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Abstract. Data generation using generative models is one of the most
impressive growing field of artificial intelligence. However, such models
are black boxes trained on huge datasets lacking interpretability proper-
ties. Causality is a natural framework to include expert knowledge into
deep generative models. Other expected beneficial properties of causal
generative models are fairness, transparency and robustness of the gener-
ation process. Up to our best knowledge, while many works have analyzed
general generative models’ robustness, surprisingly none have focused on
their causal counterpart even if their robustness is a common claim. In
the present paper, we introduce the fundamental concept of counterfac-
tual robustness, which evaluates how sensitive causal generative models
are to interventions with respect to distribution shifts. Through a se-
ries of experiments on synthetic and real-life datasets, we demonstrate
that all the studied causal generative models are not equal with respect
to counterfactual robustness. More surprisingly, we show that all causal
interventions are also not equally robust. We provide a simple expla-
nation based on the causal mechanisms between the variables, that is
theoretically grounded in the case of an extended CausalVAE. Our in-
depth analysis also yields an efficient way to identify the most robust
intervention based on prior knowledge on the causal graph.

Keywords: Counterfactual Robustness · Causal Representation Learn-
ing · Generative Models.

1 Introduction

Generative AI models have gained widespread recognition for their ability to
model complex distributions and generate high-quality outputs [5,3]. These
models, however, often lack interpretability properties, making it difficult to
understand the relationships between the learned representations. Causal gener-
ative models [14] address this issue by capturing causal dependencies between
the extracted latent features, assumed as latent causal factors, hence offering
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enhanced transparency and interpretability [24,23]. Incorporating causal struc-
tures in generative models has furthermore enabled the generation of counterfac-
tual data. By intervening on an extracted causal factor, we derive a new counter-
factual model that can generate samples from unexplored contexts with specific
attributes [2,20], providing answers to counterfactual what-if questions. The
latter are commonly expressed in the form: "What will happen to the model’s
output when setting one of the input variables to a specific value?", and aim to
analyze the impact of an intervention on the model’s outcome. For example, for
CelebA dataset [18], a counterfactual model with respect to the intervention
"Gender=Male" is capable of generating the male counterparts of female in-
put images, hence highlighting the facial attributes that change with the gender
in the model’s reconstruction. Since counterfactual models enhance the inter-
pretability through responding "What-if" questions [12,26,27], they are leveraged
in overcoming multiple AI research challenges. These models play a crucial role
in defining fairness [17,28] by verifying whether a model’s predictions remain
consistent when only sensitive variables are altered. In mitigating data biases
[11], counterfactuals correct imbalances by generating synthetic samples that
counteract spurious correlations. They are also used in reinforcement learning
[19] to simulate alternative actions, hence improving policy optimization and
decision-making. Nonetheless, generative models are known to be vulnerable to
distribution shifts [16], i.e., whereby small input perturbations induce unwanted
changes in the output. Counterfactual models can therefore also be subject to
this unwanted robustness limitation.

Surprisingly, many works exist on generative models’ robustness [6,16,21],
but to the best of our knowledge, none has ever studied causal generative models
robustness across different interventions. Hence, this work provides a new the-
oretical framework and an experimental study addressing the stated robustness
limitation. In Section 3, we introduce a new theoretical concept of counterfactual
robustness, which allows to characterize the vulnerability of a causal generative
model to distribution shifts across interventions. In Section 4, we conduct a se-
ries of experiments on Pendulum and CelebA datasets [29,18] to analyze the
counterfactual robustness of popular observational data causal representation
learning (CRL) models: CausalVAE [29], DEAR [25] and SCM-VAE [15] on
different interventions. The obtained results show that counterfactual models
respond differently to the considered perturbations. This observation motivated
to develop in Section 5, a rigorous theoretical proof in the extended CausalVAE
case. We demonstrate that the substantial difference in the counterfactual mod-
els’ robustness levels to noise perturbations can be explicitly explained by the
causal graph structure, more specifically by the critical properties of the removed
edges with each intervention. Thus, in Section 5 we define a new theoretical con-
cept of "Edge Robustness Score" ERS based on the adjacency matrix of the
causal graph. Considering the causal graph as a prior knowledge, we propose
an algorithm allowing to rank the counterfactual models’ robustness to noise
perturbations. The contributions of this research work are the following:
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– We introduce a new theoretical concept of counterfactual robustness that
evaluates the sensitivity of counterfactual causal models to distribution shifts.

– We analyze the counterfactual robustness of counterfactual models derived
from popular observational data CRL models CausalVAE, SCM-VAE, and
DEAR.

– We show through the conducted experimental study coupled with a theo-
retical analysis for an extended CausalVAE, that the counterfactual models
exhibit different responses to the considered perturbations.

– Based on the causal graph, we propose a novel interpretability perspective
for the differences in robustness to noise perturbations.

– We define the new theoretical concept of "Edge Robustness Score" ERS
leveraging the adjacency matrix of the causal graph and establish that prior
knowledge of the latter, allows the ranking of counterfactual models’ robust-
ness to noise perturbations solely based on the computation of the ERS.

– We propose a robustness score ranking algorithm based on the ERS.

2 Related Work

Generative Models Robustness [4], have introduced the so-called r-robustness
to evaluate the robustness of Variational Autoencoders (VAE). This notion quan-
tifies the robustness of a VAE reconstruction with respect to a given perturba-
tion. In [4], r-robustness local margin bounds are provided, putting in evidence
which parameters can be controlled to guarantee more robustness. Building on
this result, [1] proves that it is possible to construct a VAE model with an a
priori known level of robustness, based on fine control of the Lipschitz constants
of the encoder and decoder. Their proposed theoretical framework focuses solely
on the robustness of traditional VAEs and can not be extended to other genera-
tive models. Other works, such as [21], have studied the adversarial robustness
of flow-based generative models, whereas [16] presented a method to craft ad-
versarial attacks capable of changing different generative models’ outputs. These
papers thoroughly analyze the robustness of generative models. However, to the
best of our knowledge, no prior work has explicitly and comprehensively ex-
amined the counterfactual robustness of causal generative models, a gap that
we aim to address in this study. Notably, we provide an extensive experimental
analysis for several causal generative models and a full theoretical analysis of
counterfactual robustness for the extended CausalVAE.

Causal Representation Learning Generative Models Recently, CRL mod-
els have advanced quickly due to their ability to learn causal latent factors
from high-dimensional data along with their underlying causal structure. These
learned factors describe meaningful semantics of data and hence guarantee more
interpretability and explainability. State-of-the-art CRL models assume the data-
generation process to be either observational, interventional, or counterfactual.
Referring to the causal generative models mapping proposed in [14], we chose to
study the robustness of 3 popular observational data models CausalVAE, DEAR,
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and SCM-VAE, that can both learn a latent causal representation and perform
counterfactual generation. Focusing on this models paradigm is justified by its
broader applicability compared to its counterparts that focus solely on controlled
counterfactual generation, e.g., CausalGAN [13]. Moreover, observational data
is always accessible, whereas interventional and counterfactual data are often
limited or unavailable in real-world settings. This accessibility makes observa-
tional models suitable for studying robustness, as it allows for a comprehensive
evaluation across diverse datasets and perturbations. CausalVAE uses a linear
Structural Causal Model (SCM) parameterized by the causal adjacency matrix
A, as illustrated in Fig.1(a) to transform the encoded independent latent factors
η into latent causal ones z. The input labels u are used as additional information
to ensure the identifiability of the model. DEAR [25], in Fig.1(c), as in Disen-
tangled gEnerative cAusal Representation, builds a new disentangling method
using an SCM as the prior distribution for a bidirectional generative model.
DEAR and CausalVAE both utilize labels as weak supervision signals. However,
unlike CausalVAE, DEAR does not learn intermediate independent encodings of
the inputs. SCM-VAE overcomes the limitations of the CausalVAE, mainly the
linear SCM, by learning a post-nonlinear additive noise SCM to describe more
general relations between the causal variables, as presented in Fig.1(e). The use
of a non-linear SCM in both DEAR and SCM-VAE particularly interests us, as
linear SCMs are limited in capturing complex causal relationships. We also seek
to investigate the impact of non-linear SCMs on the robustness of CRL models.

3 Counterfactual Robustness of Causal Generative
Models to Distribution Shifts

3.1 Counterfactual Models

Given a dataset X = (xj)1≤j≤N , we suppose that each observation xj is a vector
of IRNd , representing the set of observed variables. We define the latent variables
as the set Z = (zj)1≤j≤M considered as causal factors. We assume that the graph
of relationships between the latent variables is known. The latter is characterized
by its adjacency matrix A. Both expressions, latent variables, and causal factors
will hence be used interchangeably in this paper.

Each model is characterized by its so-called latent SCM, describing the func-
tional mechanism between latent variables S := (E,P η), where E = (E1, . . . , EM )
is a collection of M equations of the form Ej : zj = fj(PAj , ηj), with PAj ⊆
{z1, . . . , zM}\{zj}. The variables in the subset PAj are called parents of zj . We
denote P η = P η1,...,ηM the joint distribution of the noise variables, that are sup-
posed to be mutually independent. Let G be a CRL model with latent SCM S.
We provide a description of the latent SCM of each model in Block 2 of Fig.1(a),
1(c), and 1(e). Let do be the operator that performs hard interventions on the
causal latent factors by replacing one or more structural equations in E with a
constant c. This process results in a new SCM, denoted S̃. For the considered
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(a) CausalVAE (b) CausalVAEz3=c

(c) DEAR (d) DEARz3=c

(e) SCM-VAE (f) SCM-VAEz3=c

Fig. 1: Frameworks of the considered CRL models and their derived counterfactual
models. In all Figures, Block 1 refers to the encoding process, Block 2 encloses the

causal mechanisms, and Block 3 holds the decoding process. We shall note that both
CausalVAE and SCM-VAE models consider the output of the encoder as noise

variables for their latent SCM in Block 2.

models, the new latent SCMs S̃ with respect to the intervention doz3=c are rep-
resented in Block 2 of Fig.1(b), 1(d) and 1(f). We call a counterfactual model
derived from the CRL model G with respect to the intervention dozj=c, the
model Gzj=c that generates counterfactual samples xcou in Block 3 of Fig.1(b),
1(d) and 1(f), by intervening on the causal factor zj in the SCM fixing its value
to c. In this work, we only consider counterfactual models intervening on a single
causal latent variable.
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Each Gzj=c is responsible for generating counterfactual samples with specific
attributes that correspond to the intervention dozj=c. The intervening process
of Gzj=c depends on the structure of G. For example, to obtain CausalVAEzj=c

in Fig.1(b), the interventions are performed on the linear latent SCM break-
ing specific causal relations and hence modifying the matrix A. The intervened
factors are then passed through the Mask Layer to propagate the effect of the
parent variables to the children variables. The Mask Layer yields a final la-
tent causal representation, which is used by the decoder in Block 3 to generate
xcou. As for DEARzj=c in Fig.1(d), xcou are obtained by passing through the
generator, Block 3, the latent factors sampled from the interventional SCM S̃.
SCM-VAEzj=c also yields xcou by sampling from S̃ and then passing samples
through the decoder Block 3 as explained in Fig.1(f).

3.2 Counterfactual Robustness

We refer to a model’s G reconstruction of an observation xk, as G(xk) and
the counterfactual reconstruction as Gzj=c(xk). We test the robustness of each
model, considering several perturbations of the dataset X detailed in Section 4.
The perturbed dataset is denoted X ∗ := (x∗

j )1≤j≤N . We give a general definition
of the counterfactual robustness that we shall instantiate in the experimental
section later.

Definition 1. A causal generative model is said to be counterfactually γ-robust
to a perturbation ∗ with respect to the intervention dozj=c and a similarity mea-
sure SIM if:

SIM
(
{Gzj=c(X ∗)}, {Gzj=c(X )}

)
≥ γ (1)

where, SIM is a similarity measure that evaluates how similar the distribu-
tions of the two considered datasets are in terms of features.

Fig. 2: Counterfactual Robustness Evaluation Pipeline exemplified for
CausalVAEzj=c on the Pendulum Dataset

Fig.2 shows the pipeline we propose for assessing the counterfactual robust-
ness, exemplified in the case of CausalVAEzj=c on the Pendulum dataset. We
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start by fixing an intervention variable zj and a value c, we perform the interven-
tion on G and then recover Gzj=c. In this example, z1 is the Pendulum Angle and
c = 0, i.e., we enforce the pendulum angle to be 0. We also choose a distribution
shift perturbation ∗, apply it to our dataset to obtain a perturbed dataset, and
afterward, pass the datasets of clean and perturbed images through Gz1=0. We
compute SIM in Eq.1 between the two datasets of reconstructed images with
and without perturbation and thereafter provide a measure of the robustness of
Gz1=0 with respect to the considered perturbation.

4 Experiments

Here, we evaluate the robustness of counterfactual models derived from 3 obser-
vational data CRL models CausalVAE, DEAR, and SCM-VAE on two annotated
synthetic and real-world datasets, Pendulum and CelebA for 16 common per-
turbations. We follow the pipeline described in Fig.2. To approximate real-world
scenarios where perturbations occur at different intensities [22], we define 5
severity levels for each considered image corruption.

4.1 Datasets and Models

Datasets

– Pendulum [29] is a synthetic dataset that contains four causal variables:
Pendulum Angle, Light Position, Shadow Position, and Shadow Length. It
simulates the dynamic behavior of a pendulum and its interaction with a
light source, capturing how the motion of the pendulum affects the position
and length of its shadow. Its causal graph is presented in Fig.3(a). The coun-
terfactual models for Pendulum are generated respectively by intervening on
the Pendulum Angle, Light Position, Shadow Position, or Shadow Length.

– CelebA [18] is a popular resource in the computer vision community. This
dataset contains 200k images of human faces, each labeled with various at-
tributes. In the literature, we consider two subsets of causally related at-
tributes for this dataset. The first subset, CelebA(SMILE), includes: Gender,
Smile, Eyes Open, and Mouth Open. The second subset CelebA(BEARD)
consists of: Age, Gender, Bald, and Beard. We choose to work with CelebA-
(SMILE) to have the causal graph in Fig.3(b), different in its structure from
the Pendulum graph. In this setting, the counterfactual models are respec-
tively obtained by intervening on the causal variables Gender, Smile, Eyes
Open, or Mouth Open.

Datasets Perturbations To simulate data distribution shifts on the datasets
Pendulum and CelebA(SMILE), we inject the 16 perturbations proposed by [8]
for ImageNet-C. The proposed perturbations belong to five main categories:
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(a) Pendulum (b) CelebA(SMILE)

Fig. 3: Causal Graphs of the Pendulum and CelebA(SMILE) datasets, highlighting
the causal relationships between the considered causal variables. For example, in

CelebA the Smile influences the eyes and mouth openness.

noise, blur, weather, and digital. Each of the latter contains several techniques:
(1) Noise: gaussian noise, shot noise, impulse noise, speckle noise; (2) Blur: de-
focus blur, frosted glass blur, motion blur, zoom blur; (3) Weather: snow, frost,
fog, brightness; (4) Digital: contrast, elastic, pixelated, JPEG compression. Since
distribution shifts in the real world happen with different intensities, we use 5
severity levels for each perturbation technique following [7]. The number of in-
put perturbations, taking into account their varying intensities sum to 80. The
crafted corruptions for Pendulum are illustrated in Fig.4.

Fig. 4: Examples of 16 image perturbations. The original image (top left) is taken
from the Pendulum dataset.
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Models We derive counterfactual models from two trained versions of Causal-
VAE, DEAR, and SCM-VAE, one for each dataset, using the default baseline
parameters and architectures from [29], [25], and [15] respectively.

4.2 Results

To compare the robustness of counterfactual models derived from CausalVAE,
DEAR, and SCM-VAE, we use the Frechet Inception Distance (FID) as a simi-
larity evaluation metric between the clean and perturbed reconstructed datasets
for each intervention. FID was first introduced by [9]. The latter evaluates how
similar the distributions of two datasets are in terms of features extracted by the
pre-trained Inceptionv3 model. Low FID values indicate high similarity between
the evaluated datasets. In this work, the Inceptionv3 model was fine-tuned on
the considered datasets Pendulum and CelebA to capture their unique patterns.

We report in Fig.5, 6 and 7 the mean and standard deviation of the FID be-
tween the clean and perturbed images over all perturbations, on both datasets
Pendulum and CelebA. The lower the FID score, the more robust the counter-
factual model. The counterfactual models were obtained by performing interven-
tions on individual causal variables, setting their values to 0 and 0.8, respectively,
for the Pendulum and CelebA(SMILE) datasets. Note that an intervention value
of 0 is nonsense for the CelebA(SMILE) dataset. The figure scales differ between
the two datasets for visualization purposes and Appendix C explores additional
intervention values.

(a) Pendulum (b) CelebA(SMILE)

Fig. 5: CausalVAE
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(a) Pendulum (b) CelebA(SMILE)

Fig. 6: DEAR

(a) Pendulum (b) CelebA(SMILE)

Fig. 7: SCM-VAE

We can observe from Fig.5, 6, and 7 that counterfactual models obtained from
the same CRL model are not equally impacted by the considered perturbations.
For Pendulum, the contrast perturbation is the one affecting the counterfactual
models the most, whereas it is frost for CelebA(SMILE). The JPEG compres-
sion has the least impact on both datasets. Moreover, it is to be noted that the
counterfactual models derived by intervening on the exogenous causal variable
Pendulum Angle for the Pendulum dataset, are generally the least robust to
image perturbations. Counterfactuals derived from DEAR are more robust than
those of the other considered CRL models CausalVAE and SCM-VAE. We shall
note that the obtained FID are scaled by the spatial importance of the inter-
vened causal variable to ensure a fair comparison across different interventions,
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taking into account the intrinsic significance of each causal variable in terms of
picture space. The latter is calculated for complex attributes like Gender and
Smile, by a decomposition following the semantic attribute graphs available in
Appendix D.

Note also that for all types of noise perturbations and all CRL models,
the counterfactual models derived by intervening on the endogeneous variables
representing the causal effect of an exogeneous causal variable, e.g., Shadow
Position and Shadow Length, are more robust than those obtained through in-
terventions on the exogenous causal variables, e.g., Pendulum Angle and Light
Position, for the Pendulum dataset. Whereas for CelebA(SMILE), intervening
on the endogenous variable, Eyes Open yields the most robust counterfactual
models for all analyzed CRL models and interventions on the exogenous causal
variables Gender and Smile are associated with the least robust counterfactual
models to noise perturbations.

The latter observation provided insight into the possibility of interpreting the
difference in counterfactual robustness levels to noise perturbations based on the
dataset’s causal mechanisms, more specifically, by leveraging the causal structure
of the causal graph and its related adjacency matrix. Since each intervention on
the causal variables implies the removal of specific edges in the causal graph,
then the counterfactual robustness is necessarily tied with the properties of the
removed edges, as we will show in Section 5. In this part of the paper, we
introduce an ERS metric and demonstrate through experimental results and
theoretical proof in the case of an extended CausalVAE, that the most robust
counterfactual model is the one for which an intervention removes the edges with
the highest cumulative ERSs. Moreover, we propose an algorithm to identify the
most robust intervention to noise perturbation based on a prior knowledge of
the causal graph.

5 Causal Graph Edge Robustness Score

5.1 Motivation of the definition

An intervention on a causal system dozj=c implies analytically fixing the causal
variable zj to be equal to the intervention value c. Whereas graphically, it signi-
fies removing all the incoming edges, in the causal graph, to the node zj since the
latter no longer depends on its causal parents and its value is rather determined
by the intervention. The removal of edges eliminates all causal pathways that
include them. Pathways are sequences of nodes and edges, and therefore remov-
ing an edge causes the connection to be cut in the pathways where it belongs.
Hence, for a given CRL and intervention value, a derived counterfactual model
can be characterized by the sets of edges and paths that are removed from the
causal graph by its corresponding intervention.
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Having different robustness scores for counterfactual models, as observed in
Fig.5, 6, and 7, implies thus that the causal graph edges are not equally robust.
The computation of their robustness scores will hence be of great importance in
understanding the robustness of counterfactual models solely by leveraging the
causal graph. We therefore propose in Subsection 5.2 to define an edge robust-
ness score ERS based on the paths in which an edge is included and the singular
vectors of (I − AT )−1. Existing works [10] have analyzed the centrality scores
of edges in social networks based on different indicators. The centrality score of
an edge is determined by the proportion of walks or paths that traverse it or by
the amount of information it conveys. The latter centrality metrics give answers
to questions related to the frequency with which information flows through an
edge, the duration it takes, and the path multiplicity to reach the target node.
No measure, however, was designed to describe the robustness of the edges.

Our proposed ERS enables to interpret the robustness of counterfactual
models to noise perturbations based on the structure of the causal graph. We
particularly show that the most robust counterfactual model is the one for which
the removed edges have the highest cumulative ERS.

5.2 Theoretical Insights

Let G be a causal graph and A its corresponding adjacency matrix.

Definition 2 (Edge Robustness Score). Given an edge e =< se, te > in a
causal graph G, represented by its source node and target node respectively, noted
se and te, the edge robustness score is defined as the sum of the products of the
eigenvector scores at both ends of the paths containing the edge, weighted by the
path intensity:

ERSe :=
∑
p∈Pe

w1(sp)y1(tp)Int(p) (2)

where A is the adjacency matrix of G, w1 and y1 are respectively the right
and left singular vectors of (I−AT )−1 corresponding to the largest singular value
λ1((I−AT )−1), Int(p) is the scalar representing the path intensity, given by the
product of the weights along the path edges, Pe is the set of paths where e is
included. sp and ep denote respectively the source and target nodes of the path p
and w1(sp) is the sthp coordinate of w1, y1(tp) the tthp coordinate of y1.

Fig.8 and 9 illustrate the edge robustness scores, respectively, for the Pen-
dulum and CelebA(SMILE) datasets. The considered order of the variables is
the same as in the causal graphs Fig.3(a) and 3(b). Non existing edges in the
causal graph are affected a robustness score of 0. Fig.8 suggests, in the case
of Pendulum, that the edges linking the exogenous causal variables, Pendulum
Angle and Light Position, to the endogenous ones, Shadow Position and Shadow
Length are equally robust. For CelebA(SMILE), Fig.9 indicates that there are
three levels of edge robustness. Edges linking the cause variable Gender to its
effects Eyes Open and Mouth Open exhibit low robustness highlighted in light
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Fig. 8: Pendulum Edge Robustness
Scores

Fig. 9: CelebA Edge Robustness
Scores

orange, the ones in dark orange linking Smile to the same effects Eyes Open
and Mouth Open display moderate robustness, and only one edge in dark brown
from Mouth Open to Eyes Open demonstrates high robustness.

This notion of edge robustness is important, because the ordering of the cu-
mulative ERS for each intervention, aligns with the ranking of the counterfactual
robustness experimentally observed in Section 4. Specifically, we display below
Fig.8 and 9, the sum over the columns of the edge robustness scores. The sum
over column j corresponds to the cumulative ERS of the edges removed when
intervening on the variable zj . This provides a structural justification for the
observed differences in counterfactual robustness, as interventions that remove
edges with higher cumulative robustness scores yield more robust counterfactual
models.

5.3 An extensive theoretical analysis in the case of an extended
CausalVAE

We denote extended CausalVAE, a VAE based causal model where the causal
layer implements the general non linear SCM [30] in Eq.3:

z = π1((I −AT )−1π2(η)) (3)

where A is the adjacency matrix of the causal graph corresponding to the causal
variables Z, π1 and π2 are element-wise transformations generally nonlinear.
By incorporating a parametric SCM in the causal layer, the extended Causal-
VAE framework can encompass both the linear CausalVAE and the SCM-VAE
models, depending on the choice of the functions π1 and π2. In the linear Causal-
VAE case, both π1 and π2 are identity functions, while in the SCM-VAE setting,
π2 remains the identity function and π1 is a non-linear transformation learned
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by a neural network.

In Appendix A, building on [4] we express leveraging the structure of an
extended CausalVAE and the Lipschitz continuity of its components, the coun-
terfactual robustness probability, and the margin bounds of the counterfactual
models against adversarial attacks. These attacks involve generating impercepti-
ble noise that, when applied to the inputs of an extended CausalVAE counterfac-
tual models, result in unintended reconstructions. The obtained counterfactual
robustness margin bounds with respect to the intervention dozj=c are expressed
as a function of λ1((I − (Aj)T )−1), the largest singular value of (I − (Aj)T )−1,
where Aj corresponds to the adjacency matrix of the new causal graph after the
intervention dozj=c. We show in Appendix A that the lower λ1((I − (Aj)T )−1),
the larger the counterfactual robustness margin bounds. Th.1 provides, based
on the proposed ERS, an approximation of λ1((I − (Aj)T )−1). We show, using
first order matrix perturbation theory, that removing edges with the highest cu-
mulative ERS effectively reduces the largest singular value λ1((I − (Aj)T )−1).

Theorem 1 (Edge Removal Impact on Singular Values). Let G be a
causal graph and A its corresponding adjacency matrix. Let λ̂1 be the first singu-
lar value of (I − ÂT )−1, where Â is the adjacency matrix of the perturbed causal
graph Ĝ, obtained by removing the edges indexed by the set E from G; such that
(I − ÂT )−1= (I − AT )−1 + Q. Let α be the singular value gap, w1 and y1 be
respectively the right and left singular vectors of (I − AT )−1. If λ1, λ̂1 are re-
spectively the first singular values of (I − AT )−1, (I − ÂT )−1 and α ≥ 2∥Q∥ ,
then:

λ1 − λ̂1 ≃
∑
e∈E

∑
p∈Pe

w1(sp)y1(tp)Int(p) (4)

≃
∑
e∈E

ERSe (5)

where Pe is the set of paths in which each edge e is included, sp, tp are respec-
tively the source and target nodes of each path p ∈ Pe and Int(p) the intensity
of the path p.

The quality of the approximation λ1− λ̂1 in Th. 1 depends on the singular value
gap α and the Frobenius norm of Q. To evaluate the quality of the proposed
approximator on real causal graphs, we measure the linear correlation between
the sets of real and approximated singular values, considering different sparsity
levels l (l = 0.2, 0.4, 0.6, 0.8, 1) and graph sizes m (m = 4, 6, 8, 10, 20). We report
in Tab. 1 and 2 the mean and standard deviation of the obtained correlation
results on 300 randomely simulated causal graph for each setting. We put −
whenever the considered sparsity level leads to isolated nodes in the causal graph.
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Table 1: Approximation Quality (Interventions on all the variables)
l = 0.2 l = 0.4 l = 0.6 l = 0.8 l = 1

m = 4 − − − 0.989± 0.017 0.979± 0.014
m = 6 − 0.979± 0.038 0.977± 0.019 0.969± 0.017 0.957± 0.018
m = 8 − 0.973± 0.025 0.971± 0.017 0.957± 0.018 0.943± 0.018
m = 10 − 0.973± 0.017 0.962± 0.018 0.948± 0.019 0.931± 0.019
m = 20 0.972± 0.047 0.973± 0.018 0.96± 0.018 0.947± 0.021 0.943± 0.018

Table 2: Approximation Quality (Interventions on the (m− 2) first variables)
l = 0.2 l = 0.4 l = 0.6 l = 0.8 l = 1

m = 4 − − − 0.989± 0.017 0.979± 0.014
m = 6 − 0.984± 0.016 0.988± 0.023 0.994± 0.012 0.998± 0.004
m = 8 − 0.98± 0.029 0.988± 0.015 0.994± 0.009 0.995± 0.007
m = 10 − 0.986± 0.016 0.988± 0.016 0.992± 0.011 0.994± 0.006
m = 20 0.985± 0.016 0.989± 0.015 0.99± 0.01 0.992± 0.012 0.995± 0.005

It can be seen that the proposed approximator is good for ranking the first
singular values of the perturbed matrices (I− (Aj)T )−1, since correlation values
are all greater than 0.94. It is also to be noted that for dense causal graphs of size
m, the approximator is better in ranking the first singular values corresponding
to the m − 2 first interventions (correlation often near 1). This is due to ∥Q∥
being large for interventions on the last variables in dense causal graphs, which
degrades the quality of the approximation.

In general, Th.1 provides a good approximation of how the first singular value
of (I − AT )−1 changes when removing a set of edges in the causal graph, as a
function of the cumulative ERS of the removed edges. As confirmed by Tab.3
and 4, the interventions that remove the edges with the highest cumulative ERS
are the ones that effectively reduce the largest singular value of the perturbed
matrix (I − ÂT )−1. The latter interventions are thus the ones associated with
the counterfactual models with the highest counterfactual robustness margin
bounds.

5.4 Algorithm

Based on Subsections 5.2 and 5.3, we propose an Algorithm 1 to rank the robust-
ness of counterfactual models derived from a CRL using a unique intervention
value.
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Table 3: Pendulum Intervention
Edge Robustness and Largest

Singular Values λ̂1

Causal Variable Edges Robustness λ̂1

Pendulum Angle 0 1.71
Light Position 0 1.71

Shadow Position 0.46 1.51
Shadow Length 0.46 1.51

Table 4: CelebA(SMILE)
Intervention Edge Robustness and

Largest Singular Values λ̂1

Causal Variable Edges Robustness λ̂1

Gender 0 2.23
Smile 0 2.23

Eyes Open 1.06 1.51
Mouth Open 0.68 1.64

Algorithm 1 Counterfactual Robustness Ranking
1: Input: Adjacency matrix A of the causal graph G
2: Output: Ascending order sorting of the counterfactual robustness
3: Initialize the cumulative ERS vector: rankingi ← 0
4: Compute the leading eigenvalue λ1 of (I − AT )−1, let w1 and y1 be respectively

the right and left singular vectors
5: for j = 1 to M (Considering all possible intervention variables) do
6: for Edge e in parent edges of zj , the intervened variable do
7: Identify the paths Pe including edge e
8: for path (sp, tp) in Pe do
9: Compute the intensity of the path Int(p)

10: rankingi ← rankingi + w1(sp)y1(tp)Int(p)
11: end for
12: end for
13: end for
14: Sort in ascending order the cumulative ERS vector ranking
15: return Return the indexes of the sorting

6 Conclusion

This paper introduces a novel theoretical framework for evaluating the counter-
factual robustness of causal generative models under distribution shifts. Through
extensive experiments on the Pendulum and CelebA datasets, we demonstrate
that the studied counterfactual models exhibit varying degrees of robustness to
perturbations, which can be explained by the causal graph structure. To formal-
ize this relationship, we define the edge robustness score, a theoretical measure
leveraging the causal adjacency matrix. Our findings reveal that intervening on
variables with the highest cumulative robustness scores for their incoming edges
yields the most robust counterfactual models. Future research could explore
counterfactual models that intervene simultaneously on multiple variables at a
time and extend our theoretical work to learning based perturbations for other
CRL models like DEAR.
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