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Abstract. Unsupervised Graph Domain Adaptation (UGDA) aims to
mitigate distribution shifts between domains by transferring knowledge
from labeled source graphs to unlabeled target graphs. Current work
indicates that enhancing target embeddings is helpful for domain gen-
eralization. However, these methods primarily focus on structure-guided
enhancement but often overlook the intrinsic coupling between struc-
tural topology and node semantics in graph data, resulting in subopti-
mal target representations during complex structure adaptation. To ad-
dress this problem, we propose a novel approach called Target-adaptive
Structure-Semantic Consistency (TASSC). First, we establish bidirec-
tional optimization, ensuring consistency between structural proximity
and semantic similarity on the target graph. Specifically, we propose
a hybrid contrastive learning strategy, which unifies topological neigh-
bors and cosine-similarity features (semantic neighbors) as positive sam-
ples. Additionally, we employ entropy minimization to suppress target
semantic ambiguity caused by source domain biases, creating a closed-
loop optimization where ‘structure guides semantics, semantics feedback
structure.” Furthermore, we develop a scale-aware adaptive module to ac-
cess scale disparities between domains, dynamically transferring source
knowledge to mitigate target semantic insufficiency. Extensive exper-
iments on three real-world benchmark datasets demonstrate that our
method achieves state-of-the-art results.

Keywords: Graph Neural Networks - Transfer Learning - Unsupervised
Graph Domain Adaptation.

1 Introduction

Graph Neural Networks (GNNs) [7/16] have demonstrated remarkable effective-
ness in modeling relational data, driving advances in social network analysis [25],
protein interaction prediction [37], and recommendation systems [24]. However,
their performance heavily relies on labeled data, with cross-domain generaliza-
tion hindered by label scarcity and distribution shifts. To mitigate such issues,
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Fig. 1. Illustration of motivation. (a) The t-SNE [I7] feature visualization for the task
A — C on the ArnetMiner [27] dataset, where orange and blue colors represent the
target and source data, respectively. (b) The performance of structure-guided alignment
is limited without the semantic consistency constraint.

Unsupervised Graph Domain Adaptation (UGDA) [B1823|T3] addresses this by
transferring structural knowledge from labeled source graphs to unlabeled target
graphs via domain-invariant representation learning.

In real-world scenarios, such as citation networks across different publishers
and time periods, variations in node attributes and graph structural properties
are evident. The source graph may contain dense clusters of highly intercon-
nected papers, whereas the target graph may have a more sparse, distributed
structure, or vice versa. This drives recent efforts to leverage target information
for better domain generalization (DG). A2GNN [I1] implicitly enhances topology
representation by stacking multiple message-passing layers on the target graph,
while TDSS [3] further employs structural smoothing to mitigate distribution
shifts. Moreover, some studies [T4/15] adjust edge weights to better align target
topology, mitigating conditional shifts caused by neighborhood structures.

However, these methods primarily adopt target structure-guided alignment
to refine target embeddings while overlooking the importance of target-specific
semantic information. As illustrated in Fig. a), in the embedding space, target
node representations become diffusely distributed due to insufficient semantic
constraints. This results in a situation where the source domain, benefiting from
labeled supervision, could partially ignore the semantic constraint to some ex-
tent and still achieve good classification performance, as shown in the upper
part of Fig. b). In contrast, the target domain lacks such guidance, causing
the node (marked by a green circle in Fig. [I{b)) within the same class to experi-
ence shifts due to structural perturbations, which may lead to misclassification.
Therefore, it is essential to not only align features based on target topology but
also ensure consistency between structure and semantics. Specifically, nodes with
strong structural connections should remain close in feature space, reflecting the
graph topology, while semantically similar nodes should form compact clusters,
preserving consistency for accurate classification.



Target-adaptive Structure-Semantic Consistency for UGDA 3

Motivated by this analysis, we propose Target-adaptive Structure-Semantic
Consistency (TASSC) for cross-domain node classification. First, we design a
structure-semantic constraint module to break through the limitations of single-
perspective optimization. Specifically, we introduce a hybrid contrastive learn-
ing strategy, constructing positive and negative sample pairs at both the node
and embedding levels to enforce dual consistency. At the node level, positives
are defined by topological neighbors, while at the embedding level, they are
determined through cosine similarity. Additionally, we incorporate entropy min-
imization on the target graph to reduce noise from source structural priors,
enhancing semantic consistency. Second, we develop an adaptive adjustment
module to assess the target domain’s information scale relative to the source
domain. By selectively transferring high-quality source knowledge, this module
adaptively enhances target semantics. These two modules are designed to pre-
serve structure-semantic consistency during adaptation, refining target node rep-
resentations through topological properties and semantic similarity, ultimately
improving generalization on the target graph.

Our contributions can be summarized as follows:

1. We propose TASSC, a novel framework for UGDA, which establishes a bi-
directional adaptation process, integrating structural topology and semantic
representations on the target graph to enhance representation consistency
and improve cross-domain generalization.

2. We design an adaptive mechanism that assesses domain complexity and re-
fines target representations by dynamically leveraging source domain infor-
mation, facilitating more effective knowledge transfer.

3. We conduct extensive experiments on three benchmark datasets. The results
demonstrate that TASSC achieves state-of-the-art performance, significantly
outperforming the best baseline with notable relative improvements.

2 Related work

Unsupervised Domain Adaptation (UDA) [5l6] is a widely adopted transfer learn-
ing paradigm aimed at minimizing domain divergence. In the context of graph-
structured data, UGDA [4123] has emerged as an effective approach for address-
ing distribution shifts within relational networks. Existing UGDA methods can
be categorized into three main groups.

Methods in the first group primarily focus on reducing source prediction
risks through enhanced node embeddings [4I33]. For example, UDAGCN [31]
introduces a dual-GNN that employs adversarial training to align feature distri-
butions across domains. ACDNE [21] utilizes the k-hop PPMI matrix to capture
high-order proximity, ensuring global consistency during adaptation. The second
group of methods mitigate graph domain shifts by constructing intermediate
representations to bridge domain gaps effectively [34U30]. Several strategies have
been proposed to achieve this. ASN [36] separates domain-private and shared fea-
tures, leveraging adversarial domain adaptation to extract the domain-invariant
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shared features across networks. GGDA [I0] introduces a compact domain se-
quence with FGW-based intermediate graphs and vertex-based progression to
minimize information loss and improve adaptation. KBL [I] adds data augmen-
tation with adversarial learning to align node embeddings across domains. The
last group of methods enhances target embeddings by leveraging target domain
information [28/T4I12]. PairAlign [15] mitigates structure and label shifts by ad-
justing node influences with edge and label weights, improving cross-domain
alignment in graph adaptation. DMGNN [22] refines predictions through a label
propagation mechanism, utilizing a node classifier that improves label consis-
tency by aggregating the predictions of a node and its neighbors. A2GNN [IT]
enhances adaptation by replacing a shared encoder with a shared transformation
layer and deeper propagation on the target graph. TDSS [3] mitigates structural
shifts and improves node representation by performing structural smoothing on
the target graph.

While these methods above have shown remarkable effectiveness in enhanc-
ing target node representations, the structure-semantic collaborative mapping
mechanism has not received sufficient attention and exploitation.

3 Preliminaries

In this section, we begin with the notation and problem definition, then present
the graph neural networks employed in this work.

3.1 Notation and problem definition

Consider an attributed graph G = (V, &), where V = {vi}?jl is the set of |V|
nodes and & is the set of edges. Let X = {x,|v € V} € RIVI*P be the node
adjacency matrix of G, where x; is the D-dimensional feature vector of node
v;. We denote the graph structure as an adjacency matrix A € RIVIXIVI| where
A; ; = 1 means there exits an edge connecting v; and v;, otherwise A; ; = 0.
Given two different but related source domain S and target domain 7, both
domains share the same C' categories. The source graph with m labeled nodes
is denoted as Gs = (Vs,Es,Ys) and target graph with n unlabeled nodes is
denoted as Gr = (Vr,&r). In practice, P (Gs) # P(G:) but P (Vs| (Vs,Es)) =
P (YVr| (Vr,Er)), where P denotes the probability distributions. Our goal is to
build a function F : (Gs,Gr) — ) for the node classification task, using the
labeled source graph Gs and unlabeled target graph Gr during adaptation.

3.2 Graph neural networks.

Inspired by the previous work [II], we construct our model F, which adopts
an asymmetric strategy that increases the number of message passing layers
on the target graph while reducing those on the source graph. Specifically, the
feed-forward neural network F with parameter © consists of two modules: a
feature encoder g(-;6) : X — R? and a node classifier h(-;€) : R — R, i.e.



Target-adaptive Structure-Semantic Consistency for UGDA 5

.
Source graph Vs

s | (a) before TASSC
g7 Lo /
— 82 Classifier =—) £, : /}Q
o= —— B
= e * | y
x : !
e — [} . | !
Shared Scale-aware el : ﬂmg“ | ;
parameters . idmive parar:leters | (b) after TASSC
[ ' il e
Target graph L S woptimize H ! PP
- | Semantic ! | b, %‘ I A
= ! constraint . | ;| i
— 28 —) ~p Classifier —=p L. | RO 4
g | Topology | )
[T ! constraint !
= o \ S ——— ! |
Target-adaptative sturctur i i Y
({— Source data forward flow OA Topology neighbors of @ L. Loss for target sturcture-semantic consistency
| 4= Target data forward flow @ Scmantic neighbors of @ L, Loss for classifier training  LyjignLoss for domain alignment

Fig. 2. The framework of the proposed method to learn F.

F =hog(:;0) where © = {0, £} represents the shared parameters across both
the source and target graphs, and d denotes the dimension of the input features.

Without loss of generality, we update the representation of node v at I-th
hidden layer in the network JF, which can be formulated as:

B, = ¢! (B AW (R e A (0)}). )

where h! = F! (v;0), N (v) represents the neighbors of node v and C! serves
as the combination function at layer [. The aggregation function A®*) compre-
hensively processes the features of the k-hop neighbors of v. Notably, the value
of node k in the source graph branch is significantly smaller than in the target
graph branch, i.e., kg < kr.

4 Methodology

In this section, we introduce our method, Target-adaptive Structure-Semantic
Consistency (TASSC). The overall framework of TASSC is shown in Fig. |2| In
the following sections, we provide a detailed explanation of its components.

4.1 Target structure-semantic consistency learning

The core contribution of this paper is to efficiently preserve the consistency be-
tween target structural proximity and semantic similarity, to achieve better gen-
eralization. Notably, we observe that graph contrastive learning [24/32] provides
distinct theoretical advantages. By explicitly defining structure-guided similarity
relationships, this approach inherently incorporates local topological constraints
into the representation learning process. For instance, by forming positive pairs
within local neighborhoods, the contrastive loss encourages the latent space dis-
tance between adjacent nodes to be proportional to their structural similarity,
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thereby reinforcing the alignment between the learned representations and the
underlying graph structure.

However, relying solely on topological neighbors as positive samples may
propagate structural noise, especially under cross-domain distribution shifts. As
shown on the right side of Fig. [2] the green-circled node is connected to three
other nodes, but only one of them shares the same class. This could lead to mis-
classification due to source-biased structural alignment, affected by the hollow
red-triangled nodes. In contrast, the solid red-circled nodes, though not directly
connected to the green-circled node (as shown by the red dashed line in Fig. |2),
are semantically similar to it, as indicated by their proximity in the feature space.
Therefore, the solid red-circled nodes can provide meaningful semantic informa-
tion to the green-circled node, effectively acting as its semantic neighbors.

Motivated by this observation, we propose a hybrid positive sampling strat-
egy for target-oriented contrastive learning. In this approach, positive pairs are
constructed by combining both topological neighbors and feature-similar nodes.
For any input target node v;, we calculate its cosine similarity with all other
nodes in the target graph G, excluding v, itself. Let V, C V, denote the set of
nodes used for comparison, where v; ¢ V. Thus, we select semantic neighbors
based on similarity ranking, which can be formulated as:

Niem (vt) = {Uffim | viG" € Vi € topk (sim (vt,\?t) ,ksem) }, (2)

where v¢ = g(v; 0) presents the target feature of vy, Vy = [\Aft,j]lj‘il‘*l

trix containing the node feature v; = g(9;; #) for each node 0, € V. Additionally,
sim(-, ) is the function to evaluate cosine-similarity of the input two vectors, and
topk(Z, k) represent an operation which selects the k elements with the highest
values from set Z and returns the corresponding indices of these elements.

For the one-hop local neighbor set AV (v;), we uniformly select kiopo elements
as the topological neighbors of v, forming the set Niopo(vy) [32]. We then dy-
namically select positive samples for v; as follows:

is the ma-

N+ (Ut) = Mopo(vt) U Neem (Ut)a (3>

where NV (v;) denotes the set of selected target neighbors for v;.
For any input target node v, the regularization can be expressed as:

ev:vH_/T

v;rvH_/‘r 4 th,EN, (v) ev;rvt_/T .

LI (G1:0) = —Ey,cv,Eu,, eny (v,) log . (4)

Here v;1 and v;_ are the node representations generated by g(-; 8) for nodes vy
and v;_, respectively. 7 is the temperature hyper-parameter. Typically, N_(v;)
denotes the negative sample set, which is randomly selected from the target node
space Vr |26], with the constraint that the number of negative samples, |N_ (v;)],
is equal to the number of positive samples, |V (v;)|, ensuring equal sample sizes
for effective contrastive learning.
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4.2 Target-oriented semantic regularization

While the target structure-semantic consistency learning method proposed in
Section effectively enforces localized constraints between topological neigh-
borhoods and semantic neighborhoods, it lacks explicit regularization of the
global semantic distribution in the embedding space. Specifically, under the
shared feature encoder framework, domain structural biases may cause target
node representations to deviate from their true semantic distribution, resulting
in blurred class boundaries.

To address this limitation, incorporating global semantic constraints or regu-
larization mechanisms into the learning objective is essential. Such enhancements
would ensure that target representations not only preserve local consistency but
also maintain global discriminability, thereby mitigating the adverse effects of
noise introduced by source structural priors.

Thus, we employ entropy minimization to preserve critical distinctions in the
target graph’s feature space, formulating this regularization as shown in Eq..

C
Ll (Gr:0) = —Ey,cvp Y 0c (F (vi;0)) log b, (F (v150)) , (5)

where 6. (p) = exp (p.) />, exp (p;) denotes the c-th element in the softmax
output for a C-dimensional vector p, and F (v4;0) = ho g (v; {6, ¢}) denotes
the C-dimensional output of target node v;.

Due to the absence of target labels, the model may overfit to dominant
classes under the optimization of Eq. , causing minority classes to collapse
into ambiguous clusters. To tackle this issue, we integrate a diversity maximiza-
tion regularization term to counteract degenerate distributions [9], which can be
formulated as:

£ (G7:0) =KL (p. fc ) )
where p = E,,cp,. [0 (F (vs; ©))] represents the mean output embedding of the
whole target domain, [ is a C-dimensional vector with all elements set to one.
KL (+,-) is a function outputting Kullback—Leibler(KL) divergence of the two
inputted probability vectors.

Combining Eq. and Eq.(]ED7 we concisely express the target-oriented se-
mantic regularization by Eq..

Lo (Gr:0) = LI (G1:0) + L) (G1:0) . (7)

By maximizing mutual information between target representations and latent
labels, £, drives the model to learn more distinct and discriminative target

node representations in the latent space.
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Fig. 3. The Micro-F1 scores (%) of different strategies for achieving structural and
semantic consistency on the ArnetMiner dataset.

4.3 Scale-aware adaptive structure-semantic consistency learning

Similar to previous works [I1], our method mitigates distribution shifts under the
assumption of implicit homogeneity between source and target domain scales.
However, we observe that this assumption overlooks the dynamic impact of scale
discrepancies on semantic optimization, potentially resulting in suboptimal class
separability and ambiguous node representations in the target graph.

To validate our hypothesis, we conduct experiments on the widely used Ar-
netMiner [27] dataset in UGDA for further investigation. Fig. shows the results
under different strategies. Specifically, we design four distinct experiments on
three tasks, where w/ / w/o S or T indicates whether employ structure-semantic
consistency learning as Eq. , is applied to the source or target domain data.
As shown in Tab. [1] for the detailed dataset, domains A and C exhibit similar
numbers of nodes and edges, whereas domain D is relatively smaller in scale.
When we transfer knowledge from one domain to another which containing sim-
ilar or larger scale information (e.g. A — C, D — C), as shown in Fig. [3(a)
and Fig. c), the source semantics have little impact on overall generalization.
Moreover, integrating source semantics with target information may even lead
to performance degradation. In contrast, enforcing both structural and semantic
constraints solely on the target data significantly improves generalization. The
results are explainable that when the target graph carries information on par
with or exceeding that of the source graph, further enhancing the source rep-
resentation introduces additional structural noise, thereby compromising target
semantics. Nonetheless, as illustrated in Fig. b), transferring knowledge to a
smaller-scale domain in the C — D task results in insufficient informational
support, leading to suboptimal performance. However, incorporating semantic
optimization from the source domain can enhance cross-domain semantic com-
monality, thereby improving target representation.

The scale of a graph is determined by both the number of nodes and edges.
Nodes serve as the main carriers of semantic information in graph-structured
data, while edges serve as concrete representations of structural relationships.
Guided by the aforementioned analysis, we design the weighted joint scale dis-
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parity measurement method, which is formulated as follows:

: [Vs| [€s] [€7]
1, if w|vi\+(1_w)ﬁ26 A IV—ZST

. { , C®
0, otherwise

where the weight coeflicient w = 0.7 is used to balance the impact of nodes and
edges on domain-scale measurement. € is the value that represents the relative
information scale of the source domain compared to the target domain and is
set to 1.5. Additionally, we impose a constraint ensuring that the target degree,
defined as %, remains below the threshold 1", thereby preventing the model
from neglecting extreme structural variations.

Similar to Eq. , we build the structure-semantic consistency learning on
the source domain, which is regularized as follows, where v, = g(vs; 6):

ev;rvs+/7'

ﬁfsc(gs; 0)=—Ev,cvsBu, . en (v, l0g evevs+/T £ 3

vIive /T’ (9)
US*ENf(Us)e s

By incorporating the scale-adaptive adjustment parameter A derived from
Eq. (8), we implement Eq. where a and (§ are trade-off parameters.

Liassc(Gs, 613 0) = a (LL (Gr;0) + M\LE.(Gs;0)) + BLL, (Gr;0).  (10)

4.4 Model optimization

As aforementioned, we achieve the target-adaptive structure-semantic consis-
tency learning by minimizing the objective Li.ssc. To facilitate effective knowl-
edge transfer from the source domain to the target domain, we combine the
standard cross-entropy loss and entropy minimization loss on the source domain.
The resulting regularization is formulated as shown in Eq..

C
[’Cls (gS; 6) = - E(vs,ys)évs XVs Z qde IOg 50 (»F (US; 9))

c=1

(11)
C
~NEuevs Y0 (F (v50))log e (F (v550)).

where v; = 0.5, and ¢ denotes the one-hot encoding of ys € Vg, with ¢, being
‘1’ for the correct class and ‘0’ for all other classes.
To summarize, the overall loss function can be expressed as:

E(QSy gT; @) = Ltassc(gSa gT; @) + ﬁcls(gS; @) + 72£a1ign(g57 gT; @)a (12>

where Lajign is the domain alignment regularization, v, functions as a weighting
factor. In this paper, we follow the recent work [3] which utilizes the Maximum
Mean Discrepancy (MMD) to align the source and target domains.
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Table 1. Statistics of datasets, # means ‘number of’, ‘Attr.” refers to attributes.

Datasets ‘ Graph ‘ #Node ‘ #+FEdge ‘ #Attr. ‘ #Label
ACMvI(A) 9,360 15,556
ArnetMiner | Citationvl(C) 8,935 15,098 6,775 5

DBLPv7(D) | 5484 | 8,117

EUROPE(E) 399 11,990
USA(U) 1,190 | 27,198

Germany(DE) 9,498 153,138
England(EN) 7,126 35,324

Airport 241 4

Twitch 3,170 2

5 Experiments

This section briefly introduces the evaluation datasets and experimental setting,
followed by a presentation of experimental results of our method. Subsequently,
supporting experiments, such as analysis and ablation study, are conducted.

5.1 Experimental setup

Datasets. This paper uses the following three datasets that are widely used
for UGDA. ArnetMiner [27] is a middle-scale dataset, which includes papers
from different sources and time periods of 5 categories shared by three domains:
ACMv9(A), Citationvl(C), and DSLR(D). Our method is evaluated by per-
forming domain adaptation on all 6 tasks. Airport [19] is a small-scale dataset
consisting of 4 node categories in total, where each node indicates an airport and
each edge represents the routes between two airports. We evaluate our method
on two graphs in this dataset: EUROPE(E) and USA(U). Twitch [20] is a social
network dataset collected from different regions, where each node represents a
user and the edges indicate friendships between users. We evaluate our method
on the following two graphs: Germany(DE) and England(EN). The statistics of
these datasets are presented in Table [I]

Implementation Details. In practice, we adopt the same experimental settings
as in previous work [TT)3], with slight difference. We design the feature encoder
and classifier, respectively, of 128 (except 64 for Twitch) and C' units, in which C
differs from one dataset to another. 7" is set to 20. The number of topology and
semantic neighbors [Ny (vi)| = 5, where kgery = 1. 8 in Eq. is initialized at
0.3 starting from the middle stage of training, with the remaining periods set to
0. o and 7 are searched within the sets {0.5,1.0} and {0.25,0.5, 1.0}, respectively.
2 in Eq. is set to 10. We set the message propagation layers k € {1,10} in
the target graph branch while & = 0 in the source graph branch. All experiments
are implemented using PyTorch and run on a single NVIDIA RTX 3090 with
24GB. The whole network is trained by Adam with weight decay € {le—3, 5e—3}
and the learning rate is set to 0.01. Under random seed 200, we run the codes
repeatedly for 5 rounds and report the average results using both Micro-F1 and
Macro-F1 scores. Our code is available on https://github.com/YeewZ/TASSC.
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Table 2. Classification accuracy (%) on ArnetMiner dataset, the bold and the under-
line mean the best and the second-best result, respectively.

Methods ‘A%C‘A_)D‘ C_)A‘C_>D‘D—>A‘D—>C‘ Avg.

|Mi-F1 Ma-F1|Mi-F1 Ma-F1|Mi-F1 Ma-F1|Mi-F1 Ma-F1|Mi-F1 Ma-F1|Mi-F1 Ma-F1|Mi-F1 Ma-F1

UDAGCN [31]|72.15 60.33|66.95 64.83|66.80 67.22|71.77 69.46|58.16 55.89|73.28 61.12(|68.19 63.14
SAGDA [I8] |77.50 74.09|70.46 66.28|69.90 68.89|73.80 68.10(61.74 53.62|73.92 70.38|71.22 66.89
AdaGCN [4] [79.32 76.51|75.04 71.39|71.67 70.77|75.59 72.34|69.67 69.47|78.20 74.22|74.92 72.45
CWGCN [29] (80.21 78.34|74.11 71.84(71.68 71.80|76.40 73.76|68.35 68.39|76.82 73.73|74.60 72.98
ACDNE [21] |[81.75 80.09|76.24 73.59|73.59 74.79|77.21 75.74|71.29 72.64|80.14 78.83|76.70 75.95

GRADE [30] |76.04 72.52|68.22 63.03|69.55 69.34|73.95 70.02|63.72 59.35|74.32 69.32|70.97 67.26
KBL [1] 77.66 75.24|69.60 65.80|70.59 69.87|74.48 70.95|63.23 57.51|74.93 70.28|71.75 68.28
ASN [36] 80.64 77.81|73.80 71.40|72.74 73.17|76.36 73.98|70.15 71.49|78.23 75.17|75.32 73.84
DMGNN [22] |81.58 80.08|76.81 74.76(72.70 73.82|76.57 74.08|70.50 71.44|80.26 78.16|76.40 75.39
GGDA [10] 81.90 80.40|77.20 74.90(77.1076.60|77.40 75.90(75.8075.80/81.50 80.30|78.48 77.32

StruRW [14] |77.35 72.07|69.10 62.51|67.81 59.77|73.81 66.89|63.27 53.82|72.41 62.94|70.63 63.00
PairAlign [15]|70.88 67.88|65.91 62.35|65.85 65.09|71.04 67.56|59.34 58.77|67.07 64.61|66.68 64.38
SpecReg [34] |80.55 78.83|75.93 73.98|72.04 73.15|75.74 73.64|71.01 72.34|79.04 77.78|75.72 74.95
A2GNN [II] [82.39 81.06|77.14 75.01|74.30 75.74|77.30 74.97|71.79 72.84|80.63 78.11|77.26 76.29
SEPA [12] 82.46 81.11|76.05 74.78|73.88 75.29|78.08 76.97(73.83 74.85|82.82 81.74|77.79 77.39
TDSS 3] 82.51 80.93|78.1474.94|74.63 76.04|78.21 74.78|73.93 75.39|81.12 78.87|78.09 76.83

TASSC (ours)|83.9582.94|77.91 76.11|75.41 77.11/78.4077.23|74.16 75.68/83.1982.11|78.8478.53

Baseline methods. To evaluate our method, we select 16 baseline methods di-
vided into the following three groups. The first group includes 5 deep node em-
bedding methods: ACDNE [21], UDAGCN [31], AdaGCN [4], SAGDA [18], and
CWGCN [29]. The second group contains 5 methods using GNNs to aggregate
topology and node attributes across source and target graphs to address distribu-
tion shifts: ASN [36], KBL [I], GRADE [30], DMGNN [22], and GGDA [I0]. The
third group includes 6 methods that leverage target information to enhance gen-
eralization: SpecReg [34], StruRW [14], PairAlign [I5], A2GNN [II], SEPA [12],
and TDSS [3].

5.2 Experimental results

The node classification accuracies of TASSC and these comparison methods on
the three benchmarks are presented from Tab. [2] to Tab. @ For the dataset Ar-
netMiner (Tab. , TASSC achieves competitive results. In all comparison tasks,
TASSC obtains the best result on A — C, C — D, and D — C. Although GGDA
performs best on C — A and D — A, its performance exhibits significant fluctu-
ations on the others. Compared to other UGDA methods, our method achieves
the best result in average accuracy and surpasses the second-best method GGDA
by 0.36% in Micro-F1 and almost 1.21% in Macro-F1 on average. As shown in
Tab. [3] TASSC further defeats other methods on Airport. Specially, our method
reaches the best accuracy of 55.28% and 53.72% in Micro-F1 and Macro-F1 on
average, and also obtains the best on both two tasks. Upon closer inspection of
the results on Twitch (Tab. [4), TASSC demonstrates either the best or second-
best performance. Specifically, our method achieves the highest performance on
the EN — DE task and surpasses the KBL by 8.35% in the Macro-F1 score. Al-
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Table 3. Classification accuracy (%) on Airport dataset, the bold and the underline
mean the best and the second-best result, respectively.

Methods \ E—U \ U—E \ Avg.

| Mi-F1 ~ MaFl | Mi-FI ~ MaF1 | Mi-F1 =~ MaF1
CWGCN [29] 44.96 39.68 40.60 34.17 42.78 36.93
SAGDA [18| 36.30 28.18 37.09 36.10 36.70 32.14
ACDNE [21] 50.50  48.15 47.37  44.94 48.94  46.55
AdaGCN [ 46.89 43.56 49.87  AT.67 48.38 45.62
ASN [36] 46.64 43.29 42.11 38.31 44.38 40.80
KBL [1] 45.46 35.61 31.83 23.45 38.65 29.53
GRADE [30] 49.83 47.36 4837  47.21 49.10 47.29
DGDA [2] 42.27  35.59 43.11 36.47 42.69 36.03
StruRW [14] 43.70 41.27 41.10 37.39 42.40 39.33
PairAlign [15] 39.08 36.55 38.60 35.31 38.84 35.93
A2GNN [17] 47.78 45.32 55.39 52.70 51.59 49.01
TDSS [3] 40.08 30.30 53.13 47.93 46.61 39.12

TASSC (ours) | 53.51  51.17 | 57.04  56.27 | 55.28  53.72

though KBL performs outstandingly on the DE — EN task in Twitch, it exhibits
mediocre performance on the other tasks. In contrast, TASSC demonstrates the
best or second-best performance among the three datasets.

5.3 Analysis

In this section, we further analyze TASSC from the following three aspects.
Feature visualization. According to the 5-way node classification results for
the A — C task, we provide the visualization of the node feature representations
learned in the target domain by using t-SNE [I7], comparing our method against
three baselines. As shown in Fig. d), TASSC effectively captures the intrinsic
semantic structure of the target graph, yielding a well-clustered distribution.
To quantitatively evaluate the clustering quality, we employ Normalized Mutual
Information (NMI)[35], and our method achieves the highest score of 0.6249,
indicating well-separated clusters and tighter intra-class groupings. In contrast,
PairAlign, A2GNN, and TDSS exhibit more dispersion and overlap, with NMIs
of 0.3588, 0.5880, and 0.5973, respectively, as shown in Fig. [f(a)-(c).
Parameters sensitivity. In the objective of TASSC, two key parameters, «
and 3, are introduced, as defined in Eq. . Parameter « reflects the adjust-
ment from the contrastive learning based on topology and semantic neighbors.
Parameter  regulates the strength of the target semantic regularization. To
evaluate their sensitivity, we carry out 60 experiments on the A — C task in
the ArnetMiner dataset, varying « within [0.1,1.0] and 8 within [0.05,0.5]. As
illustrated in Fig. [5] the high-accuracy region (marked in blue) is not isolated,
indicating that TASSC is not overly sensitive to specific choices of o and S.
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Table 4. Classification accuracy (%) on Twitch dataset, the bold and the underline
mean the best and the second-best result, respectively.

Methods \ DE — EN \ EN — DE \ Avg.

| Mi-F1  Ma-F1 | Mi-F1I  MaF1 | Mi-F1  MaF1
ACDNE [21] 56.13 55.85 57.30 55.47 56.72 55.66
AdaGCN [4] 57.20 57.20 61.46 58.27 59.33 57.74
CWGCN [29] 57.03 55.00 62.16 55.73 59.60 55.37
UDAGCN [3T] | 58.32 52.81 62.68 54.04 60.50 53.43
ASN [36] 55.82 55.47 60.45 57.19 58.14 56.33
KBL [1] 59.32  59.11 | 64.07 5390 | 61.70  56.51
GRADE [30] 58.03 57.37 58.71 56.23 58.37 56.80
DMGNN [22] 57.79 53.71 60.24 59.57 59.02 56.64
PairAlign [15] 56.33 55.77 58.28 55.16 57.31 55.47
A2GNN [11] 57.26 56.57 6244  60.32 59.85  58.45
SEPA [12] 57.90  57.44 63.58 58.34 60.74 57.89
TDSS [3] 56.03 54.88 61.14 55.55 58.59 55.22

TASSC (ours) ‘ 58.74 57.08 64.38 62.25 61.56 59.67

(@) PairAlign (NMI=0.3588) _(b) A2GNN (NMI = 0.5880) (©TDSS (NMI=05973)  (d) TASSC (NMI = 0.6249)

Fig. 4. Visualization of the learned node embeddings for the A — C task on the
ArnetMiner dataset across different models.

Qualitative study. When selecting semantic neighbors, we fix kgep, = 1 without
further adjustment. In this analysis, due to space limitations, we design two sets
of experiments, one for A, D — C and another for the symmetric A — D and D —
A task, to examine the impact of the number of selected semantic neighbors, as
illustrated in Fig. [6{a) and Fig. [6(b). We vary kgem within set {0, 1,2,3,4,5}. By
analyzing Fig.[6] we conclude that incorporating a moderate number of semantic
neighbors effectively enhances the model’s generalization ability in optimizing
structure-semantic consistency, while excessive additions hinder it.

5.4 Ablation study

We design an ablation experiment to isolate the effectiveness of key components
in TASSC. Specifically, we decouple the combination in Eq. to shield the
influence of both topological and semantic neighbors. Correspondingly, we re-
construct the regularization in Eq. as LDOsem and L£07YPO pegpectively.

tassc tassc
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A - C Macro-F1 (%) by TASSC

(LR 182.15 82.14 82.61 82.57 82.54 82.81 82.66

(R 82.01 82.5 82.56 82.56 82.68 82.69

WER(81.97 82.24 82.52 82. 82.74

(PR S1928 82.15 82.32 82.65 82.53 82.71

Parameter B

0.1 81.97 82.1 82.36

0.05 A

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Parameter

Fig. 5. The influence of parameters « and 8 on A — C task.
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(a) Task A.D — C (b) Symmetric Task on A and D

Fig. 6. Micro-fl performances (%) across different transfer tasks with varying numbers
of semantic neighbors.

no—sem

tanse - indicates that the positive samples constructed for v; only utilize the
target’s local neighbors Miopo(v:), excluding semantic neighbors. In contrast,
LI0TP° s constructed by using semantic neighbors while excluding the topo-
logical neighbors. Here we use the classification loss L. and domain alignment
loss Laiign to regulate the training of TASSC and take it as the baseline. Then

_ —t ..
we use Lo 5em Lo "P? and Liasse to form three variation methods.

As shown in Tab.[5] we observe that the variant methods incorporating target
topology preservation or semantic constraint outperform the baseline. Further-
more, enforcing both target structure and semantic consistency, represented by
Liassc, significantly improves performance. This phenomenon indicates that the
designed losses have a positive impact on the final results.
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Table 5. Ablation results (Avg. %) of TASSC on the three datasets. the bold means
the best result and v'marks the available regularization term.

‘ ArnetMiner ‘ Airport ‘ Twitch
|Mi-F1 Ma-F1|Mi-F1 Ma-F1|Mi-F1 Ma-F1

77.47 76.30 | 50.90 49.16 | 60.95 57.09
v 78.54 78.18 | 53.65 51.97 | 61.15 58.80

78.22 T77.84 | 53.79 51.58 | 60.90 58.68
v/ |78.84 78.53 |55.28 53.72|61.56 59.67

—s no—topo
['CIS + ['align ‘C?aosscsem [’tassc P Ltassc

AN N NN
N

6 Conclusion

In this paper, we investigate the problem of UGDA by addressing the limita-
tions of existing methods in exploiting the intrinsic interplay between structural
proximity and semantic similarity within the target graph. To this end, we pro-
pose TASSC, a novel method that enforces consistency learning between struc-
ture and semantics in the feature space for enhancing domain generalization.
Specifically, TASSC integrates topological and semantic neighborhood informa-
tion to improve representation alignment and incorporate two self-supervised
regularizations to enforce both global and local consistency. Furthermore, we
introduce a scale-aware adaptive module that dynamically adjusts knowledge
transfer based on domain scale discrepancies, enhancing target node represen-
tations for more effective consistency learning. Extensive experiments on three
widely used datasets validate the effectiveness of TASSC, demonstrating signif-
icant performance compared to state-of-the-art baselines.
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