
Introducing Pyra: A High-level Linter
for Data Science Software

Greta Dolcetti1 , Vincenzo Arceri2 (�), Antonella Mensi3 , Enea
Zaffanella2 , Caterina Urban4 , and Agostino Cortesi1

1 Ca’ Foscari University of Venice, Via Torino 155, 30170 Venice, Italy
{greta.dolcetti|cortesi}@unive.it

2 University of Parma, Parco Area delle Scienze 53/A, 43124 Parma, Italy
{vincenzo.arceri|enea.zaffanella}@unipr.it

3 University of Verona, Piazzale L. A. Scuro 10, 37134 Verona, Italy
antonella.mensi@univr.it

4 Inria & École Normale Supérieure | Université PSL, Paris, France
caterina.urban@inria.fr

Abstract. We present Pyra, a static analysis tool that aims at detect-
ing code smells in data science workflows. Our goal is to capture potential
issues, focusing on misleading visualizations, challenges for reproducibil-
ity, as well as misleading, unreliable or unexpected results.
Link to the demo: https://www.youtube.com/watch?v=D-AsyuhsTyo
GitHub repository: https://github.com/spangea/Pyra

Keywords: Static analysis · Code smells · Data science · Jupyter Note-
books · Python

1 Introduction

In this demo, we present Pyra, a high-level linter for data science software.
Pyra is a static analysis tool that helps developers identify potential issues
in their data science code written in Python. Pyra focuses primarily on code
smells, aiming at capturing anti-patterns that, although not raising a warning
due to Python’s inherent flexibility, can result in potential issues for the data
science pipeline being implemented.

Pyra is inspired by the pervasiveness and versatility of data science soft-
ware, which is often applied in interdisciplinary fields. Due to this nature, many
projects [4,1,3] aim at easing and making the development of data science soft-
ware more reliable: yet, they often require a huge effort by the users (such as
manually annotating program variables) or they focus either on the data or gen-
eral best practices for the code, but not on the combination of both. Conversely,
Pyra is designed to be easy to use and integrates seamlessly with Python code,
without requiring any additional annotations or modifications of the code. More-
over, our goal is to infer and reason about more abstract datatypes, potentially
capturing a broader and less conventional set of code smells. Therefore we pro-
pose an easily extensible framework to help developers achieve correct results.

https://orcid.org/0000-0002-2983-9251
https://orcid.org/0000-0002-5150-0393
https://orcid.org/0000-0001-9468-5298
https://orcid.org/0000-0001-6388-2053
https://orcid.org/0000-0002-8127-9642
https://orcid.org/0000-0002-0946-5440
https://www.youtube.com/watch?v=D-AsyuhsTyo
https://github.com/spangea/Pyra

2 G. Dolcetti, V. Arceri, A. Mensi, E. Zaffanella, C. Urban, A. Cortesi

Jupyter notebook
(.ipynb)

Python
program

(.py)

Control-Flow
Graph

CFG fix-point

Dataset
(e.g., .csv, .xls)

Control-Flow Graph
with type annotation

𝚡 → 𝖲𝖾𝗋𝗂𝖾𝗌
𝚢 → 𝖱𝖺𝗍𝗂𝗈𝖲𝖾𝗋𝗂𝖾𝗌…

Checkers
-
-

…

𝙳𝚊𝚝𝚊𝙻𝚎𝚊𝚔𝚊𝚐𝚎
𝚁𝚎𝚙𝚛𝚘𝚍𝚞𝚌𝚒𝚋𝚒𝚕𝚒𝚝𝚢

PyraTowards a High Level Linter for Data Science NSAD ’24, October 22, 2024, Pasadena, CA, USA

In
[1]:

import pandas as pd

from sklearn.preprocessing import

StandardScaler

x = [1, 2, 3, 4, 5]

df = pd.DataFrame(x, columns =['x'])

sc = StandardScaler ()

df['x_norm '] = sc.fit_transform(df[['x']])

In
[2]:

code smell: mean of normalized data

x_mean = df['x_norm '].mean()

print(x_mean)

0

In
[3]:

correct code

x_mean = df['x'].mean()

print(x_mean)

3.0

Figure 4. Jupyter notebook code that contains one example
of the captured code smells.

Data leakage. As for the errors regarding the central
tendency measure of scaled data, in other scenarios, the
order in which some operations are performed can lead to
mistakes. This is the case for a common error in machine
learning: splitting the train and test sets after having already
normalized the data. Normalization is an important step
that can improve the performance of the model that is being
trained; splitting the data into train and test sets is a standard
procedure, often performed using the train_test_split
method, for the validation of the model to check how well
it has learned to generalize after the training phase. In this
scenario, it is important to normalize the data after it has
been split to avoid data leakage: the undesired mechanism
through which some information from the train set !ows into
the test set and provides distorted validation results that do
not re!ect the real generalization capabilities of the trained
model. The reason behind the data leakage in this context can
be found in the parameters used during the normalization
phase: if they are computed on the whole dataset, they can
also be in!uenced by values that are present in the test set
and that the model should not have bias on.

Code smells can be subtle yet dangerous, for this reason, in
our abstract domain and analyzer, we plan to target pandas
operations that could lead to this kind of errors. However,
since pandas is mostly involved in the EDA phase, which is
just the initial step of the data science pipeline, we plan to
extend our approach to other data science libraries, such as
scikit-learn, in order to check that the machine learning

StdSeries NormSeries RatioSeries CatSeries StringSeries BoolSeries

Series

Figure 5. Diagram of the abstract domain speci"c to Series.

BoolArray NumericArray StringArray

Array

Figure 6. Diagram of the abstract domain speci"c to arrays.

models are created by using the algorithms that mostly adapt
to the available data.

3 Domain and Implementation
In this section we describe the design a linter tool for data
science, which is paired by the corresponding development
of a prototype implementation. Strictly speaking, our cur-
rent prototype can only handle Python code. However, since
many data science applications are developed in Jupyter
Notebooks, we have extended the applicability of the proto-
type by implementing a simple preprocessing phase, which
collects all Python code from the cells of the notebook, also
removing speci"c magic commands related to the environ-
ment. Note that, for the scope of this project, we do not
consider the case of arbitrary code cell execution, even if
this would be allowed in Jupyter Notebook (and a possible
source of programming errors in itself [20]). Rather, we focus
on the sequential execution of all the Python code extracted
from the cells of the notebook (i.e., the code interpreted from
the "rst to the last cell).

After the code extraction phase, the prototype invokes
the analysis phase: currently, this is structured as a classical
static analysis, separating the "xpoint computation engine
from the abstract domain. As a matter of fact, the imple-
mentation of the prototype has been obtained by extending
the Lyra abstract interpreter [24]. Most of the design and
implementation work has been dedicated to:

• the de"nition of an abstract domain expressing abstract
datatypes (to be discussed in the following);

• the writing of abstract datatype rules for the most
widely used data science library functions;

• the implementation of corresponding type checkers,
triggering the generation of suitable reports when
identifying the targeted code smells.

The tool implements a classical forward static analysis, main-
taining a non-relational abstract state that maps each pro-
gram variable to the corresponding abstract datatype. When
processing a function call, the analyzer checks for a corre-
sponding abstract datatype rule and, if one can be found, it
applies it and updates the abstract state accordingly; other-
wise, if no rule can be found, it falls back to providing a safe,
but typically imprecise, over-approximation.

Type domain Analysis report

 at line 42
 at line 128

…

𝙳𝚊𝚝𝚊𝙻𝚎𝚊𝚔𝚊𝚐𝚎
𝚁𝚎𝚙𝚛𝚘𝚍𝚞𝚌𝚒𝚋𝚒𝚕𝚒𝚝𝚢

Fig. 1. Pyra high-level execution flow.

2 Pyra’s Architecture

The high-level execution flow of Pyra is reported in Fig. 2. Pyra takes as input
a Jupyter Notebook and produces a report containing the detected code smells
and the results of the analysis. First, the notebook is converted into a Python
script; then, Pyra performs static analysis on the Control Flow Graph (CFG)
extracted from the script, computing a fixpoint over the CFG to infer abstract
type information for each variable at each program point; finally, a set of checkers
is applied to the annotated CFG to detect code smells.5

The 55 abstract datatypes that Pyra can infer extend those described in [2]:
some correspond to concrete datatypes (e.g., List, DataFrame, Series), others
are more abstract (e.g., Numeric, which can represent either a float or an int),
and some are specific to data science (e.g., encoders, scalers, standardized/nor-
malized Series). Such information is exploited by the checkers to identify code
smells in the input Python script. The rationale behind the checkers is intu-
itive: the static analysis computes and propagates types while maintaining the
abstract type environment Γ ; whenever a procedure associated with one of the
code smells is encountered, the analyzer uses the information in Γ to determine
whether it might represent a code smell; if so, it raises a warning and provides
the user with a description of the issue, its cause, and a suggestion about how
to fix it. We grouped the code smells and their corresponding checkers into four
categories:

– Misleading visualizations: issues that can compromise data interpreta-
tion due to inappropriate visualization choices, such as using line plots for
categorical data or applying PCA for visualization when more suitable tech-
niques like t-SNE could reveal clearer patterns.

– Misleading results: issues that can lead to incorrect/biased outcomes with-
out raising exceptions. Examples include data leakage (e.g., pre-processing

5 Pyra can optionally use the information about the concrete dataset used in the
notebook, if provided, to improve the accuracy of the analysis.

Introducing Pyra: A High-level Linter for Data Science Software 3

before the train-test split), improper PCA usage, failure to remove dupli-
cates, and poor handling of missing values.

– Challenges for reproducibility: issues that can hinder the reproducibil-
ity of data science pipelines, such as the omission of random seed (‘ran-
dom_state’) settings in operations involving randomness (e.g., train-test
split).

– General issues such as high dimensionality (too many features vs. samples),
which may lead to the curse of dimensionality, and assignment of the result
of in-place operations that can cause unexpected behavior.

Currently, Pyra includes 16 different checkers for detecting code smells. In
this demo, we highlight four of them, one per category, to demonstrate Pyra’s
core capabilities.

3 Demo
We demonstrate Pyra by analyzing the code shown in Fig. 2. The code repre-
sents a simple data science pipeline that reads a CSV file, drops duplicates, plots
the data, scales it, splits it into training and testing sets, and fits a logistic regres-
sion model. The dataset contains three columns: ‘Fruit’ (categorical), ‘Amount’
(integer), and ‘Label’ (0 or 1). This code, although short, contains several issues
that belongs to the four identified categories of code smells, specifically:

– The drop_duplicates method is called with inplace=True, which modifies
the DataFrame in place and returns None. This can lead to confusion, as the
variable result will be assigned None.

– The plot method is used to create a line plot with a categorical x-axis. This
is inappropriate, as line plots are typically used for continuous data. A bar
plot would be more suitable in this case.

– The train_test_split method is called without setting the random_state
parameter, meaning the split will differ each time the code is run. This can
result in non-reproducible outcomes.

– The data is scaled before the train-test split. This can cause data leakage, as
the scaling parameters are computed using the entire dataset, including the
test set. The scaling should be performed after the split to avoid this issue.

Pyra detects these issues and raises warnings, including the type of the code
smell, its cause, and suggestions for fixing it.

4 Conclusion

In this demo, we presented Pyra, a high-level linter for data science software.
Pyra is designed to help developers identify code smells in the data science
software. By analyzing code and issuing warnings, Pyra supports the develop-
ment of more robust and reliable data science pipelines. The demo showcased
how Pyra can analyze a data science pipeline and identify several issues, of-
fering valuable feedback and suggestions for improvement. The presented tool

4 G. Dolcetti, V. Arceri, A. Mensi, E. Zaffanella, C. Urban, A. Cortesi

In
[1]:

import pandas as pd
import matplotlib.pyplot as plt
from sklearn import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

df = pd.read_csv("data.csv")
Columns: [’Fruit ’, ’Amount ’, ’Label ’]
result = df.drop_duplicates(inplace=True)

plt.plot(df["Fruit"], df["Amount"])

scaler = StandardScaler ()
X_scaled = scaler.fit_transform(df[["Amount"]])

X_train , X_test , y_train , y_test =
train_test_split(X_scaled , df["Label"])

model = LogisticRegression ()
model.fit(X_train , y_train)

Fig. 2. Example of a pipeline with a plotting issue due to a categorical x-axis and an
in-place DataFrame modification that results in a None return from drop_duplicates.

stands out from other static analysis tools or linters by specifically addressing
the unique challenges and pitfalls of data science software, making it a valuable
addition to the data science ecosystem. Moreover, Pyra can be easily integrated
into existing IDEs as a plugin, providing real-time feedback to developers as they
write their code. This feature makes the tool especially useful, given that our
target audience includes not only experienced data scientists but also beginners
and experts from other fields who may not be familiar with the peculiarities,
routines and best practices of data science software.

Acknowledgments. Work partially supported by Bando di Ateneo 2024 per
la Ricerca, funded by University of Parma (FIL_2024_PROGETTI_B_IOTTI
- CUP D93C24001250005) and SERICS (PE00000014 - CUP H73C2200089001)
project funded by PNRR NextGeneration EU.

References

1. Bantilan, N.: pandera: Statistical data validation of pandas dataframes. In: Agarwal,
M., Calloway, C., Niederhut, D., Shupe, D. (eds.) Proceedings of the 19th Python in
Science Conference 2020 (SciPy 2020), Virtual Conference, July 6 - July 12, 2020.
pp. 116–124. scipy.org (2020). https://doi.org/10.25080/MAJORA-342D178E-010

2. Dolcetti, G., Cortesi, A., Urban, C., Zaffanella, E.: Towards a high level linter for
data science. In: Proceedings of the 10th ACM SIGPLAN International Workshop on
Numerical and Symbolic Abstract Domains, NSAD 2024, Co-located with SPLASH
2024. p. 18 – 25 (2024). https://doi.org/10.1145/3689609.3689996

3. Quaranta, L., Calefato, F., Lanubile, F.: Pynblint: a static analyzer for python
jupyter notebooks. In: Crnkovic, I. (ed.) Proceedings of the 1st International Con-
ference on AI Engineering: Software Engineering for AI, CAIN 2022, Pittsburgh,

https://doi.org/10.25080/MAJORA-342D178E-010
https://doi.org/10.25080/MAJORA-342D178E-010
https://doi.org/10.1145/3689609.3689996
https://doi.org/10.1145/3689609.3689996

Introducing Pyra: A High-level Linter for Data Science Software 5

Pennsylvania, May 16-17, 2022. pp. 48–49. ACM (2022). https://doi.org/10.
1145/3522664.3528612

4. Urban, C., Müller, P.: An abstract interpretation framework for input data usage. In:
Ahmed, A. (ed.) Programming Languages and Systems - 27th European Symposium
on Programming, ESOP 2018, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-
20, 2018, Proceedings. pp. 683–710. Lecture Notes in Computer Science, Springer
(2018). https://doi.org/10.1007/978-3-319-89884-1_24

https://doi.org/10.1145/3522664.3528612
https://doi.org/10.1145/3522664.3528612
https://doi.org/10.1145/3522664.3528612
https://doi.org/10.1145/3522664.3528612
https://doi.org/10.1007/978-3-319-89884-1_24
https://doi.org/10.1007/978-3-319-89884-1_24

	Introducing : A High-level Linter for Data Science Software

