VisualTreeSearch: Understanding Web Agent
Test-time Scaling

Danqging Zhang, Yaoyao Qian, Shiying He, Yuanli Wang, Jingyi Ni, Junyu Cao
0 VisualTreeSearch-Demo), Demonstration Video

PathOnAlorg, Northeastern University, Boston University, The University of Texas
at Austin

Abstract. We present VisualTreeSearch, a fully-deployed system for
visualizing and understanding web agent test-time scaling. While test-
time search algorithms substantially improve web agent success rates,
they remain confined to research contexts with limited practical deploy-
ment. Our system bridges this gap with three key contributions: (1) a
production-ready solution with cloud-based architecture, (2) an efficient
API-based state reset mechanism that reduces state reset time from 50
to 2 seconds, and (3) an interactive web UI that transparently demon-
strates the agent’s decision-making process. VisualTreeSearch provides
an intuitive framework for both researchers and users to understand tree
search execution in web agents.

Keywords: Web Agents - Tree Search - Vision-Language Models - Test-
time Scaling - Interactive Visualization.

1 Introduction

Recent years have witnessed significant advancements in autonomous web agents
powered by LLMs and VLMs for browser automation, enhancing human-computer
interaction by executing complex tasks from natural language instructions [10].

VLM-based Web/GUI Agent Architectures. Current VLM-based frameworks
typically implement a two-phase sequential approach: action generation followed
by action grounding. The action generation phase employs either VLM-based
policies with carefully engineered prompts [8] or specialized purpose-built models
[1U6]. For action grounding, web agents utilize website structural features [8],
whereas GUI agents primarily rely on visual grounding techniques [3/6].

VLM-based Agent Test-time Scaling. Since late 2024, researchers have ex-
plored test-time scaling methodologies using search algorithms (BFS, DFS, MCTS)
[2I7] and reinforcement learning [4J5] to improve web agent performance. Despite
promising results, test-time scaling approaches remain confined to research con-
texts with limited practical deployment.

VisualTreeSearch addresses several critical gaps in existing research by pro-
viding an end-to-end solution for understanding web agent test-time scaling:

1. Fully-deployed web agent tree search system: Our production-ready solution
includes AWS ECS services for backend and browser operations, a Vercel-
hosted frontend, and CI/CD pipeline integration. The source code is fully
open-sourced.

https://github.com/PathOnAI/VisualTreeSearch-Demo
https://www.youtube.com/watch?v=FCvxPH21Iwc

2 Zhang et al.

2. Fast state reset mechanism: We solve the critical problem of persistent web-
site states during backtracking through an API-based account reset method
that reduces reset time from 50 to 2 seconds, enabling accurate trajectory
evaluation during tree search.

3. Interactive Visualization Interface: Our web UI demonstrates agent decision-
making through D3.js tree visualizations, live browser interfaces, and execu-
tion logs.

This allows non-technical users to understand test-time scaling, while en-
abling researchers to deploy their web agents for demonstration purposes.

2 Demonstration

2.1 High level overview

Frontend Backend

i1 User Configuration Panel} : 1. Instructiop i f ., Tree Search Process _......”_’ H
2 (Task, Algorithm, Parameters) Pl 557 (BFS, DFS, LATS Algorithms) : FastAPI
! @=== Browser Interface
d (iframe with Live Browser URL) } *
H . D3.js Tree Visualization
(Nodes, Trajectories, Actions)
j (Remote Browser Environment)

. Message Log ;
H @ c i %4 All messagess = New Session Auto authentication | §
: H Tt ST Per Trajectory when cookies expire/ i

(reset_account)

™ WebSocket Handler E Auto authi
i request MariaDB i
(User Records) :

Browser Serwce

Browser Serwce

(Remote Browser Environment)

2. Live Browser URL

Fig. 1: System Design: High Level Overview.

Figure [I] provides a high-level overview of our implemented system. Our web
agent tree search visualization system consists of four main components working
together:

— State Reset API: A specialized service provides an efficient state reset
mechanism. It enables web agents to restore a clean initial state before start-
ing each new trajectory. This prevents evaluation inconsistencies caused by
persistent website state changes.

— Backend: A backend service that implements various tree search algorithms
and manages real-time WebSocket communication with the frontend to trans-
mit agent execution information.

— Browser Service: A remote browser service that provides isolated browser
sessions where web agents can execute actions, while also managing auto-
matic authentication using Playwright.

— Frontend: Provides the user interface for configuring search tasks, visualiz-
ing tree search trajectories, and observing agent behavior through embedded
browser views and execution logs.

VisualTreeSearch 3

2.2 API-based state reset

When web agents interact with Uls, they modify states that persist in the web-
site’s database, causing evaluation inconsistencies across trajectories. This state
persistence creates scoring inaccuracies, as one trajectory may incorrectly in-
clude website state changes from previous trajectories. Our solution implements
an API-based state reset mechanism with a FastAPI server hosted on AWS
EC2 that manages the website database to control website state (MariaDB for
our demo), reducing reset time from 50 seconds with previous docker container
restarts to just 2 seconds.

2.3 Backend

In our backend, we implement several tree search algorithms like BFS, DFS
and MCTS variants like LATS[9] as examples. Unlike previous Vercel-based web
agent demo [§], our system implements AWS ECS container-based services to
overcome Vercel’s serverless execution limitations. This architecture supports
persistent WebSocket communication and accommodates extended processing
times, both of which are essential for comprehensive tree search operations.

2.4 Browser Service

For browser integration, our primary solution employs BrowserBase for remote
browser sessions, utilizing session identifiers to maintain connection continuity
and render live browser interactions in the frontend interface. However, we en-
countered CAPTCHA challenges with our BrowserBase hobby account during
automated authentication. To address this limitation, we deployed a custom
Docker-based browser service on Amazon ECS running Chromium.

2.5 Frontend

The VisualTreeSearch frontend visualization system enhances web agent research
by providing an interpretable monitoring environment. As shown in Figure[2] the
system comprises three main components for observing agent decision-making.
The main visualization area features: (1) Browser Interface: Real-time web en-
vironment view through BrowserBase integration. (2) Tree Visualization: Hier-
archical D3.js visualization highlighting the active trajectory, with interactive
nodes providing action descriptions and execution outcomes. (3) Execution Log
(Message Log): Chronological communication log documenting action genera-
tion requests, grounding processes, execution commands, and status updates,
providing comprehensive insight into the agent’s operational sequence.

3 Conclusion

This paper introduces VisualTreeSearch, a system that deploys web agent test-
time scaling techniques in a production environment with a transparent, inter-
active visualization interface. To the best of our knowledge, VisualTreeSearch is

4

Zhang et al.

VisualTreeSearch < VisualTreeSearch

2, ‘running shoes) @ ciccrare

£ 7@

click('372)

£ Message Log (LATS)

Node Simulated

Trajectory Update

Fig. 2: Screenshot of the frontend Ul showing browser interface, tree visualization
and execution log.

the first such framework for web agents. By enabling efficient tree search execu-
tion in real-world web environments, VisualTreeSearch helps democratize these
advanced techniques for broader use. The open-source implementation serves as
both a demonstration tool and a foundation for future research on agent decision-
making optimization. As web agents advance, robust visualization frameworks
will be essential for developing more reliable autonomous systems.

References

1.
2.

10.

Claude computer use model, 2024.

Jing Yu Koh et al. Tree search for language model agents. arXiv preprint
arXiv:2407.01476, 2024.

Yadong Lu et al. Omniparser for pure vision based gui agent. arXiv preprint
arXiv:2408.00203, 2024.

Zhengxi Lu et al. Ui-rl: Enhancing action prediction of gui agents by reinforcement
learning. arXiv preprint arXiv:2503.21620, 2025.

Pranav Putta et al. Agent q: Advanced reasoning and learning for autonomous ai
agents. arXiw preprint arXiv:2408.07199, 2024.

Yujia Qin et al. Ui-tars: Pioneering automated gui interaction with native agents.
arXiw preprint arXiw:2501.12326, 2025.

Xiao Yu et al. Exact: Teaching ai agents to explore with reflective-mcts and ex-
ploratory learning. arXiv preprint arXiv:2410.02052, 2024.

Dangqing Zhang et al. Litewebagent: The open-source suite for vim-based web-agent
applications. arXiv preprint arXiv:2503.02950, 2025.

Andy Zhou et al. Language agent tree search unifies reasoning, acting, and planning
in language models. In Forty-first International Conference on Machine Learning.
Shuyan Zhou et al. Webarena: A realistic web environment for building autonomous
agents. arXiw preprint arXiv:2307.13854, 2023.

	VisualTreeSearch: Understanding Web Agent Test-time Scaling

