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Abstract. We introduce KANITE, a framework leveraging Kolmogorov–
Arnold Networks (KANs) for Individual Treatment Effect (ITE) estima-
tion under multiple treatments setting in causal inference. By utilizing
KAN’s unique abilities to learn univariate activation functions as op-
posed to learning linear weights by Multi-Layer Perceptrons (MLPs), we
improve the estimates of ITEs. The KANITE framework comprises two
key architectures: 1.Integral Probability Metric (IPM) architecture: This
employs an IPM loss in a specialized manner to effectively align towards
ITE estimation across multiple treatments. 2. Entropy Balancing (EB)
architecture: This uses weights for samples that are learned by optimizing
entropy subject to balancing the covariates across treatment groups. Ex-
tensive evaluations on benchmark datasets demonstrate that KANITE
outperforms state-of-the-art algorithms in both PEHE (Precision in the
Estimation of Heterogeneous Effects) and ATE (Average Treatment
Effect) error metrics. Our experiments highlight the advantages of KAN-
ITE in achieving improved causal estimates, emphasizing the potential
of KANs to advance causal inference methodologies across diverse appli-
cation areas.

Keywords: Causal Inference · Treatment Effect Estimation · Kolmogorov–
Arnold Networks.

1 Introduction

In causal inference, the estimation of Individual Treatment Effects (ITEs) is a
foundational problem, as it is crucial for understanding the impact of a treatment
on an individual user and personalizing treatments. In observational studies,
the estimation of ITEs becomes particularly challenging due to the presence
of confounders—variables that affect both the treatment and the outcome. For
example, imagine a store that offers a discount on a high-end coffee machine
only during periods of high customer volume, such as busy weekend hours. An
analyst notices that customers who receive the discount are less likely to complete
their purchase and concludes that the discount is ineffective. However, a hidden
confounder—queue length—may be influencing both the likelihood of receiving
⋆ This work was carried out during an internship at Sony Research India.



2 Eshan Mehendale et al.

the discount (since it is only offered during high-traffic times) and the decision
to abandon the purchase (due to long wait times). In this case, queue length
distorts the observed relationship between the discount and purchasing behavior.
Consequently, it is essential to mitigate the bias introduced by such confounders
in order to clearly isolate and estimate the treatment’s effect on the outcome.
ITE estimation is widely recognized to have applications across a broad range
of domains, including, but not limited to, healthcare [26], education [10], e-
commerce [6], entertainment [32] and social sciences [13]. Given its importance,
a wide range of algorithms has been developed to address this challenge, each
adopting different modeling strategies and assumptions.

These approaches span from classical methods like propensity score matching
to more recent advances in representation learning and deep neural networks.
However, many of these approaches face trade-offs in flexibility, interpretability,
and generalization. This motivates the need for more expressive and structured
models such as the Kolmogorov–Arnold Network (KAN), which offers a promis-
ing framework for capturing complex causal relationships with greater clarity
and adaptability.

In the year 2024, Kolmogorov-Arnold Networks (KANs) have been introduced
as a promising alternative to Multi Layer Perceptrons (MLPs), also known as
fully connected feedforward neural networks, offering the advantage of improved
accuracy, interpretability and reduced model complexity [18]. Although both
MLPs and KANs feature fully connected structures, the key difference lies in
their learning mechanisms. KANs learn univariate activation functions at each
edge of network, whereas MLPs learn linear weights along all edges. Further,
KANs are inspired by the Kolmogorov-Arnold representation theorem [17], [4]
whereas MLPs are motivated by the universal approximation theorem [11].
Shortly after their inception, KANs were rapidly integrated into various al-
gorithmic frameworks, where they replaced MLPs and demonstrated notable
performance improvements. To that end, we direct the reader to the following
references for a deeper understanding of KAN applications: transformer archi-
tectures [30], federated learning [34], online reinforcement learning [16], autoen-
coders [19], convolutional neural networks [2], and graph neural networks [15].

Although KANs have been applied in various domains, as mentioned above,
their potential in the context of ITE estimation remains unexplored. To the best
of our knowledge, this is the first study to investigate and propose algorithms
that leverage KANs for ITE estimation in the multiple treatment setting. Given
that mitigating confounding bias is critical for accurate ITE estimation, we aim
to enhance this by utilizing KANs to better capture complex treatment and
outcome relationships. Furthermore, since confounding bias becomes even more
profound in the case of multiple treatments, we address this challenge by com-
bining KANs with a loss function formulated using either Integral Probability
Metrics (IPM) or the Entropy Balancing (EB) method. Additionally, we inves-
tigate the effect of KAN parameters such as grid size and spline degree on ITE
estimation performance.

In the following we outline the salient contribution of our work.
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– To the best of our knowledge, it is the first work that studies and incorporates
KANs into the ITE estimation including the multiple treatment setting.

– We propose the KANITE framework for ITE estimation, which employs
shared representation learning with representation loss formulated using ei-
ther the IPM or EB method. Our KANITE framework comprises three dis-
tinct algorithms, inspired by [25], leveraging KANs as its fundamental build-
ing blocks.

– To achieve improved covariate balancing across all treatments, we extend
the entropy balancing method [33] (originally developed for binary treatment
settings) using Lagrangian duality theory to handle multiple treatments, and
propose an algorithm that integrates both KANs and entropy balancing loss.

– Through extensive numerical evaluations, we demonstrate the superior per-
formance of KANITE against baselines on various binary and multiple treat-
ments benchmark datasets such as IHDP, NEWS-2/4/8/16, ACIC-16 and
Twins.

– We also provide a detailed analysis of the impact of various KAN parameters
such as grid size and the degree of splines used in the univariate activation
functions for ITE estimates.

We structure the rest of the paper as follows. The next section reviews re-
lated work and highlights key differences. Section 3 provides the technical details
underlying the problem formulation. Section 4 presents our proposed models and
their technicalities in detail. Section 5 covers the baselines and compares them
with KANITE on the PEHE and ATE error metrics. Finally, Section 6 concludes
the paper and suggests future research directions.

2 Literature survey

This section briefly reviews relevant literature and contrasts it with our con-
tributions. To the best of our knowledge, this is the first work to explore the
utilization of KANs in ITE estimation. Therefore, we review the literature on
ITE estimation and KANs separately.

ITE estimation has been extensively studied in the literature; thus, we restrict
our discussion to a few notable works. In [25], [24], and [31], the authors address
an ITE estimation setup similar to ours and propose efficient algorithms based
on MLPs—hence, these works have been chosen as baselines in our work. Addi-
tionally, in [8] and [28], the authors consider ITE estimation in a network setting,
where users are assumed to be connected through a network. They propose algo-
rithms that leverage additional user network information to obtain improved ITE
estimates. A few other works [9], [14], [20] and [27] incorporate auxiliary treat-
ment information rather than treating treatments categorically, demonstrating
methods to achieve improved ITE estimates. Moreover, leveraging treatment
information inherently endows algorithms with zero-shot capabilities, enabling
them to predict the outcomes for novel treatments that were not encountered
during training. It is important to note that these approaches—network-based
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ITE estimation and the use of auxiliary treatment information—are distinct
from the setup considered in this study.

In [18], the authors introduce KANs and demonstrate their advantages over
MLPs in terms of accuracy, model complexity, and interpretability—both the-
oretically and empirically. Since then, KANs have been incorporated in various
areas of research, consistently demonstrating their potential benefits. In [15], the
authors propose two methods to integrate KAN layers into graph convolutional
networks and empirically evaluate these architectures using a semi-supervised
graph learning task using the Cora dataset. In [30], a KAN-based transformer
architecture is proposed that employs rational functions over splines in the KAN
layers to enhance model expressiveness and performance. Meanwhile, [34] in-
troduces a KAN-based federated learning approach that outperforms its MLP
counterparts on classification tasks. In [16] the use of KANs in the proximal
policy optimization algorithm is explored, demonstrating benefits in terms of
model complexity. The authors in [19] investigate the efficiency of KANs for
data representation through autoencoders, while KAN-based convolutional neu-
ral networks are proposed and evaluated on the Fashion-MNIST dataset in [2],
showcasing advantages over their MLP counterparts. Additionally, KANs have
been employed in physics-informed deep learning frameworks to improve the
modeling of physical systems. In [29], the authors introduce Kolmogorov–Arnold-
Informed Neural Networks (KINN), which leverage KANs in place of traditional
MLPs to solve both forward and inverse problems governed by differential equa-
tions. In a separate line of work [21], the authors propose Physics-Informed
Kolmogorov–Arnold Networks (PIKAN), which incorporate Efficient-KAN and
WAV-KAN architectures and demonstrate their superior performance compared
to conventional physics-informed neural networks based on MLPs.

3 Problem Formulation

In this section, we present the mathematical formulation of the problem consid-
ered in this work. We adopt the Rubin-Neyman [22] potential outcomes frame-
work to introduce the problem. For clarity, we define the following notation. Let
N and K denote the number of users (samples) and treatments respectively.
We use xi and ti to denote the covariates and assigned treatment of user-i re-
spectively. Furthermore, Let Y i

t denote the potential outcome for user-i when
treatment-t is given. For brevity, when the context is clear, we may omit the user
index in the notation. We assume that the following standard causal inference
assumptions from [22] hold.

Assumption 1 (Unconfoundedness) Under this assumption, the potential
outcomes, Yt’s, are independent of the treatment assignment, t, conditioned on
the user covariates, x. Mathematically, stated as:

(Y1, Y2, · · · , YK) ⊥ t | x.

In other words, this assumption ensures that all confounders, covariates that are
affecting both Yt and t, are observed and accounted in x.
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Assumption 2 (Positivity) It ensures that each user has a positive probability
of receiving any of the available treatments. Mathematically it is given as:

P(ti = t) > 0 ∀1 ≤ i ≤ N, 1 ≤ t ≤ K.

Assumption 3 (Stable Unit Treatment Value Assumption (SUTVA))
It implies that the potential outcomes of a user are solely dependent on their re-
ceived treatments and independent of the assigned treatments of other users.

With the help of the above, let us define the ITE and ATE of treatment-a
with respect to b for a user with covariates, xi, denoted by τa,b(xi) and ATEa,b

respectively, as:

τa,b(xi) = E
[
Y i
a − Y i

b | x = xi

]
(1)

ATEa,b = E [Ya − Yb] . (2)

We now introduce the problem as follows. Given N samples {xi, ti, Y
i
ti}

N
i=1, our

goal is to estimate ITEs of all users and ATEs across all pairs of treatments. We
use the existing error metrics [28] for this problem, such as ϵPEHE and ϵATE, to
quantify the performance of a model, as defined below:

ϵPEHE =
1(
K
2

) K∑
a=1

a−1∑
b=1

[
1

N

N∑
i=1

(τ̂a,b(xi)− τa,b(xi))
2

]
(3)

ϵATE =
1(
K
2

) K∑
a=1

a−1∑
b=1

[∣∣∣∣∣ 1N
N∑
i=1

τ̂a,b(xi)−
1

N

N∑
i=1

τa,b(xi)

∣∣∣∣∣
]
, (4)

where τ̂ (·) represents the estimated ITEs produced by the model.

4 Proposed Model

In this section, we present our proposed framework KANITE (Kolmogorov-
Arnold Networks for Individual Treatment Effect estimation), that leverages
KANs for causal inference, specifically for estimating ITEs. KANITE utilizes
the functional decomposition properties of KANs, which decompose complex
functions into sum of univariate functions. This decomposition enables KAN-
ITE to capture the causal effect of a treatment while accounting for confounding
variables that influence both treatment assignment and outcomes. KANITE’s
ability to approximate any continuous function allows it to adapt to diverse
data distributions, establishing it as a flexible and effective framework for causal
inference. It operates under the standard assumptions of causal inference stated
in Assumption 1, 2 and 3. We provide a brief overview of KAN preliminaries
below, which is a crucial part of the KANITE framework.
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Fig. 1: KAN: Kolmogorov-Arnold Networks [18]

4.1 KAN Preliminaries

KANs have recently emerged as a significant advancement in a wide range of
tasks that rely on predictive algorithms at their core. While their effectiveness in
supervised learning has been well-documented, to the best of our knowledge, no
work has yet explored their application to causal inference. The foundation of
KANs lies in the Kolmogorov-Arnold Representation Theorem [5], which states
that any smooth function f : [0, 1]n → R can be expressed as:

f(x1, . . . , xn) =

2n+1∑
q=1

Φq

(
n∑

p=1

ϕq,p(xp)

)
, (5)

where ϕq,p : [0, 1] → R and Φq : R → R. This formulation demonstrates that
any smooth multivariate function can be fundamentally decomposed into a sum
of univariate functions, making the composition purely additive. This theorem
serves as the inspiration for the KAN architecture, originally proposed for su-
pervised learning tasks. In such tasks, the goal is to model a function f based
on input-output pairs {(xi, yi)}, such that yi ≈ f(xi).

The KAN architecture as illustrated in Figure 1 is designed such that all
learnable functions are univariate, with each parameterized using basis func-
tions, such as a B-spline, to enhance the model’s flexibility. Liu et al. [18] in-
troduced the KANs, initially proposing a two-layer model where learnable ac-
tivation functions are placed on the edges, with aggregation achieved through
summation at the nodes. However, this simple design had limitations in approxi-
mating complex functions. To address these shortcomings, the authors extended
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the approach within the same work by introducing multiple layers and increas-
ing both the breadth and depth of the network, thereby enhancing its ability to
approximate more complex functions. Mathematically, a typical lth KAN layer,
suitable for deeper architectures, with nl inputs (xl

1, x
l
2, · · · , xl

nl
) and nl+1 out-

puts (xl+1
1 , xl+1

2 , · · · , xl+1
nl+1

) is defined as follows:
xl+1
1

xl+1
2
...

xl+1
nl+1

 =


ϕ1,1 ϕ1,2 · · · ϕ1,nl

ϕ2,1 ϕ2,2 · · · ϕ2,nl

...
...

...
...

ϕnl+1,1 ϕnl+1,2 · · · ϕnl+1,nl

 ·


xl
1

xl
2
...

xl
nl

 , (6)

where each ϕq,p ∀ p ∈ {1, 2, . . . , nl} and q ∈ {1, 2, . . . , nl+1} is a trainable uni-
variate function with adjustable parameters. This structure allows the original
two-layer Kolmogorov-Arnold representation, given in (5), to be extended into a
more robust, deeper architecture capable of handling increasingly complex tasks.
With the help of the above, we now proceed to explain KANITE framework in
detail in the following subsection.

Algorithm 1 KANITE Training

Input: Observational data: D = {
(
xi, ti, Y

i
ti

)
}ni=1 ∼ Dtrain,Dval, and hyper parame-

ters α ≥ 0 and β ≥ 0.
Output: An outcome prediction model: f(Ψ,Π), where Π = (Π1, Π2, · · · , ΠK)

1: Initialize parameters: Ψ : KAN, Πi : KAN ∀i ∈ {1, 2, · · · ,K}
2: while not converged do
3: Sample a mini-batch

B = {(xio , Y
io
tio

)}Bo=1 ⊂ Dtrain

4: Mini-batch approximation of Regression Loss

L1 = 1
B

B∑
o=1

(Ŷtio
− Ytio

)2

5: Mini-batch approximation of the Representation Loss

L2 = 1

(K2 )

K∑
a=1

a−1∑
b=1

RepresentationLoss (Ψt=a, Ψt=b)

6: Update Functions:
f(Ψ,Π)← f(Ψ,Π)− λ.∇(f(Ψ,Π))

7: Minimize α · L1 + β · L2 using SGD
8: end while

4.2 KANITE Architecture

Our proposed KANITE framework addresses the task of ITE estimation for
multiple treatments by utilizing KANs as the backbone of its architecture. Fig-
ure 2 illustrates the details of the KANITE framework, explained through the
following three key steps.
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A. Balanced Representation of Covariates: First, KANITE aims to learn a bal-
anced covariate representation by replacing the conventional MLPs with the
KANs, shown as Representation Network in Figure 2, enabling the model
to learn latent representations of covariates balanced across all treatment
groups.

B. Treatment Head Networks: It consists of dedicated treatment head networks,
where each treatment is modeled through a separate representation using
KANs, allowing greater flexibility to capture the underlying distribution of
treatment outcomes.

C. Representation loss: Three different representation losses have been consid-
ered in the proposed set of algorithms under KANITE. First and second
losses are Maximum Mean Discrepancy (MMD) and Wasserstein, based on
the Integral Probability Metric (IPM), and the third one utilizes Entropy
Balancing (EB) method [33] to learn weights that minimize the Jensen-
Shannon divergence, asymptotically, between all pairs of treatment groups.
These three losses result into three different algorithms named KANITE-
MMD, KANITE-Wass, KANITE-EB for ITE estimation.

Ψ(x)

Covariates

x1

xn

Representation Network Treatment Head Networks

Π1

ΠK

Learnable activation
function on edges

L1(Ytobs , Ŷtobs)

L2(Ψt=a, Ψt=b)

Loss Functions

Fig. 2: KANITE Architecture

This approach enables us to utilize the KANs for the ITE estimation task
in an effective manner while simultaneously learning covariate and treatment
representations that improve upon state-of-the-art (SOTA) ITE estimation al-
gorithms. A detailed explanation of the KANITE framework is as follows.
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4.2.1 KANs for learning balanced covariate representation In ear-
lier ITE estimation literature, representation learning for covariates has demon-
strated a significant improvement [25]. In the KANITE architecture, we utilize a
KAN layer setup for achieving a balanced representation that caters to multiple
treatment scenarios. KAN layers, as defined in Equation 6, enable the architec-
ture to learn low-dimensional symbolic representations of covariates, which help
separate treatment-related signals from confounding influences, thereby miti-
gating confounding bias [25]. To learn representations for covariates, x ∈ X ,
we employ KAN layers setup with learnable activation functions consist of B-
Splines that learns a balanced representation function, Ψ : X → Rd, in a lower-
dimensional latent space.

In KANITE, a deep representation network is constructed by stacking mul-
tiple KAN layers one after the other to form a hierarchical model for repre-
sentation learning. Let L denote the total number of KAN layers. For each
layer l ∈ {0, 1, · · · , L − 1}, let nl represent the total number of neurons in
layer l. Let Ψ l(x) =

(
Ψ l
1(x), Ψ

l
2(x), · · · , Ψ l

nl
(x)
)

denote the representation af-
ter the (l − 1)st layer, with the input defined as Ψ0(x) = x. In contrast to
standard MLPs, KANs do not learn independent weight or bias parameters; in-
stead, each layer aggregates the outputs of learnable univariate activation func-
tions. The transformation at layer l ∈ {0, 1, ..., L − 1}, denoted as Ψ l+1(x) =(
Ψ l+1
1 (x), Ψ l+1

2 (x), · · · , Ψ l+1
nl+1

(x)
)
, is defined in a compositional form analogous

to the Kolmogorov–Arnold representation as follows:

Ψ l+1
i (x) =

nl∑
j=1

ϕl
i,j

(
Ψ l
j(x)

)
, ∀i ∈ {1, 2, · · · , nl+1}. (7)

Using the recursion, we can write the above as:

Ψ l+1(x) =
(
Ψ l ◦ Ψ l−1 ◦ · · · ◦ Ψ1 ◦ Ψ0

)
x. (8)

This recursive formulation enables the deeper architecture to capture complex,
non-linear interactions among covariates, progressively refining the balanced rep-
resentation and further mitigating confounding bias for improved treatment ef-
fect estimation.

4.2.2 Treatment Head Networks The KANITE framework leverages a bal-
anced covariate representation learned from the representation network to drive
the treatment head networks for enhanced treatment-specific ITE estimation. As
depicted in the KANITE architecture, we deploy a distinct treatment head net-
work for each unique treatment category. Deep KAN layers, given in Equation 8,
are trained to learn a symbolic representation function that is specific to treat-
ments. We denote these treatment head networks by Πt for t ∈ {1, 2, 3, · · · ,K},
where K is the total number of unique treatments. Consider a user with covari-
ates x and the assigned treatment as t, the treatment head network Πt with M
number of layers is defined as:

ΠM+1
t (x) =

(
ΠM

t ◦ΠM−1
t ◦ · · · ◦Π1

t ◦Π0
t

)
Ψ(x), (9)



10 Eshan Mehendale et al.

where Ψ(x) is the balanced representation of covariates learned from the rep-
resentation network. Furthermore, we leverage network sparsification in KANs
to reduce the impact of redundant activation functions, which acts as a form of
regularization and improves ITE estimates.

4.2.3 Representation Loss As mentioned in the previous subsections, learn-
ing a balanced covariates representation across all treatments plays a crucial
role in KANITE. Hence, we employ three variations of the representation loss
in KANITE based on IPM and Entropy Balancing, resulting into three different
algorithms, in addition to the standard Mean Square Error (MSE) loss on the
observed factual data. Note that, MSE loss is defined as: L1 = 1

n

∑n
i=1(Ŷi,t−Yi)

2.
In the below we provide more details of the representation loss variants.

1. IPM based representation loss:
IPMs have shown promising results in achieving balanced representations for
ITE estimation, as demonstrated in [25] and [12]. In KANITE, we leverage
two popular IPM-based loss functions—the Maximum Mean Discrepancy
(MMD) and the Wasserstein loss, to effectively capture distributional dif-
ferences between treatment subgroups. MMD is particularly useful because
it compares higher-order moments between distributions, minimizing subtle
discrepancies in the feature space, while the Wasserstein metric provides a
robust measure of distance even when distributions have limited overlap. For
our multiple-treatment setup, we use the average pairwise IPM loss from [28]
to learn a balanced representation across all treatment group combinations.
The mathematical formulation is provided below:

L2 =
1(
K
2

) K−1∑
a=0

a−1∑
b=0

IPM ({Ψ}t=a, {Ψ}t=b) , (10)

where IPM() can be either MMD or Wasserstein, leading to the respective
algorithms KANITE-MMD and KANITE-Wass.

2. Entropy Balancing (EB) based representation loss:

In [33], a doubly robust representation learning approach is proposed for
ITE estimation in the binary treatment setting. It uses Entropy Balancing
(EB) to learn weights that, in the limit, minimize the Jensen-Shannon di-
vergence between treated and control covariates distributions. In this work,
we extend this methodology to the multiple-treatment setting to balance
covariate distributions across all treatment groups, as given below.

Let m be the number of covariates. Let t and s denote the indicies of treat-
ments i.e., t, s ∈ {1, 2, · · · ,K}. Entropy balancing optimization problem for
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the multiple-treatment setting to balance covariates distributions is given as:

wEB = argmax
w

{
−

N∑
i=1

wi logwi

}
,

s.t.


(i)
∑
Ti=t

wi Ψ(xji) =
∑

Ti=s

wi Ψ(xji),∀ j ∈ {1, 2, . . . ,m} and t < s,

(ii)
∑
Ti=t

wi = 1,∀ t ∈ {1, 2, · · · ,K},∀wi > 0.

(11)

Note that, constraint (i) ensures that the weighted sum of the shared repre-
sentations of the covariates is balanced across all pairs of treatment combi-
nations. Then, the representation loss in this case is given as

L2 =

N∑
i=1

wEB
i (Ψ) log(wEB

i (Ψ)). (12)

We solve the optimization problem in (11) by formulating its dual problem
using Lagrangian duality theory [3]. To that end, let us define the following:
for t < s, λt,s = [λt,s,1, λt,s,2, . . . , λt,s,m] ∈ Rm and set λt,s = −λs,t for t >
s. By constructing the Lagrangian function and applying the Karush-Kuhn-
Tucker (KKT) conditions we get the following dual problem of (11):

min
λt,s

k∑
t=1

log

∑
Ti=t

exp

−
∑
s̸=t

⟨λt,s, Ψi⟩

 , (13)

where Ψi = [Ψi,1, Ψi,2, . . . , Ψi,m] ∈ Rm. Using the above dual formulation, we
now provide a closed-form solution for equation (11). Suppose Ti = t; then,
the weight for sample-i, wi, is given by:

wi =
exp

(
−
∑

s̸=t⟨λt,s, Ψi⟩
)

∑
Ti=t exp

(
−
∑

s̸=t⟨λt,s, Ψi⟩
) . (14)

This formulation provides a principled approach to deriving weights using the
EB method that, in the limit, minimize the JSD. We refer to the algorithm
that employs the EB-based representation loss as KANITE-EB.

Note that the final loss function of the KANITE framework is a weighted sum
of the standard MSE and the chosen representation loss (MMD, Wasserstein, or
EB-based), as shown below.

L = α · L1 + β · L2 for someα, β > 0.
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5 Experiments

In this section, we present a detailed numerical analysis of KANITE’s per-
formance on several standard benchmark datasets —IHDP [25], NEWS [24],
TWINS [1], and ACIC-16 [7] —compared to baselines. We first evaluate KAN-
ITE against baselines using the metrics ϵPEHE and ϵATE, as defined in Equa-
tions (3) and (4). Next, we examine its convergence and parameter efficiency
relative to the baselines. Finally, we analyze the impact of hyperparameters,
such as grid size and spline degree in activation functions of KAN layers, on ITE
estimation.

5.1 Baselines

We compare KANITE with various baseline architectures designed for ITE
estimation in both binary and multiple-treatment settings. For the multiple-
treatment evaluation, we use the NEWS-4, NEWS-8, and NEWS-16 semi-synthetic
datasets from [24], while for binary treatment setting, we consider the IHDP,
TWINS, ACIC-16, and NEWS-2 datasets. The models we benchmark against in-
clude TarNet, CFRNet-Wass, and CFRNet-MMD [25] which utilize IPM as the
representation loss. We also introduce a baseline called CFRNet-EB, which uses
the Entropy Balancing loss, as given in Equation (12), in place of IPM within the
CFRNet architecture. For a fair comparison in the multiple-treatment setting,
we also compare KANITE with Perfect Match [24]. Additionally, to benchmark
against generative counterfactual predictive models, we evaluate GANITE [31].
Since KANITE operates in both binary and multiple treatment scenarios, we
appropriately modify baselines developed for binary treatment setting, such as
TarNet, CFRNet-Wass, CFRNet-MMD and CFRNet-EB to ensure a fair com-
parison across both treatment setups.

Table 1: Performance comparison of KANITE vs baselines on ϵPEHE metric across
various binary treatment setting datasets

Method/Dataset IHDP NEWS-2 TWINS ACIC-16
TarNet 2.33 ± 2.71 23.90 ± 8.75 0.32 ± 0.00 2.41 ± 0.91
CFRNet-Wass 1.50 ± 1.76 23.85 ± 6.24 0.32 ± 0.00 2.58 ± 1.05
CFRNet-MMD 1.50 ± 1.73 23.14 ± 7.10 0.32 ± 0.00 2.42 ± 0.88
CFRNET-EB 1.22 ± 1.32 21.25 ± 5.33 0.43 ± 0.20 2.89 ± 1.44
PerfectMatch 1.56 ± 1.71 23.18 ± 8.13 0.32 ± 0.00 2.48 ± 0.89
GANITE 7.91 ± 7.47 23.22 ± 8.38 0.35 ± 0.07 5.24 ± 1.38
KANITE-Wass 1.08 ± 1.39 20.78 ± 3.59 0.32 ± 0.00 1.58 ± 1.09
KANITE-MMD 1.08 ± 1.39 20.78 ± 3.61 0.32 ± 0.00 1.58 ± 1.09
KANITE-EB 1.08 ± 1.39 20.32 ± 2.82 0.32 ± 0.00 1.58 ± 1.09



Kolmogorov–Arnold Networks for ITE estimation 13

Table 2: Performance comparison of KANITE vs baselines on ϵATE metric across
various binary treatment setting datasets

Method/Dataset IHDP NEWS-2 TWINS ACIC-16
TarNet 0.63 ± 0.83 11.85 ± 11.50 0.02 ± 0.01 0.30 ± 0.16
CFRNet-Wass 0.24 ± 0.25 11.61 ± 9.48 0.02 ± 0.01 0.54 ± 0.20
CFRNet-MMD 0.24 ± 0.24 10.85 ± 9.73 0.01 ± 0.01 0.37 ± 0.32
CFRNET-EB 0.29 ± 0.34 7.71 ± 7.46 0.22 ± 0.28 0.37 ± 0.19
PerfectMatch 0.25 ± 0.25 10.34 ± 10.64 0.03 ± 0.01 0.39 ± 0.29
GANITE 4.40 ± 1.33 11.28 ± 10.80 0.35 ± 0.07 3.61 ± 1.07
KANITE-Wass 0.15 ± 0.13 7.03 ± 5.43 0.01 ± 0.00 0.18 ± 0.13
KANITE-MMD 0.15 ± 0.13 7.02 ± 5.48 0.01 ± 0.00 0.19 ± 0.14
KANITE-EB 0.15 ± 0.13 6.38 ± 4.49 0.01 ± 0.00 0.18 ± 0.13

Table 3: Performance comparison of KANITE vs baselines on ϵPEHE metric across
various multiple treatment setting datasets

Method/Dataset NEWS-4 NEWS-8 NEWS-16
TarNet 24.09 ± 4.07 24.85 ± 6.73 25.06 ± 2.96
CFRNet-Wass 24.98 ± 4.57 22.70 ± 3.39 22.60 ± 1.75
CFRNet-MMD 24.05 ± 4.56 23.17 ± 3.32 22.81 ± 1.63
CFRNET-EB 21.71 ± 2.63 22.53 ± 3.13 22.33 ± 1.69
PerfectMatch 23.90 ± 4.60 23.41 ± 4.20 23.33 ± 1.68
GANITE 23.77 ± 4.10 24.10 ± 3.33 22.85 ± 1.62
KANITE-Wass 21.48 ± 2.27 22.48 ± 3.31 22.20 ± 1.57
KANITE-MMD 21.53 ± 2.31 22.58 ± 3.37 22.19 ± 1.57
KANITE-EB 21.52 ± 2.30 22.62 ± 3.38 22.20 ± 1.58

Table 4: Performance comparison of KANITE vs baselines on ϵATE metric across
various multiple treatment setting datasets

Method/Dataset NEWS-4 NEWS-8 NEWS-16
TarNet 11.87 ± 5.07 10.91 ± 3.49 12.47 ± 3.01
CFRNet-Wass 13.33 ± 5.56 9.08 ± 3.55 9.08 ± 1.96
CFRNet-MMD 11.43 ± 5.64 9.98 ± 3.37 9.09 ± 1.88
CFRNET-EB 8.26 ± 3.29 9.03 ± 3.10 9.08 ± 1.92
PerfectMatch 11.43 ± 5.71 9.62 ± 3.63 8.85 ± 1.99
GANITE 11.65 ± 5.03 11.74 ± 3.50 10.54 ± 1.77
KANITE-Wass 7.92 ± 2.97 8.91 ± 3.09 9.49 ± 1.84
KANITE-MMD 8.05 ± 2.95 9.24 ± 3.45 9.46 ± 1.84
KANITE-EB 8.03 ± 2.93 9.30 ± 3.48 9.47 ± 1.85
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Fig. 3: Comparison of model parameters and convergence across models
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Fig. 4: Affect of grid size and spline degree considered in KANITE on ITE

5.2 KANITE: Performance Assessment

We split the dataset into training, validation, and test sets in a 63:27:10 ratio.
The results in all tables are computed on the full dataset after model training.
We conducted 1000, 50, 10, and 10 iterations for the IHDP, NEWS, TWINS, and
ACIC-16 datasets, respectively, and report the mean and standard deviation of
these runs in the results tables. The best results in the tables are highlighted in
bold.

As mentioned earlier, the KANITE framework consists of three algorithms:
KANITE-MMD, KANITE-Wass, and KANITE-EB, almost at least one of which
outperforms all the baselines on both ϵPEHE and ϵATE metrics in both binary
and multiple treatment settings, as shown in Table 1, 2, 3, and 4. Note that
Tables 1 and 2 present the ϵPEHE and ϵATE metrics for all considered algorithms
in the binary treatment setting, respectively. Similarly, Tables 3 and 4 provide
the corresponding results for the multiple-treatment setting. To perform a com-
prehensive performance assessment of KANITE, we evaluate its convergence and
parameter efficiency compared to the baselines. Figure 3a compares the num-
ber of parameters in our proposed KANITE framework against all baselines.
Notably, KANITE outperforms all baselines on both ϵPEHE and ϵATE metrics
while reducing model parameters by 38% compared to the next best baseline.
Figure 3b shows that our proposed KANITE model, depicted in dotted line,
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converges faster than all baselines. Since all three KANITE variants exhibited
similar behavior in terms of parameter count and convergence, we present only
KANITE-MMD in Figure 3 to keep the figures uncluttered.

5.3 KANITE: Hyperparameters study

We now examine the impact of the B-Spline degree and grid size considered in
KAN layers on model performance. As grid size and spline degree are direct
proportional to the model complexity in terms of parameters we conduct the
hyperparameter optimization on them and use the best parameters in the re-
spective models. For example, Figure 4 shows the affect of grid size and spline
degree on the ITE estimates for IHDP dataset. From Figure 4, it can be observed
that grid size of 5 and spline degree of 32 achieve the best performance on this
iteration of the results.

6 Conclusion

In this study, we proposed KANITE, a state-of-the-art framework for ITE es-
timation that leverages shared representation learning using either IPM or En-
tropy Balancing. Unlike traditional MLP-based architectures, KANITE employs
KANs as its backbone, enabling it to learn more accurate causal effect estimates.
The framework introduces three algorithms—KANITE-MMD, KANITE-Wass,
and KANITE-EB—each utilizing a different IPM or Entropy Balancing-based
representation loss to ensure balanced covariate representations across treatment
groups. Additionally, we derive a closed-form Entropy Balancing-based represen-
tation loss for the multiple-treatment setting using Lagrangian duality theory.
Experimental results demonstrate that KANITE effectively handles multiple-
treatment scenarios, outperforming all considered baselines on both the ϵPEHE
and ϵATE metrics. Furthermore, KANITE achieves superior parameter efficiency
and faster convergence while maintaining strong counterfactual prediction capa-
bilities.

For future work, we plan to further enhance KANITE to create a unified
architecture that incorporates abilities of both IPM and Entropy Balancing for
ITE estimation tasks. We plan to incorporate interpretability of KANs to un-
derstand causal effects estimation in a better manner. Our findings highlight the
advantages of KANs in ITE estimation, paving the way for future research in
related areas. One promising direction is investigating the role of KANs in ITE
estimation under networked settings, where users are interconnected through a
network [28]. Another avenue is examining the effectiveness of KANs in treat-
ment dosage settings, where treatments are administered in fractional amounts
between 0 and 1 [23]. Additionally, it would be valuable to investigate how KANs
can enhance causal effect estimation when treatment information is explicitly in-
corporated [9].
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