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Abstract. Cross-domain time series imputation is an underexplored
data-centric research task that presents significant challenges, particu-
larly when the target domain suffers from high missing rates and domain
shifts in temporal dynamics. Existing time series imputation approaches
primarily focus on the single-domain setting, which cannot effectively
adapt to a new domain with domain shifts. Meanwhile, conventional do-
main adaptation techniques struggle with data incompleteness, as they
typically assume the data from both source and target domains are fully
observed to enable adaptation. For the problem of cross-domain time
series imputation, missing values introduce high uncertainty that hin-
ders distribution alignment, making existing adaptation strategies in-
effective. Specifically, our proposed solution tackles this problem from
three perspectives: (i) Data: We introduce a frequency-based time se-
ries interpolation strategy that integrates shared spectral components
from both domains while retaining domain-specific temporal structures,
constructing informative priors for imputation. (ii) Model: We de-
sign a diffusion-based imputation model that effectively learns domain-
shared representations and captures domain-specific temporal dependen-
cies with dedicated denoising networks. (iii) Algorithm: We further
propose a cross-domain consistency alignment strategy that selectively
regularizes output-level domain discrepancies, enabling effective knowl-
edge transfer while preserving domain-specific characteristics. Extensive
experiments on three real-world datasets demonstrate the superiority of
our proposed approach. Our code implementation is available hereS.

Keywords: Time Series Imputation - Domain Adaptation - Conditional
Diffusion Models.
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1 Introduction

Multivariate time series imputation is essential for various real-world applica-
tions, including environmental monitoring and energy management [44]. Miss-
ing values commonly arise due to sensor failures, transmission errors, or exter-
nal disruptions, leading to incomplete data that could degrade the reliability
of downstream tasks [18]. Effective imputation is thus critical for preserving the
integrity of the data and ensuring reliable results in subsequent applications [16].

Many endeavors have been made to model the temporal patterns inherent
in time series. Traditional statistical and machine learning methods for time
series imputation often assume stationarity or linear relationships, which may
not capture the full complexity of real-world time series data. Recurrent neural
networks and attention-based models have improved the modeling of temporal
dependencies by capturing nonlinear relationships [2]. More recently, deep gener-
ative models [38, 10], such as variational autoencoders and generative adversarial
networks, have been explored for time series imputation. Diffusion-based mod-
els [31,1, 19, 45] further advance imputation by learning a denoising process that
iteratively refines missing values.

Despite their success, these methods struggle under high missing rates [31],
as sparse observations hinder the effective modeling of the underlying temporal
dependencies [7,45,11]. When observations are highly incomplete, it is natural
to leverage related domains to improve imputation performance [5]. For instance,
in air quality monitoring, neighboring cities’ sensor networks may provide com-
plementary temporal patterns when local sensors fail. Recent advancements in
domain adaptation (DA) have shown promising results in transferring knowledge
across domains in tasks such as time series forecasting and classification [14, 27].
In light of this, we propose to tackle the novel cross-domain time series imputa-
tion by adapting domain discrepancies between two related domains.

However, cross-domain time series imputation remains largely underexplored
and directly applying DA techniques to time series imputation may easily fail
due to the following challenges: (1) Data Challenge: Most of the DA prob-
lems usually assume the observed data from both source and target domains are
complete [41], however, in time series imputation, it is hard for existing models
to well characterize the real data distributions due to the high missingness in the
observed data. (2) Model Challenge: Existing approaches commonly rely on
simply training a single shared model on mixed data, which cannot distinguish
domain-shared and specific knowledge [42]. Therefore, it is necessary to develop
a model that can both facilitate knowledge transfer and capture domain-specific
patterns. (3) Algorithm Challenge: Time series data from different domains
often exhibit domain-specific temporal dependencies, leading to variations in
seasonality, trend shifts, or periodic patterns [40], etc. Existing domain adap-
tation algorithms often enforce alignment without considering such differences
across domains, thus failing to capture the cross-domain knowledge required for
accurate imputation in the target domain.

To address these challenges, we propose a novel Cross-Domain Conditional
Diffusion Model for Time Series Imputation (CD?-TSI), which improves im-
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putation in the target domain by leveraging knowledge from a source domain
while preserving domain-specific temporal patterns. Specifically, to counter the
data challenge, we introduce a frequency-based time series interpolation strategy,
which interpolates original missing values by integrating shared spectral com-
ponents from both the source and target domains. The pre-interpolated values
are used to construct the missing targets, providing more informative priors for
training the imputation model. For the model challenge, we develop a diffusion-
based imputation framework that learns domain-shared representations to cap-
ture common patterns across domains while maintaining dedicated denoising
networks to model domain-specific temporal dependencies. To tackle the algo-
rithm challenge, we propose a cross-domain consistency alignment algorithm that
imposes alignment based on output-level discrepancy. The degree of alignment
is adjusted according to the prediction difference between source and target
networks for the same target samples. This approach facilitates cross-domain
transfer while preserving target-specific temporal characteristics, preventing the
model from overfitting to source domain patterns.

In summary, the main contributions of this work are summarized as follows:
(1) We target the problem of cross-domain time series imputation, which is
largely underexplored and requires research attention in the community. (2)
We propose CD2-TSI, a new diffusion model-based framework that solves the
problem of cross-domain time series imputation from data, model, and algorithm
perspectives. (3) We conduct extensive experiments on three real-world datasets,
demonstrating that CD2-TSI outperforms state-of-the-art models across various
missing data patterns, highlighting its effectiveness in cross-domain settings.

2 Related Work

2.1 Time Series Imputation

Time series imputation (TSI) methods can be broadly categorized into pre-
dictive and generative approaches [7]: (1) Predictive methods [34, 6,22] predict
deterministic values but suffer from error accumulation and fail to capture the
uncertainty of missing values. GRU-D [3| and BRITS [2]| use deep autoregres-
sive models with time decay, while GRIN [4] incorporates graph neural networks
(GNN) for spatial relationships. (2) Generative methods, such as those based on
Variational Autoencoders (VAE), Generative Adversarial Networks (GAN), and
diffusion models, effectively circumvent the limitations faced by those predictive
models. VAE-based methods [24, 15] optimize reconstruction error and regularize
the latent space. GAN-based approaches [23] use adversarial training between
the generator and discriminator but can be unstable and produce unrealistic
results. Diffusion models show promise due to their ability to model complex
data distributions and generate varied outputs for missing values. CSDI [31]
and SSSD [1] use observed data as conditional information; PriSTI [19] extracts
conditional information and considers spatiotemporal dependencies using geo-
graphic data; MTSCI [45] incorporates a complementary mask strategy and a
mixup mechanism to realize intra-consistency and inter-consistency. However,
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these methods focus primarily on modeling temporal dependencies within a sin-
gle domain, overlooking the complexities posed by cross-domain scenarios where
domain shifts in missing patterns or temporal dynamics exist. Our CD2-TSI
framework addresses this gap by combining diffusion models with domain adap-
tation to enhance imputation quality across domains.

2.2 Time Series Domain Adaptation

Domain Adaptation (DA) [9] seeks to transfer knowledge to a target domain by
leveraging information from source domains. These methods can be categorized
into three groups: (1) Adversarial-based methods train a domain discriminator to
identify domains while learning transferable features. For example, CoDATS [33]
employs a gradient reversal layer for adversarial training with weak supervision
on multi-source data. SLARDA [26] aligns temporal dynamics across domains
via autoregressive adversarial training. (2) Discrepancy-based methods use sta-
tistical distances to align features from source and target domains. AdvSKM [20]
leverages maximum mean discrepancy (MMD) with a hybrid spectral kernel for
temporal domain adaptation. RAINCOAT [12] tackles feature and label shifts
via temporal and frequency feature alignment. (3) Self-supervision methods in-
corporate auxiliary tasks. DAF [14] uses a shared attention module for domain-
invariant and specific features and reconstruction. While existing DA methods
have proven effective in forecasting and classification tasks, their application to
imputation remains underexplored, where temporal discrepancies as well as data
deficiency introduced by missing values pose additional challenges. CD2-TSI dif-
fers from these approaches by addressing the challenges introduced by incomplete
observations in cross-domain time series imputation and adaptation.

3 Problem Definition

Cross-domain time series imputation aims to reconstruct missing values in a
target domain by leveraging knowledge from a related source domain. Given
multivariate time series data with potential missing values, we define the time
series in both domains as X4 = (Xg1, ..., Xax) € RE*E where K is the num-
ber of features, L is the length of the time series, and d € {Srec,Tgt} denotes
the source and target domains. We assume all time series in both domains have
the same length. An observation mask M, € {0, 1}%*L indicates missing values,
where my,; = 1 if the value is observed for the k-th feature at the [-th times-
tamp, and my; = 0 if the value is missing. Since real-world datasets often lack
ground truth for missing data, we artificially mask a subset of observed values
for training and evaluation. Following previous work [45, 31], the extended miss-
ing targets id € REXL include both the original missing values and artificially
masked values, with a binary mask M, € {0, 1}5*L.
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4 Methodology

4.1 Model Overview (CDZ2-TSI)

As shown in Fig. 1, CD2-TSI incorporates a cross-domain diffusion-based frame-
work, where source and target domains share representations while maintaining
domain-specific denoising networks. A pre-interpolation strategy is proposed to
integrate spectral components from both domains, providing priors for original
missing values via cross-domain frequency mixup, while the artificial missing val-
ues are retained to construct missing targets. These targets are then corrupted
by adding noise to obtain noisy inputs for training the denoising network. To
ensure effective adaptation, we introduce cross-domain consistency alignment.
This algorithm promotes adaptation based on output discrepancy while prevent-
ing excessive regularization that could force the target domain to overly conform
to source domain patterns. Overall, CD?-TSI effectively leverages cross-domain
information to improve the imputation quality in the target domain.
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Fig. 1. Architecture of CD?-TSI. FMixup is utilized to interpolate the original missing
areas ( ), while artificial missing values (red) are retained to construct the missing

targets X°. These targets are then transformed into the noisy targets X! to train the
denoising network, with the help of conditional information X“. The framework is
optimized using a combination of denoising loss and consistency alignment loss.

4.2 Conditional Diffusion Model for Time Series Imputation

Imputing missing values in time series data requires capturing complex temporal
dependencies while addressing challenges from data incompleteness. Our frame-
work takes Denoising Diffusion Probabilistic Models (DDPM) [13] as the base
model, where the imputation process is formulated as a conditional generative
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task. In the forward process, Gaussian noise is step by step added to the miss-
ing targets X° across T' diffusion steps, gradually transforming X into a noisy
version X”. This process is formalized as follows:

q (XLT | 5(0) _ ﬁq (Xt | itq) .q (Xt | th) — N (Xt; mf{til’ﬂtq
t=1
(1)

where 3; represents the noise level, and ¢ indicates the diffusion step. According
to DDPM, X! = \/a;X°? + /T — aze, where ay = 1 — B¢, 0y = Hle a;, and € ~
N(0,1) where A is Gaussian distribution. When T' is large enough, q (XT | XO)

approximates a standard normal distribution.
The reverse process then reconstructs the missing targets by iteratively de-
noising imputed values, conditioned on the remaining observations X:

e (XH | it,xw) — N (ug (f(t,xw,t) ,031) , 2)

N _ - 1—ay
(19 (Xt,XCO,t) _ (xt _ P, (Xt,XC",t)> o= ——"lg, (3)

1
\/@t \/I—O[t ].—O[t
where €y(-) is the denoising network with learnable parameters 6. The model is
trained to estimate the added noise € given X?, conditional observations X and
current diffusion step ¢, and the training objective of time series imputation is:

L(0) = Egoq(R0) ennv(o,1) He —€ (Xt’xco’t) H2 )

4.3 Cross-Domain Time Series Frequency Interpolation

Modeling temporal dependencies from incomplete time series is challenging, es-
pecially under high missing rates. Severe missingness disrupts the real data dis-
tribution, making it difficult for the model to capture consistent temporal de-
pendencies. Addressing this issue is crucial, as many existing methods [31,1]
simply replace original missing values with zeros when constructing the missing
targets. However, zeros cannot reflect the real data distribution, and such a dis-
tribution shift makes it more challenging for the diffusion model to accurately
recover missing values during the denoising process. Although linear interpola-
tion in the time domain can partially address this issue, it often fails to capture
complex non-linear temporal dynamics.

To solve this problem, our intuition is that time series data from related
domains typically share low-frequency components, which represent long-term
trends or periodic patterns (e.g., daily cycles in hydrology data), while high-
frequency components reflect domain-specific details, such as sensor noise or
transient fluctuations (35,43, 36]. Formally, a signal can be decomposed into an
amplitude spectrum, which captures the intensity of different frequency compo-
nents, and a phase spectrum, which preserves local temporal structure. Hence, we
propose a frequency-based time series interpolation strategy — FMixup. FMixup
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is achieved through two key steps: (1) blending low-frequency amplitude spectra
across domains and (2) retaining each domain’s high-frequency amplitude and
phase spectra. The augmented data can then be used to replace original missing
values and refine the missing targets.

Domain-Shared Frequency Mixup. To exchange structural information across
domains, we transform the conditional observations X € RX*Z from both do-
mains into the frequency domain using the Fast Fourier Transform (FFT) [25]:

=

L
F(x) (u,v) = x(k,l)e‘ﬂ”(%wr%”) (5)
01

|
—

i
Il
o

where u and v are frequency indices along the two dimensions, and j is the imag-
inary unit. This frequency space signal F (z) can be further decomposed into an
amplitude spectrum A € RE*% and a phase spectrum P € REXL. To integrate
common patterns, we introduce a binary mask M = 1(x ) c[—aK:aK,—aL:ar) that
selects low-frequency region of the amplitude spectrum, where o € (0,1) deter-
mines the proportion of low-frequency information incorporated. The amplitude
spectra of the source and target domains are then blended as follows:

ASrc—)Tgt = -ATgt * (1 - M) + ()\-ATgt + (1 - /\)ASTC) * M (6)

where Ag,. and Arpg, represent the amplitude spectra of the source and target
domains, respectively. Agy.7g¢ is the newly mixed amplitude spectrum, and
parameter A adjusts the balance between the two spectra.

Domain-Specific Frequency Preserving. As mentioned above, high-frequency
components often contain domain-specific fine-grained details. To preserve such
information, we retain the high-frequency amplitude components of the target
domain. Additionally, we do not modify the phase spectrum Prg, as it repre-
sents local structural information necessary for preserving the original sequence
characteristics. The final augmented time series is obtained by combining the
mixed amplitude spectrum Ag,.,74: with original phase spectrum Prg; of the
target domain and applying the inverse Fourier transform:

XSTc—>Tgt - f_l (ASTC—)Tgt7 PTgt) (7)

This augmented series is used to fill in the original missing values in the
target domain. Therefore, we obtain the refined missing targets X%gt. This
frequency-based time series interpolation strategy ensures that the local tem-
poral structure remains aligned with the target domain while benefiting from
shared low-frequency trends. Similarly, we obtain the missing targets X%, ..

4.4 Cross-Domain Conditional Diffusion Model

Although cross-domain time series frequency mixup provides priors from the
data perspective, it does not fully address domain shifts in temporal dynamics.
Learning a single shared model for both source and target domains often fails
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to capture domain-specific patterns, leading to suboptimal imputation perfor-
mance in the target domain. To address this, we propose a novel cross-domain
conditional diffusion model that enables domain-shared knowledge transfer while
modeling domain-specific temporal dependencies.

Domain-Shared Temporal Knowledge Transfer. To facilitate knowledge
transfer across domains, we try to learn domain-shared input representations
using a shared convolution layer. The input representations for the source and

3 . in co |IXt in o _
target domains are formulated as: Hg.. = Conv (XSTCHXSTJ and Hpy, =

Conv (X%"gtﬂfi}gt), respectively, where Conv is 1 x 1 convolution. To further

integrate shared information and help the imputation, the model incorporates
domain-shared side information D*", which includes: (1) a time embedding s =
{s1,...,51} € REX128 for temporal dependencies, constructed using sine-cosine
temporal encoding [32]; (2) a learnable feature embedding f = {f1,...,fx} €
R¥*16 t5 model shared feature relationships. We expand and concatenate s and
f and obtain D" € REXLXC wwhere C is the channel size.

Domain-Specific Temporal Knowledge Modeling. After the common fea-
ture extraction, the model applies domain-specific attention mechanisms:

H'™ = Attngen (H™ + Linear(temb))

era — Attnfea (Htem) (8>
where Attnge,, (-) captures temporal dependencies, and Attn fea(-) models feature
interactions. These attention layers are domain-specific, enabling the model to
learn unique characteristics within each domain. The diffusion step embedding
temp is constructed through sine-cosine temporal encoding as well and projected
through a linear layer. Additionally, domain-specific side information D*? in-
cludes the conditional mask M of each domain, which explicitly indicates missing
positions. The final output of each denoising network is computed as:

Fout — era + CODV(DSh) + COHV(DSP), (9)

The domain-specific modeling stacks multiple layers, where the output H°“!
of each layer is divided into a residual connection and a skip connection after a
gated activation unit. The residual connection serves as the input to the next
layer, while the skip connections from each layer are summed and passed through
two layers of 1 x 1 convolution to obtain the final output.

4.5 Cross-Domain Consistency Alignment (CDCA)

To mitigate temporal discrepancies across domains while accounting for the un-
certainty caused by missing values, we further propose cross-domain consistency
alignment. Unlike conventional domain adaptation methods, which enforce rigid
alignment regardless of the magnitude of domain discrepancies, CDCA selec-
tively enforces prediction consistency based on the model output discrepancy
for the same target domain samples.
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Let érg: denote the target network’s prediction on a given target sample, and
let €gyc—s1gt denote the prediction from the source network (in evaluation mode)
when the same target sample is used as input. The average absolute difference
between these predictions, denoted as A, is then computed:

N
1 . >
A=y D lerns = Esreorons] 1o

where N is the number of target domain samples.

CDCA compares A against two thresholds: a lower threshold 7; and an upper
threshold 75,. If A < 7, the discrepancy is within an acceptable range, where
enforcing alignment could amplify the impact of missingness-induced noise rather
than improving adaptation. If 7 < A < 7, the discrepancy is moderate. In this
case, we impose a penalty proportional to the excess difference, specifically A—1;.
If A > 7, the discrepancy is large, suggesting that strict alignment could cause
overfitting to source domain patterns and distort intrinsic target structures. To
prevent this, the penalty is capped at min(A — 7, 71,). Thus, the alignment loss
is formulated as:

0, A<,
»Calign = . l (1]—)
min (A —7,7), A>T

By applying regularization only when discrepancies exceed a lower threshold
and capping penalties for large deviations, CDCA achieves a trade-off between
imposing cross-domain alignment and preserving target-specific characteristics.

4.6 Overall Loss Function

The overall loss function for our model integrates several components: time series
imputation losses (Eq. 4) for both source and target domains, and an auxiliary
loss that addresses cross-domain consistency alignment (Eq. 11), re-weighted by
parameters ftqign- The overall loss function is defined as:

L= £Src + £Tgt + Malign‘calign (12)

This formulation ensures that the model not only learns to impute missing
values within each domain but also mitigates domain discrepancies.

5 Experiments

5.1 Experimental Setting

We evaluate our model on three real-world datasets, with details described below
and the statistics of datasets are presented in Table 1.

Air Quality [37] dataset contains PM2.5 measurements from Beijing (B)
and Tianjin (T). Beijing data is collected from 36 stations, while Tianjin has
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Table 1. Dataset Characteristics

Dataset Air Quality Hydrology Electricity
Statistics Beijing Tianjin Discharge Pooled ETThl ETTh2

Samples 8759 8759 2726 2726 17420 17420
Length 36 36 16 16 48 48
Features 27 27 20 20 7 7

Original Missing Rate 12.36% 20.84% 0%  19.99% 0% 0%

data from 27 stations. For cross-domain setting, 27 stations with the fewest
missing values were sampled from Beijing data.

Hydrology dataset records daily river flow and sediment concentration from
20 stations in the United States, collected from United States Geological Sur-
vey [17] and Water Quality Portal [28]. It consists of two domains: Discharge
(D) and Pooled (P), spanning from March 1, 2017, to September 30, 2022.

Electricity [44] dataset consists of power load and oil temperature data.
It includes two years of data (from July 2016 to July 2018) from two distinct
regions in China, referred to as ETThl and ETTh2.

We follow the dataset splitting strategy used in prior work [45,31,19]. For
Air Quality dataset, we select Mar., Jun., Sep., and Dec. as the test set, the
last 10% of the data in Feb., May, Aug., and Nov. as the validation set, and the
remaining data as the training set. For Hydrology and Electricity, we split the
training/validation /test set by 70%/10%/20%.

Evaluation Metrics. We evaluate the performance using three metrics:
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Contin-
uous Ranked Probability Score (CRPS). MAE and RMSE measure the error
between imputed values and ground truth for deterministic methods. CRPS is
used to measure how well the imputed probability distributions align with the
observed values for methods that produce probability distributions.

Masking Strategy. Since original missing values within datasets lack ground
truth, we consider two missing patterns to simulate the missing values for eval-
uation: (1) Point missing, where 10% of the observations is masked, and (2)
Block missing, where we mask 5 % of the observed data and mask observations
ranging from 1 to 4 data points for each feature with 0.15 % probability. For
training strategies, we use two masking strategies for self-supervised learning:
(1) Point strategy randomly selects r(r € [0%,100%]) of observed values; (2)
Block strategy randomly select a sequence of length [L/2, L] as missing targets
with an additional 5 % of observed values randomly selected. Since Air Qual-
ity dataset has much original missing data in the training set, we adopt point
missing pattern following previous work [31]. For Hydrology and Electricity, we
apply both point and block missing patterns following [19].

Baselines and Implementation Details. Baselines for DA. The cho-
sen baselines include various state-of-the-art methods that have been widely
adopted in the time series classification and forecasting tasks: CORAL [30],
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CDAN [21], DIRT-T [29], AdvSKM [20], CotMix [8]. Baselines for TSI. The
baselines include RNN-based models M-RNN [39], BRITS [2], GNN-based mod-
els GRIN [4], SPIN and SPIN-H [22| and diffusion-based methods CSDI [31],
SSSD [1], PriSTI [19], and MTSCI [45]. Hyperparameters. We set the batch
size to 16 and the number of epochs to 200. The Adam optimizer is used with
an initial learning rate of le-3, decaying to le-4 and le-5 at 75% and 90% of the
total epochs, respectively. The frequency space mix ratio A\ is sampled within
[0.0, 1.0], and « in FMixup is empirically set as 0.003. As for the model, we use
4 residual layers, 64 residual channels (C), and 8 attention heads. For methods
requiring an adjacency matrix, we use the identity matrix by default. We adopt
the quadratic schedule for other noise levels following [31], with a minimum noise
level 81 = 0.0001 and a maximum noise level S = 0.5.

5.2 Overall Performance

The overall comparisons on three datasets are shown in Table 2. We summa-
rize the observations as follows: (1) CD2-TSI consistently outperforms baseline
models across all datasets. Compared with existing time series imputation meth-
ods that rely solely on single-domain data, CD2-TSI integrates cross-domain
knowledge, leading to better imputation performance. Additionally, CD2-TSI
outperforms domain adaptation methods by specifically handling discrepancies
in temporal dynamics and data deficiency caused by missing values, which are
not adequately addressed by conventional DA approaches. (2) Incorporating do-
main adaptation techniques increases imputation accuracy compared to training
solely on the target domain. However, the extent of this improvement varies
across different missing patterns. For example, CDAN performs well on point
missing but falls short on block missing scenarios due to its alignment strategy.
In contrast, CD2-TSI consistently improves upon the strongest DA baselines,
with an average improvement of 1.92% (RMSE) and 1.34% (MAE), demonstrat-
ing its effectiveness in cross-domain alignment for imputation. (3) Our method
achieves notable improvements over the best TSI baselines. Specifically, on the
Air Quality dataset, CD2-TSI provides a +4.41% improvement in RMSE and a
+5.46% improvement in MAE. On the Hydrology dataset, it results in a +4.37%
improvement in RMSE and a +4.61% improvement in MAE, while on the Elec-
tricity dataset, they are +4.13% in RMSE and +2.04% in MAE. Among TSI
models, MTSCI’s performance varies across datasets, with lower accuracy on
Air Quality and Hydrology due to high missing rates. These results underscore
CD2-TSI's capacity to adapt effectively to different real-world datasets even un-
der severe missing conditions.

5.3 Sensitivity and Ablation Study

Sensitivity Analysis. We investigate the sensitivity of our method to differ-
ent missing rates and masking strategies. We conduct experiments on the Air
Quality dataset to evaluate performance under various missing rates and on the
Hydrology and Electricity datasets to assess different masking strategies.
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Table 2. The overall performance comparison. Bold scores are the best performance,
and underlined scores are the best time series imputation baseline performance.

Air Quality Hydrology Electricity
Method B—>T D—P h1—h2
Point Point Block Point Block

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Coral 14.814 7374 48353 13.579 45484 16.370 0.645 0.381 1.230 0.548
CDAN 14.594 7.203 47968 13.370 44.725 16.403 0.644 0.381 1.270 0.563
Dirt-T 14.945 7429 48.506 13.659 45.394 16.227 0.672 0.396 1.194 0.559
AdvSKM  14.786 7.311 48.776 13.289 43.996 16.012 0.643 0.380 1.283 0.567
CoTMix  14.632 7.232 48470 13.685 44.810 15.954 0.651 0.383 1.235 0.568

M-RNN  46.226 29.497 58.975 19.465 47.000 21.524 7.338 5.386 11.309 4.428
BRITS 40.067 26.355 56.749 19.249 47.207 22.251 6.988 4.428 8.109 4.893
GRIN 26.274 15.773 60.845 23.690 55.254 27.094 3.744 1.587 3.273 1.854
SPIN 27.881 16.914 59.263 22.020 53.530 25.428 6.750 2.856 7.096 3.503
SPIN-H  30.895 18.617 58.915 19.501 49.234 19.893 6.947 2.941 8.001 6.064
CSDI 15.002 7.452 48.542 13.744 45.819 16.470 0.647 0.380 1.320 0.592
SSSD 15.536 8.086 49.132 14.668 47.079 18.282 0.787 0.501 1.307 0.677
PriSTI 15.546 7.686 48.760 14.064 47.868 18.032 0.683 0.407 1.329 0.615
MTSCI  16.252 8.793 48.941 14.477 48.094 18.523 0.715 0.483 1.240 0.562
CD2-TSI 14.339 7.045 46.852 13.182 43.407 15.626 0.635 0.378 1.161 0.542

For the Air Quality dataset, we randomly select 10/20/30/40/50% of the
observed values as ground truth in the test data. Fig. 2 (a) shows that our
method consistently performs well across these rates. As missing data increases,
imputation accuracy typically declines due to reduced availability of observed
conditional information. However, our approach’s use of frequency mixup inter-
polation and cross-domain alignment helps maintain high performance.

For the Hydrology and Electricity datasets, we use two settings: Point —
Block (Point missing pattern in training set, Block missing pattern in testing
set) and Block — Point (Block missing pattern in training set, Point missing
pattern in testing set). Fig. 2 (b-c) shows that CD?-TSI achieves relatively better
performance with various missing patterns in the training and testing sets.
Ablation Study. We evaluate the impact of key components in CD2-TSI on
imputation performance. (1) w/0o FMixup: Frequency mixup is excluded, and
zero filling is used to construct the missing targets. (2) w/ L.I.: FMixup is
replaced with linear interpolation to construct the missing targets. (3) w/o
CDCA: Consistency alignment loss Lgjign is removed. Since Electricity dataset
does not contain original missing values, no interpolation is required for original
missing areas, and we only evaluate w/o CDCA on this dataset.

Table 3 presents the results of our ablation study. Removing frequency mixup
interpolation (w/o FMixup) significantly degrades performance across all datasets
and missing patterns, confirming that frequency mixup provides informative
priors that enhance imputation accuracy. When FMixup is replaced with lin-
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Method B—T D—P h1—h2
Point Point Block Point

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

w/o FMixup 14.817 7.292 47.662 13.365 44.204 15.956 - - - -

w/ L.IL 14.921 7.357 48.524 13.557 44.261 16.163 - - - -
w/o CDCA 14.782 7.319 47.288 13.390 43.679 15876 0.641 0.380 1.255 0.554
CD2-TSI 14.339 7.045 46.852 13.182 43.407 15.626 0.635 0.378 1.161 0.542

ear interpolation (w/ L.I.), performance further declines, demonstrating that
frequency-domain interpolation captures temporal dependencies more effectively
than simple interpolation in the time domain. Removing the cross-domain con-
sistency alignment loss (w/o CDCA) results in performance degradation, partic-
ularly in block missing scenarios. For instance, in the Electricity dataset, RMSE
increases from 1.161 to 1.255 in block missing pattern. This confirms that cross-
domain consistency alignment helps in mitigating temporal discrepancies across
domains. Overall, the findings of the ablation studies underscore the importance
of each proposed component in improving cross-domain imputation.
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5.4 Hyperparameter and Efficiency Study

Hyperparameter Study. We conduct a hyperparameter study on key param-
eters in CD2-TSI to select the optimal settings across three datasets: the fre-
quency space mix ratio A, the lower and upper thresholds 7; and 75,. The results
are shown in Fig. 3. The parameter A controls the extent of frequency mixing
between the source and target domains, while the thresholds 7; and 73 ensure
cross-domain consistency alignment while preserving domain-specific variations.
Our study finds that a moderate frequency mixing ratio and properly selected
alignment thresholds ensure effective cross-domain time series imputation.
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Fig. 3. Hyperparameter study on three key parameters of CD?-TSL.
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Fig. 4. Efficiency analysis on Air Quality, Hydrology and Electricity datasets.

Efficiency Study. We illustrate the total training time of DA models trained
on all three datasets, and the experiments are conducted on an NVIDIA RTX
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4090 GPU with 24G memory. Fig. 4 shows the Time-MAE curve, indicating
the relationship between time complexity and model performance. Compared
with models such as Coral and CDAN, which achieve the least running time,
CD2-TSI achieves better imputation results by leveraging frequency mixup and
cross-domain adaptation at the cost of marginally increased training time.

6 Conclusion

In this paper, we introduce CD2-TSI, a novel approach for cross-domain time se-
ries imputation, addressing the limitations of existing methods in handling high
missing rates and domain shifts. Our approach effectively leverages cross-domain
information through a diffusion-based framework while preserving domain-specific
temporal dependencies. The proposed frequency mixup interpolation and selec-
tive consistency alignment strategies contribute to improved adaptation and im-
putation accuracy. CD2-TSI has demonstrated superior performance on three
real-world datasets through comprehensive experiments. Future work will ex-
plore more challenging real-world conditions with extreme missing rates and
complex domain shifts.
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