Stealing Data from Active Party in Vertical Split
Learning

Yaxin Liu!, Xiaoyang Xu', Wenzhe Yi', Yong Zhuang!, Juan Wang! X,
Mengda Yang', and Ziang Li'

Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry
of Education, School of Cyber Science and Engineering, Wuhan University
{yaxin.liu}@whu.edu.cn

Abstract. Vertical Split Learning (VSL) facilitates collaborative learn-
ing among users with vertically partitioned data but also introduces risks
of private data leakage. Existing reconstruction attacks primarily rely
on intermediate feature access, making them ineffective against semi-
honest passive adversaries who lack such access. In this paper, we pro-
pose PASTA, a novel attack framework that enables the PAssive party to
STeal private data from the Active party without direct feature access.
Our approach consists of three steps. First, we leverage an autoencoder
to establish an initial reconstruction by analyzing correlations between
sample features. Second, we construct a shadow VSL model to mimic
server-side gradient behaviors. Finally, we refine the reconstruction using
a U-Net-based network with gradient-based guidance. Our reconstruc-
tion results on CIFAR-10 and CelebA achieved SSIM scores of 0.5132
and 0.5877, and LPIPS scores of 0.3395 and 0.2771, respectively. Abla-
tion study demonstrated that even without access to auxiliary data from
the same distribution, the attack could still reveal most of the image de-
tails. We further validated the effectiveness of our attack on real-world
datasets Tiny-ImageNet and LFW. We also conducted experiments on
ResNet18, VGG16, ViT-B16, and MobileNet to show that our attack is
model-agnostic.

Keywords: Vertical Split Learning - Data Privacy - Data Reconstruc-
tion Attack.

1 Introduction

Vertical federated learning (VFL) enables participants with distinct feature spaces
but common sample spaces to collaboratively develop models without sharing
raw data. This approach effectively addresses users’ concerns about data privacy
while maximizing the use of multi-source data. Vertical split learning (VSL), a
specialized approach within the VFL framework, further enhances efficiency by
strategically partitioning the model between clients and servers. This balances
computational load, network transmission pressure and latency while achieving
optimal performance with minimal resource consumption [1,2,3]. Currently, VSL

2 Y. Liu et al.

Passive Party Active Party

Data Partitioning
E
.

L

Xo Xp»o Xo Xp

Xa Xy
' Try to steal |

Fig.1: A two-party VSL system. The uploaded intermediate features are repre-
sented by black lines and the returned gradients are represented by blue lines.

has demonstrated its potential applications in various fields, including health-
care [1,4,5] and cloud computing [6].

In VSL, entities that possess partial sample features and a client model are
referred to as passive parties, while the entity that owns the server model and la-
bels in addition to partial sample features and a client model is called the active
party. Fig. 1 illustrates a VSL system comprising both a passive party and an ac-
tive party. Most previous studies on data reconstruction attacks in VSL assume
that the active party is the attacker, reconstructing private data by leveraging
intermediate features uploaded to the server by passive parties through inver-
sion networks. This is similar to data reconstruction attacks in horizontal split
learning (HSL), where extensive research has been conducted [7,8,9]. In contrast
to the aforementioned studies, Chen et al. [10] are the first to consider the pas-
sive party as the attacker, introducing the concept of spy attack. However, their
approach only recovers data lost by the passive party itself and does not involve
stealing data from the active party, thereby downplaying the potential risks as-
sociated with spy attack. To date, there has been no research on how a passive
party could steal data from an active party.

In this paper we investigate for the first time the potential for a passive party
to conduct data reconstruction attacks against an active party and propose an
innovative attack strategy. In VSL, the passive party inherently possesses a por-
tion of the sample features. We also assume that it can gather data from the
Internet within the same domain as an auxiliary dataset. Based on this premise,
we propose a three-step attack approach. First, we construct an autoencoder-
based network to uncover the intrinsic relationships between sample features.

Stealing Data from Active Party in Vertical Split Learning 3

By utilizing part of the passive party’s sample features, we can reconstruct the
active party’s private data as an initial approximation. Second, to fully leverage
the information embedded in gradients, we must first learn the gradient patterns
generated by the active party’s server model. To achieve this, we train a shadow
VSL system with the same task as the normal VSL system simultaneously using
the auxiliary dataset. Finally, we employ a network based on the U-Net architec-
ture that takes the initial reconstructed data and gradients as input to further
enhance the accuracy of the reconstruction. The entire attack process remains
undetectable to the active party, making it challenging to defend against.

The main contribution of this paper can be concluded as follows:

e We identify a new angle for reconstruction attacks targeting VSL systems
and explored for the first time the possibility of a passive party stealing data
from an active party. Through this research, we reassess the security of VSL.

e We propose an innovative data reconstruction attack to generate relatively
good reconstructed data using the priori knowledge embedded in partial sample
features held by the passive party and the posteriori information of the active
party’s private data extracted from gradients returned by the server.

e Extensive experimental results demonstrate the effectiveness of our attack
strategy. We obtained good reconstruction on image datasets such as CIFAR-10
and CelebA, with SSIM and LPIPS values showing strong performance. Addi-
tional ablation experiments confirmed the validity of our design.

2 Backgrounds

2.1 Vertical Split Learning

VSL assumes that the data are partitioned by features. As an example, we
provide a formal definition of the VSL system shown in Fig. 1 in the context of
supervised classification.

Let the participants be P, and P, with a client model f, and f; respectively.
Their local datasets are represented as X, and X3, where X; = (U, F;)(i = a, b).
Here, U denotes the common sample space, while F; represents the distinct
feature space of each party. In this setting, P, is designated as the passive party,
while P, acts as the active party, holding the label information Y as well as the
server model fiop.

During the training process of VSL, all participants process local data us-
ing their own client models and send intermediate features Z; = f;(X;) to the
active party’s server. The server then concatenates these intermediate features
Z = Concat(Zy, ..., Z;) and feeds them into the server model for subsequent com-
putation Y = frop(Z). During the model update process, the backpropagation
gradients are passed back to individual client models through the split layer. The
inference phase is similar to the training phase but without backpropagation.

4 Y. Liu et al.

2.2 Data Reconstruction Attacks on Split Learning

Data reconstruction attacks aim to exploit information such as model parame-
ters, gradients or outputs to reconstruct the original data, thereby compromising
data privacy.

Existing data reconstruction attacks in split learning typically assume that
the attacker is located on the server and can easily access the intermediate fea-
tures Z uploaded by the clients. In this case, since the client model f typically
consists of a series of simple convolutional layers, He et al. [11] suggested that
the server-side attacker could build an inversion network f~! made up of decon-
volutional layers, aiming to reverse-map the intermediate features Z back to the
sample space:

X* = fHA(X) (1)

In VSL, the attacker may act as the passive party. As shown in Fig. 1, the
attacker only owns a client model and cannot obtain the intermediate features
uploaded by other clients. However, they can access the gradients provided by
the active party during the training phase. Therefore, it is necessary to reconsider
the attack steps.

Chen et al. [10] proposed that a passive party can falsely claim to have
missing data and replace them with random noise to participate in VSL training
process. After obtaining the gradients returned by the server, the passive party
can restore the missing data using an inversion network. However, their method
solely focuses on recovering the data lost by the passive party itself and does not
address the aspect of stealing data from the active party, which minimizes the
perceived dangers linked to spy attacks.

3 Method

In this section, we present the threat model and methodological details of the
data reconstruction attack that the passive party performs on the active party.
The overview of the proposed method is shown in Fig. 2.

3.1 Threat Model

We assume that the attacker is the passive party P, in a VSL system and owns
a client model f, together with half of the sample features X,. It is honest but
curious about the private training data X of the active party P,. The attacker
is aware of the structure of the active party’s client model f;. In addition, the
attacker can collect an auxiliary dataset X *** in the same domain as the private
training data X from the Internet.

3.2 Obtain Initial Reconstruction via Partial Sample Features

We observe that in many deep learning prediction tasks, it is often necessary to
utilize certain features to infer other single or multiple features, which clearly

Stealing Data from Active Party in Vertical Split Learning 5

(b) Building pseudo system. (a) Obtain initial reconstruction via partial sample features.

X" N Autoencoder XA

LIXGE, Xou)
Private Data T T

% f

, Xauz)
Auxiliary Data

Xb Xa X:lzuz X;)zuz

U-Net Xge
(c) Optimizing initial reconstruction via gradient.

Fig.2: The overview of the proposed attack’s training process. The attacker
first mines the associations between the sample features via an autoencoder to
generate the initial reconstruction X%g (a). Next, a shadow VSL system is con-
structed for simulating the server’s behavior in generating gradients (b). Finally,
the X%Ez is optimized by a U-Net network using the posteriori information of

the private data contained in the gradient ¥/, (xaus) to obtain a more accurate

reconstruction X#** (c). In this case, steps (a) and (c) can be done offline, while
step (b) needs to be performed online.

indicates that there is an intrinsic connection between the sample features. This
property is particularly evident in image data, where there is a strong correlation
between image pixels.

Based on this observation, we employ an autoencoder-based network to ex-
plore the potential correlations between sample features. The autoencoder can
effectively learn data representations through unsupervised approach, which
aligns closely with our goals. During training, the encoder compresses the high-
dimensional data input from the passive party into a 1x100 low-dimensional
representation and learns the intrinsic correlations between the sample features
of the passive and active parties. Subsequently, the decoder learns how to re-
construct the active party’s private data using learned correlations. The specific
design details of the autoencoder can be found in Appendix A.

We summarize the steps in Algorithm 1 and provide a detailed description
below. During the training data preparation phase, we first divide the samples
in the auxiliary dataset X*“* into two parts X$"* and X{"* according to the
feature division protocol of the VSL system. X/“* simulates the data of the
active party that we want to reconstruct and is replaced by random noise N
(line 1-2). Then we concatenate X2“* with N and feed the concatenated data
into the autoencoder to generate initial reconstruction results X %% (line 3-5).
The model is optimized by minimizing the mean square error (MSE) between
X944 and the original data X*“* (line 6-8). This process can be formulated as:

O = argming ., LIAE((XG"[N)), X*7). (2)

6 Y. Liu et al.

where AFE represents the autoencoder and 04 is a set of parameters for it.

After completing the training of the autoencoder, we can input X, into the
trained model to obtain the initial reconstruction of the private data, denoted
as XAE. This process can be conducted offline.

Algorithm 1: Obtain Initial Reconstruction via Partial Sample Features
Data: auxiliary dataset X““*, total epochs FE;
/* Initialize model */

AF is randomly initialized;

/* Data preparation */

1. Divide X“** into XJ"* and X“%;

2. Replace Xp"“* with noise N;

3. Concatenate X$"* with noise N;

/* training process of autoencoder */

4. while epoch < E:

5. XS4W «+ AB((X$"*|N))

Lap < MSE(X%%, X0u)

VaE < compute_gradient(0ag, Lag)

0:4E <« update_weight(0ag, AE)

© e N>

3.3 Building Pseudo System

The VSL system enhances model effectiveness by leveraging knowledge from
distributed data sources. Therefore, we believe that the gradients produced in
the VSL training process inevitably contain knowledge about the private data
of other participants. This provides us with a new insight: we can utilize the
posterior information related to the active party’s private data contained in the
gradients to improve the accuracy of initial reconstruction results.

To leverage the posterior information about the private data contained in
the gradients, we need to understand the patterns and behaviors involved in
how the server generates these gradients. To achieve this, it is essential for us to
construct a shadow VSL system that includes the passive party client model f,
a pseudo active party client model f;, and a pseudo server model f;,,.

As shown in Algorithm 2, we first perform a normal round of VSL train-
ing to update the normal VSL system (line 4-11). Subsequently, we train the
pseudo VSL system locally using auxiliary dataset, at which time it freezes the
parameters of f, and updates only the f; and f{,, (line 12-17). These two steps
alternate until the training of the normal VSL system is complete.

In each round of alternating training, the shadow VSL system learns from
the knowledge of the normal VSL system through f,. This allows the parameters
and behavior of the shadow VSL system to remain as consistent as possible with
those of the normal VSL system, enabling the pseudo server fi,, to learn the
gradient patterns generated by the actual server fi,p.

Stealing Data from Active Party in Vertical Split Learning 7

Algorithm 2: Building Pseudo System
Data: private dataset (X,Y), auxiliary dataset (X““® Y "), total epochs E;
/* Initialize model */
Normal VSL system: f,, fp and fiop are randomly initialized;
Pseudo VSL system: f,: and ftlop are randomly initialized;
/* Data preperation */
1. Divide X into X, and Xp;
2. Divide X**? into XJ“* and Xy"%;
3. while epoch < E:
/* Normal VSL training epoch */

Y frop((fa(Xa)| f5(X0)))
Lnorm < CrossEntropy(Y,Y)
Y frop < compute_gradient(0y,,,, Lnorm)

4
5
6.
7. Q}top < update_weight(0s,,,, frop)
8
9

YV fo compute_gradient(0y,, % f.(x.))
. iy compute_gradient(0y,, 5,(x,))
10. 0, < update_weight(0s,,%/ 1,)
11. Qlfb « update_weight(05,, #,)
/* Pseudo VSL training process */

12, VO o fl ((Fa(XEU)| £, (X200)))

13. Lpseudo < CrossEntropy(Y ", Y4T)
14. <V, < compute_gradient(0, ,Lpseudo)
/ftop - ftop
15. 0., < update_weight(0,, ,~7,)
ftop - ftop ftop
16. /4= t dient(0 ./, ! xauz
v/fb compute__gradient(51V ¢l (xaua)
17. 0, < update _weight(0, ,7)
Iy - fy? VA
/* The weight of f, isn’t update */

18. end

3.4 Optimizing Initial Reconstruction via Gradient

After mastering the representation pattern of privacy gradients, the next task is
to extract the information contained in the gradients and use this information
to enhance the quality of the initial reconstruction obtained in the first step. To
achieve this, we introduce a model based on the U-Net [12] architecture. U-Net
employs an encoder-decoder structure and utilizes skip connections to link the
corresponding feature maps from the encoder to the decoder. We plan to improve
the U-Net architecture so that it can simultaneously accept both the initial
reconstruction and the gradients as inputs, allowing the initial reconstruction to
serve as a good starting point for further optimizing the reconstruction results.

The structure of our U-Net is shown in Fig. 2. We designed an encoder
for both the initial reconstruction and the gradients respectively. The encoder
for the image is connected to the decoder, while the gradient maps generated
by the gradient encoder are connected to the corresponding feature maps in
the decoder through skip connections. This structure allows us to effectively

8 Y. Liu et al.

combine the initial reconstruction with the gradients, making full use of the
privacy information contained in both, thereby enhancing the quality of the
reconstruction results. The specific network details can be found in Appendix B.

An intuitive explanation is that the gradients transmitted from the server
to the passive party aggregate privacy information from other participants.
Through the gradient encoder in the U-Net architecture, we can effectively ex-
tract the latent feature information embedded in these gradients and integrate
this information into the decoder’s feature maps via hierarchical feature fusion.
This enables layer-by-layer progressive refinement, ultimately optimizing the re-
constructed image quality.

As shown in Algorithm 3, during training, we feed the initial reconstruction
X%;; of the auxiliary dataset (line 5) and the gradients \/, (xaus) returned by

the pseudo server fj,, (line 6-8) into the U-Net for exact reconstruction Xgue
(line 9). The goal is the same as the first step, which aims to minimize the MSE
loss between the X@&“* and the original data X®“* (line 10-12). The process can
be formulated as follows:

03 = argming, L(U((V 5, (xaue)| XGH)), X). (3)

where U represents the U-Net and 0y is a set of parameters for it.

When the U-Net network is trained, we inputs the normal gradient 7, (x.,)
collected in the second step along with the initial reconstruction of the privacy
dAata X g obtained in the first step to achieve an more accurate reconstruction
Xy.

4 Experiments

4.1 Experimental Setup

1) Datasets and Tasks: We evaluate the proposed attack methods on the object
dataset CIFAR-10 [13] and the facial dataset CelebA [14]. Both datasets are split
into training, testing, and the attacker’s auxiliary sets in a 6:1:3 ratio, ensuring
a balanced distribution of categories in each subset. Additionally, we make sure
that there is no identity overlap within the CelebA subset. We also incorporate
more complex datasets, specifically Tiny-ImageNet [15] and LFW [16], to assess
the effectiveness and broader applicability of our proposed attacks. Furthermore,
the CINIC-10 [17] dataset and the FFHQ [18] dataset will be used for ablation
experiments involving non-iid assumption, ensuring that there are no overlapping
samples between CINIC-10 and CIFAR-10. The tasks include classifying the
object and determining whether the facial attributes in the dataset are attractive
through binary classification.

2) Model Architectures: We built our VSL system based on VGG16 [19]
and ResNet18 [20] network architectures, with VGG16 used for classification
on object datasets and ResNet18 used for classification on facial datasets. In
addition, we tested our attack on Vision Transformer. We used the ViT/B-
16 [21] model to classify the CIFAR-10 dataset. In the ablation experiments,

Stealing Data from Active Party in Vertical Split Learning 9

Algorithm 3: Optimizing Initial Reconstruction via Gradient
Data: auxiliary dataset X““* total epochs F;
/* Initialize model */
AF is trained in Algorithm 1;
Pseudo VSL system: fa, fy and fi,, is trained in Algorithm 2;
U is randomly initialized;
/* Data preperation */
1. Divide X““* into X3"* and X“%;
2. Replace X3"* with noise N;
3. Concatenate X3"* with noise N;
/* training process of U-Net */
4. while epoch < E:
/* Get the initial reconstruction from AE */
5. X9E + AE((XS*?|N))
/* Get gradient from f{,, */
6. VU fiop(fa(XE)I (X5)))

Lpseudo < CrossEntropy(Y "® YT
8. vft,op — computeig'radient(Gf;O}), Lpseudo)

R

/* Refine initial reconstruction X 3% via gradient vy, (xaue) */

9. X5 = U((XAE |V pa(xgu)))

10. Ly +— MSE(Xg=, Xour)

11. Vu + compute_gradient(6y, Lu)
12. 0y update _weight(0y, Vuv)

13. end

we introduced the MobileNet [22] architecture as a replacement for the server
model. Different split points were tested to assess the impact of model depth on
the results. The detailed model structure is presented in Appendix C.

3) Evaluation Metrics: We adopted structural similarity index (SSIM) [23]
and learned perceptual image patch similarity (LPIPS) [24] to evaluate the qual-
ity of reconstructed images. A higher SSIM value, closer to 1, indicates greater
similarity between reconstructed and original images. Conversely, LPIPS mea-
sures perceptual similarity, with smaller values indicating a smaller visual dif-
ference between reconstructed and original images.

4.2 Visuality Evaluation

Fig. 3 shows the reconstruction results of the autoencoder and the optimization
results of the U-Net using gradients obtained from different split points. As
shown in Fig. 3, the reconstruction performance of U-Net is significantly better
than that of the autoencoder, allowing for a better restoration of the details
of the privacy data from the active party. In addition, at different depth of
split points, the reconstruction results of U-Net show good robustness. As the
split points go deeper, the reconstruction performance experiences only a slight
decline. We believe that U-Net achieves better reconstruction results primarily

10 Y. Liu et al.

due to the introduction of gradients, as the privacy information contained in the
gradients helps enhance the reconstruction effect.

The quantitative results in Table 1 further support our conclusion. For CIFAR-
10, the average SSIM and LPIPS values of the autoencoder’s reconstruction
results are 0.5132 and 0.3976, respectively; for CelebA, these values are 0.5843
and 0.3481. The average SSIM and LPIPS values for U-Net at block 1 are 0.5071
and 0.3395 for CIFAR-10, and 0.5877 and 0.2771 for CelebA. Even at the cut
point of block 4, the LPIPS metrics of U-Net’s reconstruction results improve
by 0.0518 and 0.07 compared to the autoencoder for CIFAR-10 and CelebA, re-
spectively. The metrics in the table consistently indicate that the attack method
we proposed is quite robust.

CIFAR-10

Original

AE

UN blockl

UN block2

UN block3

UN block4

CelebA

Fig. 3: Reconstruction results on CIFAR-10 and CelebA in different split settings.

Table 1: SSIM and LPIPS results in different split settings.

Dataset Model Split Point SSIM1 LPIPS]

Dataset Model Split Point SSIM1T LPIPS|

0.5132 0.3976

AR

block1

CIFARI0 block?
UNet lock3

block4

0.5071 0.3395
0.5033 0.3448
0.5024 0.3456
0.5013 0.3458

0.5843 0.3481

AE
block1
CelebA block2
UNet ek
block4

0.5877 0.2771
0.5865 0.2777
0.5853 0.2781
0.5835 0.2781

Stealing Data from Active Party in Vertical Split Learning

4.3 Effect of Auxiliary Dataset

We investigated the impact of the distribution of auxiliary datasets on data
reconstruction attacks. The experiments were conducted on a VSL system with
split point at block2, using CINIC-10 and FFHQ as non-iid auxiliary datasets
for CIFAR-10 and CelebA respectively. Fig. 4 shows the reconstruction results
and Table 2 provides a quantitative comparison.

We observed that the quality of reconstruction results for CIFAR-10 and
CelebA slightly deteriorated when using non-iid datasets. For CIFAR-10, the
drop in reconstruction quality was relatively small because the distribution dif-
ference between CINIC-10 and CIFAR-10 is minor. In contrast, FFHQ has a
much larger distribution difference from CelebA. Unlike CelebA, which contains
face images with various angles, FFHQ predominantly features frontal face im-
ages. Furthermore, CelebA has more complex backgrounds, with faces occupying
a smaller proportion of the images, while FFHQ has simpler backgrounds with
faces occupying a larger proportion. Nevertheless, the attack we proposed is
still able to recover most of the facial information, including pose, hairstyle and
expression.

CIFAR-10 CelebA
Original
AE
UN block2
Fig. 4: Data reconstruction results of non-iid settings.
Table 2: SSIM and LPIPS results of no-iid settings.
Metric CIFARI10 CelebA Metric CIFARI10 CelebA
SSIM? Same Different| Same Different| LPIPS| |Same Different| Same Different
Autoencoder|0.5132 0.5077]0.5843 0.4602 |Autoencoder|0.3976 0.4014 |0.3481 0.4493
U-Net [0.5033 0.4877 |0.5865 0.4821 U-Net [0.3448 0.3629 |0.2777 0.4075

4.4 Effect of Substitute Server Structure

We also investigated the impact of different server architectures on reconstruc-
tion attacks. We used the MobileNet architecture to replace VGG16 and ResNet18

12 Y. Liu et al.

as the server model for the pseudo VSL system. In this experiment, we set the
split layer to block2. Fig. 5 shows the reconstructed images while using different
server model architectures and Table 3 presents the quantitative results of the
SSIM and LPIPS metrics.

Overall, the different server model architectures have little impact on the
reconstruction results of our attack methods. In terms of visual effects, the re-
construction results of U-Net in Fig. 3 and Fig. 5 are almost identical and the
metrics experienced only slight fluctuations. This is because, despite the differ-
ent model architectures, the learning objectives remain consistent. As a result,
the optimization directions guided by the gradients are consistent, which leads
to good reconstruction results.

CIFAR-10 CelebA

Original

UN block2

Fig. 5: Reconstruction results of different server models.

Table 3: SSIM and LPIPS results of different server models.

CIFARI10 CelebA
Same Different| Same Different
SSIM? |0.5033 0.4981 |0.5865 0.5827
LPIPS||0.3448 0.3449 |0.2777 0.2787

Metric

4.5 Effectiveness on Complex Dataset and Model

We conducted extended experiments using the Tiny-Imagenet and LE'W datasets.
Tiny-Imagenet includes 200 categories of different objects, with around 500 im-
ages in each category. The LFW dataset contains over 13,000 labeled face images.
We divided the datasets and launched the attack on ResNet18 with split point
at block2 in the same way as in our main experiments. As shown in Fig. 6a, our
attack demonstrates good visual results on both datasets, sufficient to reveal
the privacy data of the active party. This proves that our attack is effective in
complex datasets and even in real-world scenarios.

In practical applications, edge devices typically maintain only a shallower
model to achieve the highest end-to-cloud workload while offloading complex

Stealing Data from Active Party in Vertical Split Learning 13

computations to the cloud. But in order to explore the effectiveness of our at-
tack method on complex and novel model architectures, we conducted attack
experiments at a deeper splitting point after the 8th transformer block of the
ViT-B/16 model on CIFAR-10 dataset. As shown in Fig. 6b, even with more
complex model structures, we still achieved good attack results, with SSIM =
0.4940 and LPIPS = 0.3439, demonstrating that our attack method is model-
agnostic.

Tiny-ImageNet LFW CIFAR-10

rec

(a) Attack results on complex datasets. (b) Attack results on complex model.

Fig. 6: Reconstruction results on complex datasets and model.

4.6 Defense Discuss

Our attack is difficult to defend against because it does not interfere with the
normal VSL training process and is transparent to the active party, making it
hard to detect. Furthermore, there is currently no research exploring the possi-
bility of the passive party stealing data from the active party like us. In VSL
systems, inference tasks are initiated by the vigilant-challenged active party,
which typically does not want to implement defenses that could affect model
performance.

5 Conclusion

In this paper, we make the first attempt to investigate the issue of passive parties
stealing data from active parties in the VSL scenario and propose corresponding
attack methods. We exploit the prior information contained in the partial sample
features held by the passive party using an autoencoder to obtain an initial
reconstruction. At the same time, we synchronously construct a pseudo VSL
system during the training process to learn the gradient patterns generated by
the server. Subsequently, we use an improved U-Net to leverage the posterior
information about the private data embedded in the gradients to optimize the
initial reconstruction, resulting in more accurate reconstruction outcomes. We
validate the effectiveness of our attack methods through extensive experiments.
We hope our work will draw attention to the security of VSL and encourage a
reassessment of data security within VSL. All of our supplementary materials,
including code, appendices, and supplemental experiments, can be found at:
https://github.com/yx1iu42/VSL.

https://github.com/yxliu42/VSL

14

Y. Liu et al.

References

10.

11.

12.

13.

14.

15.
16.

Vepakomma, P., Gupta, O., Swedish, T., Raskar R.: Split learning for health:
Distributed deep learning without sharing raw patient data. arXiv preprint
arXiv:1812.00564 (2018)

Gupta, O., Raskartitle, R.: Distributed learning of deep neural network over mul-
tiple agents. Journal of Network and Computer Applications 116, 1-8 (2018)

Li, P., Guo, C., Xing, Y., et al.: Core network traffic prediction based on vertical
federated learning and split learning. Scientific Reports 14(1), 4663 (2024)
Allaart, C.G., Keyser, B., Bal, H., et al.: Vertical Split Learning - an exploration of
predictive performance in medical and other use cases. In: 2022 International Joint
Conference on Neural Networks (LJCNN) on Proceedings, pp. 1-8. IEEE (2022)
Ads, O.S., Alfares, M.M., Salem, M.A.M.: Multi-limb Split Learning for Tumor
Classification on Vertically Distributed Data. In: 2021 Tenth International Confer-
ence on Intelligent Computing and Information Systems (ICICIS) on Proceedings,
pp. 88-92. IEEE (2021)

Ezzeddine, F., Ayoub, O., Andreoletti, D., et al.: Vertical Split Learning-Based
Identification and Explainable Deep Learning-Based Localization of Failures in
Multi-Domain NFV Systems. In: 2023 IEEE Conference on Network Function Vir-
tualization and Software Defined Networks (NFV-SDN) on Proceedings, pp. 46-52.
IEEE (2023)

Yang, M., Li, Z., Wang, J., et al.: Measuring Data Reconstruction Defenses in Col-
laborative Inference Systems. In: the 2022 Neural Information Processing Systems
(NIPS) on Proceedings, pp. 12855-12867. Curran Associates, Inc. (2022)

Li, Z., Yang, M., Liu, Y., et al.: GAN You See Me? Enhanced Data Reconstruction
Attacks against Split Inference. In: 2023 Neural Information Processing Systems
on Proceedings, pp. 54554-54566. Curran Associates, Inc. (2023)

Xu, X., Yang, M., Yi, W., et al.: A Stealthy Wrongdoer: Feature-Oriented Recon-
struction Attack against Split Learning. In: the 2024 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) on Proceedings, pp. 12130-
12139. (2024)

Chen, H., Fu, C., Ruan, N.: Steal from Collaboration: Spy Attack by a Dishonest
Party in Vertical Federated Learning. In: 2023 International Conference on Applied
Cryptography and Network Security on Proceedings, pp. 583-604. Springer Nature
Switzerland (2023)

He, Z., Zhang, T., Lee, R.B.: Model inversion attacks against collaborative infer-
ence. In: the 35th Annual Computer Security Applications Conference (ACSAC)
on Proceedings, pp. 148-162. Association for Computing Machinery, New York,
NY, USA (2019)

Ronneberger, O., Fischer, P, Brox, T.: U-Net: Convolutional Networks for Biomed-
ical Image Segmentation. In: 2015 Medical Image Computing and Computer-
Assisted Intervention (MICCAI) on Proceedings, pp. 234-241. Springer Interna-
tional Publishing (2015)

Krizhevsky, A., Hinton, G.: Learning Multiple Layers of Features from Tiny Images.
(2009)

Liu, Z., Luo, P., Wang, X., et al.: Deep Learning Face Attributes in the Wild. In:
2015 IEEE International Conference on Computer Vision (ICCV) (2015)

Wu, J., Zhang, Q., Xu, G.: Tiny imagenet challenge. Technical report. (2017)
Huang, G.B., Mattar, M., Berg, T., et al.: Labeled Faces in the Wild: A Database
for Studying Face Recognition in Unconstrained Environments. In: the 2007

17.

18.

19.

20.

21.

22.

23.

24.

Stealing Data from Active Party in Vertical Split Learning 15

IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion (CVPR) on Proceedings, pp. 1-8. (2007)

Darlow, L.N., Crowley, E.J., Antoniou, A., et al.: Cinic-10 is not imagenet or cifar-
10. arXiv preprint arXiv:1810.03505 (2018)

Karras, T., Laine, S., Aila, T.: A Style-Based Generator Architecture for Gener-
ative Adversarial Networks. In: 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (2019)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

He, K., Zhang, X., Ren, S., et al.: Deep Residual Learning for Image Recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2016)

Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929
(2020)

Howard, A., Zhu, M., Chen, B., et al.: MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications. arXiv preprint arXiv:1704.04861 (2017)
Wang, Z., Bovik, A.C., Sheikh, H.R., et al.: Image quality assessment: from error
visibility to structural similarity. IEEE transactions on image processing 13(4),
600-612, (2004)

Zhang, R., Isola, P., Efros, A.A.; et al.: The unreasonable effectiveness of deep
features as a perceptual metric. In: the 2018 IEEE conference on computer vision
and pattern recognition on Proceedings, pp. 586-595. (2018)

	Stealing Data from Active Party in Vertical Split Learning

