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Abstract. We study a time-varying Bayesian optimization problem with
bandit feedback, where the reward function belongs to a Reproducing
Kernel Hilbert Space (RKHS). We approach the problem via an upper-
confidence bound Gaussian Process algorithm, which has been proven to
yield no-regret in the stationary case.
The time-varying case is more challenging and no-regret results are out
of reach in general in the standard setting. As such, we instead tackle
the question of how many additional observations asked to an expert
are required to regain a no-regret property. To do so, we formulate the
presence of past observation via an uncertainty injection procedure, and
we reframe the problem as a heteroscedastic Gaussian Process regres-
sion. In addition, to achieve a no-regret result, we discard long outdated
observations and replace them with updated (possibly very noisy) ones
obtained by asking queries to an external expert. By leveraging and
extending sparse inference to the heteroscedastic case, we are able to
secure a no-regret result in a challenging time-varying setting with only
logarithmically-many side queries per time step. Our method demon-
strates that minimal additional information suffices to counteract tem-
poral drift, ensuring efficient optimization despite time variation.

Keywords: Gaussian Processes · Upper confidence bounds · Bandit
feedback · Sparse inference · Time-varying optimization.

1 Introduction

We consider the problem of sequentially optimizing a reward function f : D ⇥
R+ ! R where D ⇢ Rd is a compact convex set. In this configuration, the
objective depends both on time and on a continuous decision space D. At each
discrete time step t, we obtain a noisy observation of the reward yt = f(xt, t)+✏t,
where ✏t ⇠ N(0,�2). Our objective is to maximize the sum of rewards

max
(xt)t2DT

TX

t=1

h
f(xt, t) =: ft(x)

i
. (1)
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At least in the static case, when f does not change in time, this type of
problem has often been formulated via Bayesian optimization with bandit feed-
back [17], whereby an agent must take a sequence of actions while observing the
corresponding sequence of rewards. Each action consists of picking a decision
x to get an estimate of the reward at the corresponding point. The agent does
not modify its environment through its actions and can thus exploit previous
measurements to predict actions that offer the highest rewards, but should also
explore new decisions where the value of the reward function is possibly high.
For dynamic rewards, the setting is more challenging, as we will see.

In the time-varying case, the performance metric we are interested in is the
dynamic cumulative regret, defined as

RT =
TX

t=1

✓
max
x2D

ft(x)� ft(xt)

◆
, (2)

representing the cumulative loss in reward picking decision xt at time t with
respect to the best decision at the same time step. Algorithms that achieve an
asymptotically vanishing average dynamic cumulative regret, as limT!1 RT /T =
0, are said to enjoy no-regret.

To derive our main theoretical results, we will work under two reasonable
blanket assumptions. First, to model smoothness properties of the functions
ft, we assume that they all belong to a Reproducing Kernel Hilbert Space
(RKHS) and have bounded RKHS norm. The RKHS associated with kernel
k (Hk(D), h., .ik) is a subspace of L2(D) [14] and the associated inner product
h., .ik is such that

8f 2 Hk(D), f(x) = hf, k(x, .)ik .
The norm kfkk measures the smoothness of f with respect to the kernel function
k, therefore assuming kftkk is bounded translates into regularity assumptions
about the objective.

Assumption 1 For all time steps, functions x 7! ft(x) belong to a Repro-

ducing Kernel Hilbert Space with continuous bounded kernel k such that 8x 2
D, k(x, x)  M

2
k and they have bounded RKHS norm,

8t, kftkk  B. (3)

Second, to model time variation, we assume boundedness of the variations
as follows.

Assumption 2 For the sequence of functions (ft)Tt=1, there exists a bounded

constant �, such that,

8t, sup
x2D

|ft+1(x)� ft(x)|  �. (4)

We further let � = 1, without any loss of generality.

Assumption 2 ensures controlled temporal variations, limiting changes be-
tween consecutive iterations and provides a sound framework for uncertainty
injection.
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1.1 Related work

Bayesian optimization in the bandit feedback setting has been studied exten-
sively in the static scenario: the landmark work of Srinivas and coauthors [17]
proposes an upper-confidence bound algorithm based on a Gaussian Process
model of the unknown function obtaining no-regret in several settings. In partic-
ular, first, they use the noisy observations of f to derive a possibly miss-specified
estimation of its mean µt(x) and covariance �

2
t (x), via a Gaussian Process:

µt(x) = kt(x)
>(Kt +⌃t)

�1
Yt (5)

�
2
t (x) = k(x, x)� kt(x)

>(Kt +⌃t)
�1

kt(x), (6)

where ⌃t := �
2
It, �2 being the noise variance of each observation yi, (Kt)i,j =

k(xi, xj), kt(x) = [k(x1, x), . . . , k(xt, x)], k being the kernel or covariance func-
tion, and Yt = [y1, . . . , yt]>. Then, since the reward f is unknown, they propose
choosing the next decision based on the upper-confidence bound proxy, as,

xt+1 = argmax
x2D

µt(x) + �t+1�t(x), (7)

where (�t)t�1 is a sequence of positive parameters chosen to ensure a trade-off
between exploration and exploitation and it is decisive in proving the convergence
of the algorithm. Their algorithm, labeled GP-UCB, obtains no-regret in high
probability when f is sampled from a GP, i.e., f ⇠ GP(0, k(x, x0)) but also
for arbitrary f with bounded RKHS norm. As a means of comparison for the
square exponential kernel and f having a bounded RHKS norm, they obtain a
RT = Õ(

p
T ) result. Here, the notation Õ(·) hides poly-logarithmic terms.

The cited work focused on a noise model whose distribution is identical across
observations, also known as homoscedastic setting. Makarova and coauthors
in [12] remove this assumption, define ⌃t := diag(�2

1 , . . . ,�
2
t ) for noise model

✏t ⇠ N(0,�2
t ), and deliver a regret bound that matches RT = Õ(

p
T ) up to a

multiplicative �̄ := max{�i} factor, for the heteroscedastic setting.
The time-varying case has also received attention. The work of [2] extends

the GP-UCB algorithm by considering a time-varying reward. They model the
time variations by considering a spatio-temporal kernel with a forgetting factor
", as

8 ti, tj  t, k((xti , ti), (xtj , tj)) = (1� ")|ti�tj |/2k(xi, xj), (8)

where k(·, ·) is the static kernel. With this modeling, they propose two algo-
rithms: R-GP-UCB runs GP-UCB on windows of size w 2 N and resets at the
start of each window. The second one, TV-GP-UCB, uses the spatiotemporal
kernel (8). Under this setting, the authors showed that any GP bandit optimiza-
tion incurs expected regret of at least E[RT ] = ⌦(T"), meaning the algorithm
does not enjoy no-regret for fixed ". This lower bound is not surprising and it
also appears in the multi-armed bandit literature [1]. Furthermore, TV-GP-UCB
obtains a RT = Õ(T ) which implies an increasing average cumulative dynamic
regret.
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Building on the literature in dynamic (generalized) linear bandits [22, 23, 13,
21], in a series of papers [24, 5], new algorithms are proposed in the time-varying
setting: a revised R-GP-UCB algorithm, a new sliding-window algorithm SW-
GP-UCB, and a weighted algorithm W-GP-UCB. Under the RKHS setting, they
either enjoy cumulative dynamic regrets of O(T ) (matching the lower bound), or
Õ(T ) for the latter two (with our variation budget expressed in Assumption 2).
The weighted algorithm is interesting, since it starts from a weighted kernel
regression,

f̂ = arg min
f2Hk(D)

TX

t=1

wt(yt � f(xt))
2 + �tkfk2k, (9)

where Hk(D) is the RKHS on set D and kernel k, wt is a weight, and �t � 0 a
parameter; they arrive then at the same iterations of Makarova and coauthors
in [12] for the heteroscedastic setting, but with a growing-in-T noise variance.

Since no-regret is out of reach in the standard setting, the authors of [7]
proposed an algorithm capable of dynamically capturing the changes of the ob-
jective function, and thereby acquiring more observations when needed. While
this does not guarantee no-regret for a constant sampling time, they show an
interesting trade-off between sampling and regret.

Dealing with a spatio-temporal kernel like (8) is theoretically challenging.
The works of [20, 3] propose instead to inject uncertainty into old observations.
Their starting point is to consider, at every time t, that the variance of old
observations increases in time (either exponentially or linearly). This is easier to
handle since it is now ⌃t that changes, but only on the diagonal. Regret results
are not provided, but it is not difficult to see that this approach is equivalent to
the weighted kernel regression in the RKHS settings and delivers the same Õ(T )
regret.

In addition to regret analysis, another active field of research in GP regres-
sion involves optimization of algorithms complexity. Regression based on GP
models becomes impracticable for large datasets as its time complexity scales as
O
�
N

3
�
, where N is the number of observations [16]. The idea of sparse Gaus-

sian Process regression is to approximate the posterior by performing GP re-
gression on a subset of M ⌧ N inputs. In this way, the complexity becomes
O
�
NM

2
�
. The difficulty lies in the selection of the set of sparse inputs (also

called pseudo or inducing inputs) and several techniques exist. For example, in
[18], Titsias considers sparse inputs as variational parameters selected to mini-
mize the Kullback-Leibler (KL) divergence between the exact and approximate
posteriors. Leveraging this work, Burt et al. show in [4] that M = O(d logd(N))
sparse inputs suffice to accurately approximate the posterior in terms of KL
divergence. They make use of an approximation of a M -Determinantal Point
Process (M -DPP) [11] to build the set of sparse inputs. M -DPPs define a prob-
ability distribution over input subsets of size M that favors the selection of
dispersed and less correlated points.

Finally, the algorithms developed in the literature show affinity with online
learning in the dynamic setting, e.g., [8].
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1.2 Contributions

In this paper, we extend the literature in several ways.

• First, motivated by the fact that handling time-variations with spatio-temporal
kernels is technically challenging, we embrace the uncertainty injection frame-
work and we formulate the time-varying problem as a sequence of static re-
gression problems, with growing-in-time uncertainty. This renders the GP
problem a heteroscedastic one.

• Then, since a no-regret result is out of reach in this setting, we ask how

many additional queries one should pose to an expert in order to regain the
no-regret result that we enjoy in static settings. The answer to the queries
are noisy evaluations (or predictions) of the function at a given time. To
limit the number of queries, we leverage sparse inference and we estimate
the error of updating past observations with the least number of observations
as possible. We call our new GP-UCB algorithm SparQ-GP-UCB for sparse
queries. The algorithm performs GP-UCB updates at every time step t by
discarding past measurements taken at times ⌧ farther away than O(log(t))
steps and asks new observations to an expert.

• We prove that SparQ-GP-UCB achieves a RT = Õ(
p
T ) in Õ(1) additional

queries per time step, and it exhibits a Õ(T 2) computational complexity.
This makes SparQ-GP-UCB the first true no-regret time-varying Gaussian
Process algorithm, at the expense of logarithmically-many side queries at
each step.

2 Problem setting

2.1 Uncertainty injection

We recall our setting. We consider the problem of sequentially optimizing a
reward function f : D ⇥ R+ ! R where D ⇢ Rd is a compact convex set.
In this configuration, the objective depends both on time and on a continuous
decision space D. At each step t, we obtain a noisy observation of the reward
yt = f(xt, t) + ✏t, where ✏t ⇠ N(0,�2). We set ft(·) := f(·, t) for convenience.

Our approach of the problem is to inject uncertainty into old measurements
and to consider each optimization problem depending on functions ft as a se-
quence of separate snapshots.

Under Assumption 2 on the boundedness of function variations, at time T ,
we can consider that past observations are noisy observations of the current
function fT with zero-mean noise and variance that is increased depending on
how old the observations are. In particular, we use independent noise random
variables ✏t,T and model

yt = fT (xt) + ✏t,T , ✏t,T ⇠ N(0,�2([T � t]2 + 1)), t  T, (10)

that is the noise standard deviation increases linearly in time. This is similar
to the approach of [3] involving a Wiener process and it is well-motivated by



6 E. Mauduit et al.

the fact that the maximum variation of the function between t and T is T � t.
In fact, if we model ft+1(x) = ft(x) + v, with v 2 U(�1, 1), i.e., the uniform
distribution on [�1, 1], then the observation yt of function ft can be interpreted
as an observation of function fT with noise E[✏t,T ] = E[(T � t)v + ✏t] = 0 and
variance E[k✏t,T k2] = �

2( 1
3�2 [T � t]2 + 1). The latter justifies the expression of

the noise, up to asymptotically-unimportant constants.
At time t, then, we would like to maximize the reward of ft(x) by choosing the

next action based on past observation Yt = [y1, . . . , yt]>, each with its own zero-
mean noise and time-dependent variance. We approach this as a heteroscedastic
Gaussian Process and perform the update,

µt(x) = kt(x)
>(Kt +⌃t)

�1
Yt (11)

�
2
t (x) = k(x, x)� kt(x)

>(Kt +⌃t)
�1

kt(x), (12)

where ⌃t := diag(Var(✏1,t), . . . ,Var(✏t,t) = �
2), the kernel matrix (Kt)i,j =

k(xi, xj), and kt(x) = [k(x1, x), . . . , k(xt, x)]. We choose the next decision as,

xt+1 = argmax
x2D

µt(x) + �t+1�t(x), (13)

where (�t)t�1 is a sequence of parameters chosen to ensure a trade-off between
exploration and exploitation.

As said, a basic version of this update would lead an increasing average
regret. To limit the regret, we consider only recent observations and summarize
and update the remaining ones.

2.2 Sparse inference

To summarize and update past observations, we leverage and extend recent
results from sparse inference provided in [4]. Consider YT observations performed
at XT = [x1, . . . , xT ] points, as well as the mean and variance function coming
from a GP regression on these points. Burt and coauthors in [4] offer an algorithm
to select Õ(1) points in the domain D which would deliver the same mean and
variance up to a tunable multiplicative error term. We summarize their main
result in the following proposition.

Proposition 1 ([4]). Consider the problem of estimating an unknown function

f : D ! R via T noisy observations, yt = f(xt) + ✏t, ✏t ⇠ N(0,�2) acquired

at i.i.d. training inputs XT . Let f be a sample path of a Gaussian Process with

zero mean and kernel k. Consider a squared exponential kernel function k for

simplicity. Let µ0(x) and �
2
0(x) represent the mean and variance of the Gaussian

Process regression performed on the observations.

Select a tolerance level ⌘  1/5. Then, there exists an algorithm that selects

Õ(1) < T points in the domain D and their observations yt = f(xt) + ✏t, ✏t ⇠
N(0,�2), such that if we let µ1(x) and �

2
1(x) represent the mean and variance of

the Gaussian Process regression performed on the new points and observations,
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we obtain in high probability,

|µ1 � µ0|  �0
p
⌘ 

�1
p
⌘

p
1�

p
3⌘

,

|1� �
2
1/�

2
0 | 

p
3⌘.

(14)

Proposition 1 is a condensed version of Proposition 1, Theorem 14, and Corol-
lary 22 in [4].

A possible algorithm proposed in the paper to determine the sparse inputs
is an approximate determinantal point process (DPP). Such algorithm selects
M < T points in order to minimize the difference between the KL divergence of
the exact posterior and approximated one. Specifically, for ✏ > 0, one can use an
MCMC algorithm, as specified in Algorithm 1 of [4] to obtain an ✏ approximation
of a M -DPP, with T inputs, with a computational complexity that is upper
bounded by O

�
TM

3(log log T + logM + log 1/✏2)
�
.

The most important feature of the DPP algorithm in [4] and Proposition 1
is that these results do not depend on the observations values YT , but only on
the points XT where these observations are taken. We will see next how this
is key in devising our sparse algorithm and, along the way, how we can extend
Proposition 1 to the heteroscedastic and deterministic setting.

3 SparQ-GP-UCB Algorithm

With all the previous preliminaries in place, we are now ready for the main
algorithm: SparQ-GP-UCB.

The algorithm works in rounds. At each time step t, we consider the problem
of maximizing the regret ft, with observations Yt = [y1, . . . , yt]> at points Xt =
[x1, . . . , xt]. The observations are properly injected with uncertainty, so that
their variance grows in time as,

✏i,t ⇠ N(0,�2([t� i]2 + 1)), i  t. (15)

The first step of the algorithm is to discard observations that have variance
greater than g(t), where g(t) = o

�
t
1/4
�
. We take g : t 7! �

2 log(t) as an illustra-
tive example but any function g : t 7! g(t) = o

�
t
1/4
�

would work with no change
in the proof arguments (and we further discuss it in the proof).

Second, we act as if we had access to updated noisy observations for the
discarded measurements, with noise being zero-mean and with �̄

2 variance. With
this pretend observations and the most recent ones with noise less than �

2 log(t),
we perform sparse variational inference. We use the approximate DPP algorithm
in [4] (Algorithm 1) to find the locations XE = [xE

1 , . . .], with |XE| = Õ(1) ⌧ t at
which to ask an expert for noisy updated observation with zero-mean and vari-
ance �̄

2. The new expert-delivered observations, together with the most recent
ones are guaranteed to be a good approximation of the pretend setting.
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Third, we let Y s
t, X

s
t being the set of expert-delivered observations together

with the most recent ones with noise less than �
2 log(t) and the points at which

they are taken. With this, we can compute the mean and variance as,

µ
s
t(x) = k

s
t(x)

>(Ks
t +⌃

s
t)

�1
Y

s
t (16)

(�s)2t (x) = k(x, x)� k
s
t(x)

>(Ks
t +⌃

s
t)

�1
k
s
t(x), (17)

where ⌃
s
t is a diagonal matrix containing all the observation variances up to

max{�̄2
,�

2 log(t)}, and the kernel elements K
s
t, kst, are evaluated on X

s
t.

And finally, we compute the next decision, via the UCB proxy:

xt+1 = argmax
x2D

µ
s
t(x) + �t+1�

s
t(x). (18)

The algorithm is summarized in Algorithm 1. We remark the need for per-
forming sparse inference based on Algorithm 1 of [4], whose details are reported
in the Appendix.

Algorithm 1 SparQ-GP-UCB
Input: Domain D, kernel k
1: for t = 1, 2, . . . do

2: Sample yt = ft(xt) + ✏t
3: Discard all the observations with a noise > �2 log(t)
4: Perform sparse inference on Xt to obtain locations XE of cardinality Õ(1)
5: Query an expert to obtain updated observations on XE for ft
6: Perform Bayesian updates (16)-(17) to obtain µs

t and �s using (Xs
t, Y

s
t)

7: Choose the next action xt+1 via (18)
8: end for

3.1 Main results

In this subsection, we report the main results for our algorithm. They are both
given for a squared exponential kernel for simplicity, but they can easily be
extended to other standard kernels (Matérn for example).

Theorem 1. (Regret bound for SparQ-GP-UCB) Take any 0 < �  1 and con-

sider a sequence of reward functions (ft)t and the observations yt = ft(xt) + ✏t,

for ✏t ⇠ N(0,�2) i.i.d.. Let Assumptions 1 and 2 hold and consider a squared ex-

ponential kernel k. Let T be a time horizon and (xt)Tt=1 the set of actions chosen

by SparQ-GP-UCB (Algorithm 1) and set (�t)Tt=1 as

�t =

s

2 log

✓
2|⌃s

t +Ks
tt|1/2

�|⌃s
t|1/2

◆
+ kftkk.



Time-varying Gaussian Process Bandit Optimization with Experts 9

Then, with probability at least 1� �, by asking to an expert O
⇣
logd(t)

⌘
queries

per time step, SparQ-GP-UCB attains a cumulative dynamic regret of

RT = O

 q
Td logd+5(T )

s

log

✓
1

�

◆
+ d logd+3 (d log (T ))

!
= Õ(

p
T ). (19)

The asymptotic bound given in Eq.(19) implies no-regret with probability
1� � and matches the static case up to poly-logarithmic factors. The main steps
of the proof are given in Section 5.

We can now discuss briefly the impact of Assumption 2 for the regret bound.
A common metric in the literature to account for the time-varying nature of the
objective is the variation budget VT [8, 5, 1] defined as,

8T , VT =
T�1X

t=1

kft+1 � ftkk. (20)

Let x 2 D. Then, by the reproducing property of RKHS,

|ft+1(x)� ft(x)| = |hft+1 � ft, k(x, .)i|  kft+1 � ftkkkk(x, .)kk, (21)

where we applied Cauchy Schwarz in the RKHS to obtain the inequality. From
the reproducing property, kk(x, .)k2k = k(x, x). As we are working with bounded
kernels (Assumption 1) and 8x 2 D, k(x, x)  M

2
k , we take the infinite norm in

the left side of Eq. (21) and sum over t = 1 to T � 1 to obtain:

T�1X

t=1

kft+1 � ftk1  MkVT . (22)

By Assumption 2, SparQ-GP-UCB does work even in the case of
PT�1

t=1 kft+1 �
ftk1 = (T � 1), meaning that our algorithm can achieve no-regret even for a
variation budget that grows linearly in time. This improves the result of [5] that
requires VT = o(T ) when VT is known and VT = o(T 1/4) otherwise to obtain
sublinear regret.

Along with a no-regret result, we also provide a computational complexity
estimate as follows.

Theorem 2. Under the same setting of Theorem 1, the computational com-

plexity of SparQ-GP-UCB is upper bounded by O
⇣
T

2 log(T ) log3d
⇣

T
log(T )

⌘⌘
=

Õ(T 2).

The theorem shows how SparQ-GP-UCB is actually less computationally
expensive than running a basic Bayesian update on the whole T measurement
set, which can be bounded as O(T 3).
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3.2 Role of the expert

In SparQ-GP-UCB, the “expert” mechanism is not meant to be a human oracle,
nor does it need to act as a perfectly accurate surrogate model. Instead, it
serves as a means to partially refresh or correct stale information from previous
observations in a principled and computationally bounded way.

More precisely, at each time step t, we are allowed to query the current value
of the objective ft at a small number O

⇣
logd(t)

⌘
of previously observed points,

selected via a Qt-DPP sampling over Xt.
This mechanism is abstracted as an “expert call”, but it is not assumed to be

human or even a separate model. Rather, it reflects limited access to the current
function values at previously observed locations, which can be interpreted in
several realistic ways:

– Wireless sensor networks: In Internet-of-Things applications [26], sen-
sors might collect data continuously but transmit selectively due to band-
width or power constraints. Revisiting previous locations or reactivating a
subset of sensors is often feasible, though costly — thus motivating a trade-
off.

– Physics-based monitoring: In tasks such as environmental monitor-
ing [27] where the underlying phenomenon is governed by a partial differen-
tial equation that needs to be simulated, the “expert” corresponds to access
to the simulation itself. While running the simulator to evaluate the objec-
tive at a new point can be computationally expensive, it is often possible
— though still costly — to re-run the simulator at previous input points to
obtain updated objective values, reflecting changes in the underlying system.

– Continual learning in ML systems: For adaptive hyperparameter tun-
ing or online systems [25], logs or cached evaluations might allow querying
recent values again (e.g., checking performance of previous configurations on
a new data batch).

We emphasize that the expert is not required to provide perfectly accu-
rate information, but rather noisy or approximate values, consistent with a sub-
Gaussian noise model. This is crucial in practice and aligns with many systems
where re-evaluation is possible but noisy (e.g., due to changing conditions).

4 Numerical results

In this section, we compare the performance of SparQ-GP-UCB with four exist-
ing algorithms (TV-GP-UCB [2], W-GP-UCB [5], R-GP-UCB and SW-GP-UCB
[24]) in a time-varying environment, on both a synthetic and a real-life dataset.
We also run standard GP-UCB to show how it performs in time-varying settings.
For all baseline methods, hyperparameters suchs as window size (R-GP-UCB,
SW-GP-UCB), temporal kernel hyperparameter (TV-GP-UCB) and observa-
tions weights (W-GP-UCB) were set according to the recommendations provided
by their respective authors.
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4.1 Synthetic data

Observations are generated by perturbing the function

f : D⇥ R+ ! R+

(x, t) 7! exp(�0.05(x� 5 sin(0.1t))2) + 0.5 cos(0.2x) + 1.5

with noise ✏ ⇠ N(0,�2), where the sampling noise variance �
2 is set to 0.01. We

take the domain D = [�50, 50]. Let t � 0. Then, by the mean value theorem

sup
x2D

|f(x, t+ 1)� f(x, t)|  sup
x,t

����
@f(x, t)

@t

����  1,

and Assumption 2 holds. We plot the average and standard deviation of the
cumulative regret of each algorithm for T = 500 iterations and � = 0.05 over 40
realizations using the squared exponential kernel, whose parameters have been
fine-tuned by maximizing the log marginal likelihood of the data. For all four
methods, we plot the mean and standard deviation of the average regret at
each iteration. By selecting the number of queries QT = 6 log(T ) in line with the
result of Proposition 2, we expect the average regret of SparQ-GP-UCB to vanish
asymptotically. Furthermore, since the variation budget is not VT = o(T 1/4) in
our setting, due to the periodicity of f 7! f(x, t), R-GP-UCB and SW-GP-UCB
are not expected to have sublinear cumulative regret bounds.

Fig. 1. Average regret of GP-UCB variants in the time-varying setting.

We can see in Figure 1 that SparQ-GP-UCB is the only method that con-
verges to the dynamic optimum of the objective on average. Moreover, it falls
below the theoretical bound (black curve) established in Eq. (19). Standard TV



12 E. Mauduit et al.

methods (TV-GP-UCB, W-GP-UCB, R-GP-UCB and SW-GP-UCB) struggle
to track the optimum and have linear cumulative regret (RT ⇡ 1.8 for TV-GP-
UCB, RT ⇡ 1.3 for W-GP-UCB, RT ⇡ 1.34T for R-GP-UCB and RT ⇡ 1.18T
for SW-GP-UCB). As expected, the average regret of standard GP-UCB grows
slowly, suggesting a slightly superlinear average regret. In summary, at the cost
of Õ(1) additional observations per iteration, SparQ-GP-UCB is the only method
capable of accurately optimizing a time-varying objective with weak assumptions
on its temporal variations.

4.2 Real data

To evaluate the effectiveness of SparQ-GP-UCB, we conducted experiments on
a real-world dataset consisting of daily ozone level measurements collected from
28 sensors distributed across the New York City area over the course of two years
[28]. This dataset presents a naturally time-varying environment, making it an
ideal testbed for adaptive Bayesian optimization methods.

Again, we benchmarked SparQ-GP-UCB against several state-of-the-art base-
lines: GP-UCB, R-GP-UCB, SW-GP-UCB, TV-GP-UCB, and W-GP-UCB. The
evaluation metric used was cumulative regret, plotted as average regret over time
to highlight long-term performance trends.

Fig. 2. Numerical performances of GP-UCB variants on real data.

Figure 2 shows the evolution of average regret across time steps (here one
day). We set � = 0.05 and compute the kernel hyperparameters by maximizing
the log marginal likelihood of the data. Although the ozone data is not generated
by a model that respects our RKHS assumptions, we can see that SparQ-GP-
UCB achieves significantly lower regret compared to other method. This indi-
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cates its superior ability to adapt to underlying non-stationary reward dynam-
ics. Interestingly, GP-UCB achieves performance comparable to its time-varying
counterparts. This may be attributed to characteristics of the ozone dataset —
for example, the location of the maximum ozone level might be approximately
stationary over time. Unlike the four time-varying baselines, SparQ-GP-UCB
still consistently outperforms GP-UCB, suggesting that it effectively balances
adaptation to temporal changes without overcompensating.

These results validate the robustness and adaptivity of our proposed method
in capturing temporal variations and optimizing over dynamic environments.

5 Proofs of main theorems and additional results

5.1 Proof of Theorem 1

The regret proof is based on a few ingredients and extensions of previous work
in [18, 12, 4]. We proceed as follows: first we extend Proposition 1 to the het-
eroscedastic and deterministic setting. Then we extend the regret results of [12]
incorporating a sub-linearly growing maximum uncertainty, as well as the mul-
tiplicative error coming from the sparse inference. Then we combine the two
results.

It is convenient to define the set of pretend observations together with the
latest ones with noise < �

2 log(T ) as Y
v
T taken at points X

v
T . The cardinality

of the two sets is T . These sets are not the same as the set of sparse plus latest
one observations, indicated as Y

s
T and X

s
T whose cardinality is Õ(1).

The first proposition extends the sparse approximation to our setting, and
in particular, it is an extension of Corollary 22 in [4] to heteroscedastic GPs and
deterministic inputs X

v
T in a compact domain.

Proposition 2. Let X
v
T be the set of actions chosen by SparQ-GP-UCB. As-

sume that pretend plus latest observations Y
v
T |Xv

T are conditionally Gaussian

distributed. Then, under the same assumptions as Theorem 1, for any ⌘ > 0
and any t, there exists an approximation level "t = O

�⌘
t

�
and number of queries

Qt = O
⇣
logd

⇣
t
⌘

⌘⌘
such that running SparQ-GP-UCB with an "t-approximate

Qt-DPP provides a posterior distribution P
s
T satisfying

E[KL[P s
T kP v

T ]]  ⌘, (23)

where P
v
T is the posterior distribution on (Xv

T , Y
v
T ), and KL is the KL diver-

gence.

Proof. We give the proof in the Appendix.

While the result of Equation (23) is given in expectation, we can also use
Markov’s inequality implying,

KL[P s
T kP v

T ] 
2⌘

�
, (24)

with probability 1� �/2.
Let us now recall Proposition 1 of [4].
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Proposition 3. [Proposition 1 of [4]] Let P and Q be the real and approximate

posteriors with means µp, µq and variances �
2
p and �

2
q . Suppose 2KL[QkP ] 

⌘  1
5 and let x 2 Rd

. Then,

|µp(x)� µq(x)|  �p(x)
p
⌘ 

�q(x)
p
⌘

p
1�

p
3⌘

and |1� �
2
q/�

2
p| <

p
3⌘.

Since by Proposition 2 we have a way to bound the error coming from con-
sidering a sparse setting instead of the pretend setting, and by Propostion 3, we
know how this translates into a multiplicative error of mean and variance, we
are now ready for the regret result.

5.2 Regret proof

Proof. In SparQ-GP-UCB algorithm, the posterior mean µ
s
t(.) and variance

(�s
t)

2(.) at step t are obtained by performing regression on the sparse obser-
vations (Xs

t�1, Y
s
t�1). The instantaneous regret of SparQ-GP-UBC at step t is:

rt = ft(x
⇤
t )� ft(xt),

where,

x
⇤
t = argmax

x2D

ft(x) and xt = argmax
x2D

µ
s
t�1(x) + �t�

s
t�1(x).

By leveraging the definition of confidence bounds acquisition functions x 7!
ucbt(x) = µ

s
t�1(x) + �t�

s
t�1(x) and x 7! lcbt(x) = µ

s
t�1(x) � �t�

s
t�1(x), it is

possible to bound the cumulative regret with probability 1 � �/2. To do that,
we leverage the concentration bound provided in [9].

Proposition 4. (Lemma 7, [9]) Take any 0 < �  1 and let fT 2 Hk(D)
and µT (.) and �

2
T (.) be the posterior mean and covariance functions of fT (.)

after observing (XT , YT ) points. Then, for any x 2 D, the following holds with

probability at least 1� �/2:

8t 2 {1, . . . , T}, |µt�1(x)� ft(x)|  �t�t�1(x) (25)

where

�t =

0

@

vuut2 log

 
2det (⌃t +Ktt)

1/2

�det (⌃t)
1/2

!
+ kftkk

1

A . (26)

Proposition is valid for the heteroscedastic setting. As such, with this in
place, and with probability 1� �/2:

rt  ucbt(x
⇤
t )� lcbt(xt)  ucbt(xt)� lcbt(xt) = 2�t�

s
t�1(xt).

Now we bound the cumulative regret at iteration T :

RT =
TX

t=1

rt  2�T

TX

t=1

�
s
t�1(xt).
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If we denote by �
v
t�1(.) the posterior variance of the regression on the pretend

plus latest observations (Xv
t�1, Y

v
t�1), Proposition 3 gives

�
s
t�1(xt)  �

v
t�1(xt)

q
1 +

p
3⌘,

with probability 1 � �/2, as long as we have a number of queries O(logd(t/⌘0))
with ⌘

0 = �⌘/4.
Therefore, the cumulative regret can be bounded with probability 1� � (for

the union bound) as follows,

RT  2�T

q
1 +

p
3⌘

TX

t=1

�
v
t�1(xt).

The observations Y
v
t�1 have been built such that their noise variance can be

uniformly bounded by �
2 log(t � 1). By following the exact same computation

steps of Makarova et al. in [12] (Appendix A.1.1 Step 4) and replacing their fixed
upper bound ⇢̄ by a logarithmically increasing upper bound �

2 log(T ) we get

RT  2�T

q
1 +

p
3⌘
q

2T (1 + (�2 log(T ))2)�T ,

where �T is the maximum information gain at step T . Finally,

RT = O

✓
�T

q
T log2(T )�T

◆
. (27)

Let us now bound �T and �T .
In SparQ-GP-UCB, the ucb acquisition function is computed using the ap-

proximate posterior mean and variance. We thus have:

�T =

s

2 log

✓
2|⌃s

T +Ks
TT |1/2

�|⌃s
T |1/2

◆
+ kfT kk.

By the definition of information gain with the sparse plus recent observations
(see, e.g., [12]), we have

�QT � log

✓
|⌃s

T +K
s
TT |

|⌃s
T |

◆
,

so that,

�T = O

 s

log

✓
2

�

◆
+ �QT

!
. (28)

If we combine bounds (28) and (27), we have a new expression for the regret
bound:

RT = O

 s✓
log

✓
2

�

◆
+ �QT

◆�
T log2(T )�T

�
!
. (29)
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Again, by replacing ⇢̄ by �
2 log(T ) in Makarova et al. proof (Appendix A.1.3)

and using QT = O
⇣
logd (T )

⌘
, we can bound the information gains �T and �QT

for a squared exponential kernel3:

�T = O
⇣
d logd+3(T )

⌘
, (30)

�QT = O
⇣
d logd+3

⇣
logd (T )

⌘⌘
= O

⇣
d logd+3 (d log(T ))

⌘
. (31)

Finally, if we inject bounds (30) and (31) into (29):

RT = O

 s✓
log

✓
1

�

◆
+ d logd+3 (d log (T ))

◆⇣
T log2(T )d logd+3(T )

⌘!

= O

 s✓
log

✓
1

�

◆
+ d logd+3 (d log (T ))

◆⇣
Td logd+5(T )

⌘!
(32)

This proves Theorem 1. ut

A closer look at the proof of Theorem 1 shows that one could choose to keep
all the measurements with variance less than g(T ) = o(T 1/4), as discussed in
Section 3, instead limiting at the ones with variance less than �

2 log(T ). Since
the maximum variance enters twice in the regret as a power of 2, then the final
regret would read R = Õ(

p
T
p
g4(T )) = o(T ), leading to a sublinear cumulative

regret and a no-regret result.

5.3 Proof of Theorem 2

The computational complexity of the algorithm proposed by Burt et al. [4] to
obtain a " approximation of a M -DPP from a set of N inputs is bounded as
O
�
NM

3(log logN + logM + log 1/"2)
�
, see their Section 4.2.2.

The cost of the GP regression with M training inputs is O(M3) [16], and the
complexity of SparQ-GP-UCB is dominated by the computation of the M -DPP.
Thus, for T iterations in Algorithm 1 and with QT the number of sparse inputs
at the end of the process, the computational complexity of SparQ-GP-UCB is T
times the worst complexity of the DPP:

O
⇣
T (QT )

3 (log log T + logQT + log 1/"2T )
⌘
.

In Proposition 2, for fixed precision ⌘, we show that QT = O
⇣
logd (T )

⌘
, suffices

to obtain a "T -approximation of a QT -DPP, with "T = O
�
1
T

�
. By substituting

these estimates into the complexity, we obtain a total computational complexity
of SparQ-GP-UCB of O

⇣
T

2 log(T ) log3d (T )
⌘
. ut

3 The information gain in a homoscedastic case for a SE kernel is O(d logd+1(T )) to
which we multiply a factor log2(T ) in our setting for the heteroscedastic case.
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6 Conclusion

In this work, we provide a general framework to obtain sublinear regret bounds
for GP optimization of a time-varying objective f in the bandit setting. The
function f is assumed to belong to a RKHS with a bounded norm. We model
time variations through uncertainty injection by linearly increasing the noise
standard deviation of the data over time. We recover no-regret by asking Õ(1)
additional side queries to an expert at each iteration. Future research will explore
strategies to reduce the number of expert queries, such as retaining and reusing
past responses to avoid querying the expert at every iteration.
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