PrRiMULA-3 for Probabilistic Modeling and
Reasoning on Graph Data

Raffaele Pojer (X)), Manfred Jaeger

Aalborg University, Denmark {rafpoj, jaeger}@cs.aau.dk

Abstract. The PRIMULA system is a versatile software tool for mod-
eling and reasoning with probabilistic relational structures based on the
symbolic Relational Bayesian Networks (RBN) language. The new ver-
sion 3 of PRIMULA extends previous versions by adding support for
categorical variables, and by integrating Graph Neural Networks (GNN)
as model components into a full generative RBN model, thus combining
the predictive power and scalable learning tools of GNNs with the high
expressivity and flexible inference capabilities of RBNs.

1 Introduction

Probabilistic modeling of relational data is a cornerstone of modern artificial
intelligence, enabling systems to reason under uncertainty in complex, struc-
tured domains, such as social or sensor networks, or biological and environmen-
tal systems. Relational Bayesian Networks (RBNs) [I] are a powerful framework
for working with probabilistic relational models. The PRIMULA software imple-
ments the RBN language and provides support for a wide range of learning and
reasoning tasks, including: predictive inference comprising standard supervised
tasks such as node, link and graph prediction; general probabilistic reasoning
for diagnostic inference and decision support, and unsupervised learning, e.g. for
community detection. PRIMULA-3 is a revised and updated version that adds
as new functionalities: support for categorical variables, and integration with
graph neural networks (GNNs) implemented in PyTorch. This integration con-
nects the predictive capabilities of GNNs with the expressive relational logic of
RBNs, enabling neuro-symbolic reasoning on graph-structured data. PRIMULA-3
is a proof-of-concept software, providing a uniform framework supporting a wide
spectrum of graph analysis tasks. It is intended for research and educational
purposes by enabling design and experimentation within a rich and versatile
framework for modeling and learning with graph data.

2 The PrRIMULA-3 System

PRrRIMULA takes as input a probabilistic model specification in the RBN language
(possibly containing GNN components), and a relational domain specification.
Together, these inputs define a generative model for probabilistic attributes and
relations. Several forms of inference for the resulting models are provided: exact

2 Raffaele Pojer (X)), Manfred Jaeger

eoe Primula eoe Learn Module [XX Inference Module

Modules Run Options Help Leaming | Relation Parameters | Sample Data | [Relations Values
LandUse CORN
Pollution cosy
PAST
sove

Parameter
Sparam1 -0.6100757702666888
Sparama 1.402814065118096

Sparam2 -0.21778637479591034

Building Gradient Graph ..0%00000000100%
#Ground atoms:3000

#5um atoms:0

#Max atoms:

it 0
aram 0.39969296994419057
#intemal nodes:21006 Sparams 3996929699441905:

Sparam3 0.5440758352734383
Sparamé -3.3663104726740225
LOG-UK: data -2944.508538535464

[Element names Instantiations
7 Pollution(0) = LOW

(Construction time: 35.35 8 Pollution(1) = LOW

o Pollution) = Low
1
‘ el S e | |- B

[hru_agr']

hru_urb] 5

Model sourced/Users/Iz50rg/Dev/water-hi| Browse

Restarts 1 Query MAP value
LandUse(3) PAST

Data source: [test_small_new_sampled.rde| Browse LandUse(4) PAST
LandUse(s) PAST

LandUse(8) PAST
LandUse(9) PAST

File Edit_Mode Query Tools View

alal B]x x

Evidence | Query | MCMC | Test [MAP | ACE

MAP Inference o
Restants 1 Likelihood -8.9618774¢

LandUse (thru_agr'D

Fig. 1. PRIMULA modules: A: main console, B: learn module for parameter learning, C:
inference module for conditional probability and maximum a-posteriori inference, D:
module for editing and visualizing relational input domains, E: the external Samlam
tool for probabilistic inference by Bayesian networks.

inference by compiling the model into a Bayesian network or arithmetic cir-
cuit representation, and applying the dedicated, external SamIanﬂ and ACEEl
tools; approzimate inference with Gibbs sampling for probability computations,
and combinatorial optimization for maximum-a-posteriori queries. All inference
techniques are equally applicable for models with or without GNN components.

Model specification. We illustrate the RBN language and its GNN integration
by the example in Listing [I.I] of an environmental domain with land and water
nodes connected by a spatial adjacent relation. Figure[I]D. shows a tiny example
domain with node colors representing node types and attributes.

An external GNN model has been trained to model the pollution level based
on the agricultural land use at adjacent land units. Lines 3.-6. import this GNN
into the RBN model by specifying its Python source and logical signature (input
attributes, relation used for message passing, output dimension). Lines 8.-10.
are a user-defined function for the profit obtained by the agricultural use of a
land unit. Lines 12-15 define a logistic regression model for a Boolean variable
indicating whether an intervention at (and around) water node w is necessary to
mitigate high pollution or low profit in this area. As shown in [4], a large class of
GNN models can also directly be encoded in the native RBN language. However,
the ability to also connect to external PyTorch models leads to greater flexibility
with regard to GNN architectures, and computational benefits arising from the

! http://reasoning.cs.ucla.edu/samiam/
2 http://reasoning.cs.ucla.edu/ace/

http://reasoning.cs.ucla.edu/samiam/
http://reasoning.cs.ucla.edu/ace/

OO~ Uk W~

Primula v.3 3

Listing 1.1. Modeling environmental and economic impact of land use
LandUse ([land]1l) = SOFTMAX 1,1,1;
Pollution([water]w) = COMPUTEWITHTORCH <path to PyTorch model>
WITHNUMVALUES 3

FORFREEVARS (w)
USINGRELS LandUse(l) WITHEDGE adjacent(l,w);

@profit ([land]1l) = WIF LandUse(l)=corn THEN (2.4*Area(l))
ELSE WIF LandUse(l)=pasture THEN (1.0%*Area(l))
ELSE WIF LandUse(l)=soy THEN (1.9%Area(l)) ELSE 0.0;

Intervention([water]w) = COMBINE 1.8%(Pollution(w)=high),
0.7*(Pollution(w)=medium),
-1.1*%@profit ([land]l)
WITH log-reg FORALL 1 WHERE adjacent(l,w);

greater efficiency of dedicated GNN learners for GNN models. A detailed RBN
language documentation and a tutorial example similar to Listing[I.1]is provided
with the PRIMULA distribution.

Inference. Given an RBN model instantiated with an input domain the following
inference tasks can be solved:

1. Conditional probability queries: given a partial observation of some attributes
and relations, what are the conditional probabilities of a specified list of
queries? In our environmental domain example: given observed land use,
what are the probabilities for pollution levels? For smaller sized problems,
these queries can be solved exactly using Samlam and ACE. For larger prob-
lems approximate inference by Gibbs sampling is used.

2. MAP queries: given a partial observation of some attributes/relations, what
is the most probable joint configuration of a list of query attributes/rela-
tions? An example is shown in Figure [I] C, where the most probable land
use at all land nodes was queried, given an observation of low pollution at
all water nodes. MAP queries are solved by a combinatorial optimization
process operating on the likelihood graph data structure that also plays a
key role in learning.

Figure[2]illustrates a probabilistic inference scenario for an information diffu-
sion model (included in the PRIMULA distribution). The underlying RBN model
here encodes the standard independent cascade model for information diffusion.
We apply the model to the famous Zachary’s Karate Club network (Figure[2|A),
where node 34 has been labeled as the source node for the diffusion process (in-
dicated by a blue marking in the graph viewer). We can now query for all nodes
the probability that they have received the information at time 4, conditioned
on the information that node 4 had the information at time 2 (Figure |2| B).

Learning. Parameter learning is supported by gradient descent using LBFGS
or Adam. The original learning approach of [2] consists of compiling the model

4 Raffaele Pojer (X)), Manfred Jaeger

7

Wil

Fig. 2. Information diffusion on the Karate Club network. A: graph viewer/editor, B:
inference module, C: learned diffusion probabilities.

into a likelihood graph for automatic computation of likelihood values and like-
lihood gradients. PRIMULA-3 also provides an alternative method that directly
computes gradients from the syntactic model representation. The two methods
provide different space/time tradeoff characteristics, with the likelihood graph
requiring more space, but offering time advantages when the gradient descent
requires many iterations, and can benefit from a higher degree of model compi-
lation before learning. With parameter learning, all numerical model parameters
can be learned based on a maximum likelihood objective. As a different applica-
tion of the same underlying optimization routines, one can define numerical node
attributes or numerical relations as model parameters. Optimizing the likelihood
function for these parameters amounts to learning latent (node/edge) represen-
tations. The PRIMULA distribution contains as an application of this approach
a multi-factor clustering (or multi-level community detection) of geographic re-
gions in Switzerland based on their plant distribution patterns.

In the information diffusion example of Figure [2] all edges are associated
with a probability of information propagation along that edge. Figure [2| shows
the result of learning these parameters from a set of sampled diffusion processes.

The PRIMULA distribution. PRIMULA-3 is implemented in JAVA and available
at https://github.com/manfred-jaeger-aalborg/primula3. Both the source
code and a platform independent runnable .jar file are provided. The GNN inte-
gration is currently only tested on Linux and MacOS platforms. The distribution
also contains four tutorial examples demonstrating applications in genetic mod-
eling, information diffusion, community detection, and environmental modeling
and decision support. The first three of these examples are pure RBN models,
whereas the last includes a GNN component. A video demonstration is available
at https://www.youtube.com/watch?v=6DcWcX-_vAO.

https://github.com/manfred-jaeger-aalborg/primula3
https://www.youtube.com/watch?v=6DcWcX-_vA0

Primula v.3 5

3 Related tools

Other systems that combine neural networks with logic-symbolic knowledge rep-
resentation are DeepProbLog E| [3] and NeurASPlﬂ [5]. However, these systems
differ substantially in terms of the underlying logic-symbolic representations and
the way neural components are integrated. The logic element of DeepProbLog
and NeurASP is based on logic programming, which, on the one hand, limits
expressivity to simple rules, but on the other hand enables via the application of
least fixed point or stable model semantics, the modeling of transitive closures
of relations, which is outside the scope of PRIMULA-3. The logic of PRIMULA-3
is a generalization of full first-order logic, which allows ’deep’ nesting of logic
constructs, enabling, among other things, the direct encoding of GNNs in the
underlying RBN language. Regarding neural integration, the underlying phi-
losophy in the logic programming-oriented tools is that of a division of labor:
the neural components handle low-level tasks related to perception, whereas the
symbolic parts handle high-level reasoning. PRIMULA-3 is not based on such an
a priori distinction between 'neural’ and ’logical’ reasoning and their associated
relations. Compared to the alternatives, PRIMULA-3 supports a richer class of
probabilistic queries, including conditioning on arbitrary observations (including
negative facts) and MAP inference.

Acknowledgment. This research has been partially funded by the Villum Inves-
tigator Grant S40S (37819) from Villum Foundation.

References

1. Jaeger, M.: Relational Bayesian networks. In: Proceedings of UAI (1997)

2. Jaeger, M.: Parameter learning for relational Bayesian networks. In: Proceedings of
the 24th International Conference on Machine Learning (ICML) (2007)

3. Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., De Raedt, L.: Deep-
problog: Neural probabilistic logic programming. Advances in Neural Information
Processing Systems 31, 3749-3759 (2018)

4. Pojer, R., Passerini, A., Jaeger, M.: Generalized reasoning with graph neural net-
works by relational bayesian network encodings. In: The Second Learning on Graphs
Conference. PMLR, vol. 231 (2023)

5. Yang, Z., Ishay, A., Lee, J.: Neurasp: embracing neural networks into answer set
programming. In: IJCAT (2021)

3 https://github.com/ML-KULeuven/deepproblog
* https://github.com/azreasoners/NeurASP

https://github.com/ML-KULeuven/deepproblog
https://github.com/azreasoners/NeurASP

	 for Probabilistic Modeling and Reasoning on Graph Data

