

from capymoa.evaluation.visualization import plot_windowed_results
plot_windowed_results(knn_result, ht_result, arf_result,

metric='accuracy')

Pipelines. Building a pipeline is challenging in data stream scenarios because it
requires continuous updates and synchronization, especially when concept drift
occurs. CapyMOA tackles this by introducing the PipelineElement class —
a modular component that supports feature selection, normalization, missing-
value imputation, parameter searching and tuning, and more.

from capymoa.stream.preprocessing import
(ClassifierPipeline, MOATransformer)

from moa.streams.filters import NormalisationFilter
from capymoa.drift.detectors import ADWIN
normalisation = MOATransformer(schema=stream.get_schema(),

moa_filter=NormalisationFilter())
pipeline = ClassifierPipeline().add_transformer(normalisation)

.add_classifier(learner).add_drift_detector(ADWIN())

https://github.com/jpype-project/jpype/


CapyMOA 3

Fig. 1: Prequential Accuracy Over Time Highlighting Two Concept Drifts

3 Learning Tasks

Since learning on data streams is the main focus of CapyMOA, plenty of stream-
ing tasks and functionalities are provided.
Supervised Learning. The supervised learning procedures are wrapped into
the prequential evaluation function (aforementioned in Section 2), including clas-
sification, regression, and prediction interval.
Semi-supervised Learning. CapyMOA also supports the under-explored Semi-
supervised learning for data streams, including algorithms and evaluation func-
tions.

from capymoa.ssl.classifier import OSNN
from capymoa.evaluation import prequential_ssl_evaluation
osnn = OSNN(schema=stream.get_schema(), optim_steps=10)
results_osnn = prequential_ssl_evaluation(stream=stream,

learner=osnn, label_probability=0.01)

Unsupervised Learning.
– Data Stream Clustering. CapyMOA supports most clustering algorithms
from MOA while introduces a redesigned evaluation framework for a more stream-
lined process. It visualizes the evolution of micro- and macro-clusters over time
for 2D datasets (as illustrated in Fig. 2) and supports the extraction of clustering
metrics based on established methods from the literature.

from capymoa.cluster import Clustream_with_kmeans as WithKmeans
from capymoa.cluster.visualization import plot_clustering_evolution
from capymoa.stream.generator import RandomRBFGeneratorDrift
plot_clustering_evolution(RandomRBFGeneratorDrift(), WithKmeans(),

frame_duration=1000)



4 Y. Sun et al.

Fig. 2: Clusters Evolving Over Time

– Anomaly Detection. CapyMOA includes a wide range of anomaly detection
algorithms from MOA. In addition, it features cutting-edge algorithms and is
constantly updated with the latest ones.

from capymoa.evaluation import prequential_evaluation_anomaly
from capymoa.anomaly import HalfSpaceTrees
from capymoa.stream import NumpyStream
stream_ad = NumpyStream(X, y, "AD_Dataset", feature_names,

target_name, "categorical")
hst = HalfSpaceTrees(schema=stream_ad.get_schema())
results_hst = prequential_evaluation_anomaly(stream=stream_ad,

learner=hst, window_size=1000)

AutoML for Data Streams. CapyMOA provides AutoML capabilities for
streaming data by the introduction of the AutoClass class, which reads a json file
containing algorithm configuration options and automatically selects the best-
performing one for prediction.

from capymoa.automl import AutoClass
autoclass = AutoClass(schema=schema,

configuration_json="./settings_autoclass.json")
results_autoclass = prequential_evaluation(stream=stream,

learner=autoclass)

AutoML in CapyMOA can also be applied using Random search to find
the best configuration for a combination of a preprocessor and a learner in a
streaming scenario. This is achieved via the use of pipelines, enabled by the
RandomSearchClassifierPE class, which facilitates the composition of prepro-
cessing steps, learning algorithms, and automated hyperparameter optimization.

from capymoa.stream.preprocessing import RandomSearchClassifierPE
randomsearch_pe = RandomSearchClassifierPE(HoeffdingTree,

hparams_ranges, n_combinations, rng)



CapyMOA 5

Online Continual Learning. In a recent release, CapyMOA introduced sup-
port for Online Continual Learning (OCL), an advanced research area that inte-
grates continual learning with stream learning. Similar to the previously intro-
duced stream learning interface, OCL in CapyMOA also offers high-level evalu-
ation and additional functionalities. An example code snippet is shown below.

from capymoa.classifier import HoeffdingTree
from capymoa.datasets.ocl import TinySplitMNIST
from capymoa.evaluation.ocl import ocl_train_eval_loop
scenario = TinySplitMNIST()
model = HoeffdingTree(scenario.schema)
metrics = ocl_train_eval_loop(model, scenario.train_streams,

scenario.test_streams)

4 Conclusions

CapyMOA is an open-source platform for machine learning and continual learn-
ing on streaming data, supporting both Java and Python. It offers essential tools
for building, training, and evaluating models in real-time environments.
Education. CapyMOA helps students learn stream learning concepts through
hands-on experience.
Research. Its transparency and flexibility support reproducible and extensible
experimentation.
Development. Developers benefit from easy prototyping and integration into
real-world applications.

Overall, CapyMOA serves as a valuable resource across education, research,
and development, lowering the barrier to effective streaming data analysis. Please
refer to the CapyMOA website for more information and tutorials, and [2] for
an empirical comparison of CapyMOA against other frameworks.

References

1. Bifet, A., Holmes, G., Pfahringer, B., Kranen, P., Kremer, H., Jansen, T., Seidl, T.:
MOA: Massive online analysis, a framework for stream classification and clustering.
In: Proceedings of the first workshop on applications of pattern analysis. pp. 44–50.
PMLR (2010)

2. Gomes, H.M., Lee, A., Gunasekara, N., Sun, Y., Cassales, G.W., Liu, J.J., Heyden,
M., Cerqueira, V., Bahri, M., Koh, Y.S., Pfahringer, B., Bifet, A.: CapyMOA: Ef-
ficient machine learning for data streams in python (2025), https://arxiv.org/
abs/2502.07432

3. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing sys-
tems 32 (2019)

4. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine
learning in python. the Journal of machine Learning research 12, 2825–2830 (2011)

https://capymoa.org
https://arxiv.org/abs/2502.07432
https://arxiv.org/abs/2502.07432

	Machine Learning for Data Streams with CapyMOA

