
Federated Time Series Generation on Feature and
Temporally Misaligned Data

Zhi Wen Soi1, Chenrui Fan1⋆, Aditya Shankar2⋆, Abel Malan3, and Lydia Y.
Chen2,3 (�)

1 University of Bern, Switzerland {zhi.soi,chenrui.fan}@students.unibe.ch
2 TU Delft, Netherlands a.shankar@tudelft.nl,lydiachen@ieee.org

3 University of Neuchâtel, Switzerland abele.malan@unine.ch

Abstract. Distributed time series data presents a challenge for feder-
ated learning, as clients often possess different feature sets and have
misaligned time steps. Existing federated time series models are lim-
ited by the assumption of perfect temporal or feature alignment across
clients. In this paper, we propose FedTDD, a novel federated time se-
ries diffusion model that jointly learns a synthesizer across clients. At
the core of FedTDD is a novel data distillation and aggregation frame-
work that reconciles the differences between clients by imputing the mis-
aligned timesteps and features. In contrast to traditional federated learn-
ing, FedTDD learns the correlation across clients’ time series through the
exchange of local synthetic outputs instead of model parameters. A co-
ordinator iteratively improves a global distiller network by leveraging
shared knowledge from clients through the exchange of synthetic data.
As the distiller becomes more refined over time, it subsequently enhances
the quality of the clients’ local feature estimates, allowing each client to
then improve its local imputations for missing data using the latest,
more accurate distiller. Experimental results on five datasets demon-
strate FedTDD’s effectiveness compared to centralized training, and the
effectiveness of sharing synthetic outputs to transfer knowledge of local
time series. Notably, FedTDD achieves 79.4% and 62.8% improvement
over local training in Context-FID and Correlational scores. Our code is
available at: https://github.com/soizhiwen/FedTDD.

Keywords: Federated Learning · Generative Models · Time Series

1 Introduction

Multivariate time series data are pivotal in many domains, such as healthcare,
finance, manufacturing, and sales [16]. Consider a collaboration between multiple
clients, shown in Figure 1. In a healthcare setting, these clients could be hospitals,
each collecting patient data locally for a downstream task, such as predicting pa-
tient outcomes. The data gathered, such as vital signs like heart rate and blood
pressure, is inherently temporal, i.e., time series data. Aggregating data from all
⋆ Equal contribution.

https://github.com/soizhiwen/FedTDD

2 Z.W. Soi et al.

Dataset Alignment

Temporal Alignment on All Clients

No Aligned Timestamp That All Clients Have.

Temporal Alignment on Clients 2 and 3

Time Stamp Only From 3864 to 3876 and
Data Redundancy of Features A and B

Client 1

Time Stamp From 16 to 744

Client 2

Time Stamp From 2904 to 3876

Feature Alignment on All Clients

Only Feature A and B can be aligned

Client 3

Time Stamp From 3864 to 4536

Public Dataset

Time Stamp From 1 to 5000

Fig. 1: Feature and temporally misaligned time series. The grey masking indicates
missing data.

the sources could improve model performance due to increased sampled diver-
sity when training downstream predictive models. However, privacy regulations
such as the General Data Protection Regulation (GDPR) and confidentiality
agreements between hospitals prevent sharing of raw data [32,1,20].

Federated learning (FL) [19] takes a step towards tackling this privacy chal-
lenge by enabling clients to train a global model by sharing locally trained model
parameters rather than raw data. However, this environment faces the challenge
of feature and temporal misalignment [18], as hospitals may possess different
feature sets with varying time intervals for data collection.

In horizontal FL [14], different clients have data for the same features but
for different samples or timesteps. Hence, it can tackle situations involving tem-
poral misalignment but not feature misalignment. On the other hand, in vertical
FL [17], different clients possess different feature sets for the same samples or
timesteps. While this can handle feature misalignment, it cannot tackle temporal
misalignment. Hence, neither horizontal nor vertical FL can fully tackle scenar-
ios with both feature and temporal misalignment. On top of this, data may be
missing or incomplete due to unavailability or inconsistent collection frequencies,
further hindering a model’s ability to learn patterns [23].

To overcome these limitations, we propose FedTDD (Federated Learning in
Multivariate Time Series via Data Distillation), a first-of-its-kind federated time
series diffusion model capable of learning a time series synthesizer from clients’
distinct features with temporal misalignment. FedTDD introduces a novel data
distillation [27] and aggregation framework for the common feature set, whose

FedTDD 3

values differ across clients and can be obtained from the public domain. In this
framework, a coordinator maintains a global model called the distiller, trained
iteratively using a combination of public data and clients’ intermediate synthetic
data outputs. Each client keeps a local time series diffusion model for imputing
local features which leverages the latest distiller to improve the quality of local
estimates. Unlike traditional federated learning, FedTDD learns the correlations
among clients’ time series through the exchange of synthetic outputs instead of
aggregating models [19], effectively handling feature and temporal misalignment
without sharing raw data.

Given the recent advancements of diffusion models over mainstream genera-
tive models like Generative Adversarial Networks (GANs) [7], we utilize a time
series Denoising Diffusion Probabilistic Model (DDPM) [9], adapted to handle
temporal dependencies through temporal embeddings and sequential condition-
ing. Specifically, we select Diffusion-TS [35] since it leverages both time and fre-
quency domain information, effectively capturing trends and seasonality, which
leads to a more accurate imputation of missing data. By imputing data from un-
aligned time steps, clients can obtain temporally aligned data without needing
alignment on the features or sharing raw data.

In summary, our major contributions are as follows: (i) We propose a novel
federated generative learning framework that effectively handles temporal and
feature-level misalignment and data missing problems in time series data. (ii)
We develop a data distillation and aggregation framework that learns correla-
tions among clients’ time series by exchanging synthetic data instead of model
parameters, enabling clients to improve their local models without direct data
sharing and effectively handling data discrepancies. (iii) We conduct extensive
experiments on five benchmark datasets, showing up to 79.4% and 62.8% im-
provement over local training in Context-FID and Correlational scores under
extreme feature and temporal misalignment cases and achieving performance
comparable to centralized training.

2 Related Work

Time series generation Generative models for time series data aim to cap-
ture temporal dependencies and sequential patterns inherent in such datasets.
TimeGAN [34] combines generative adversarial networks (GANs) [7] with recur-
rent neural networks [22] to produce realistic multivariate time series. TimeVAE [5]
utilizes variational autoencoders (VAEs) [11] tailored for time series to cap-
ture trends and seasonality. Recently, diffusion-based models like TimeGrad [26],
CSDI [30], SSSD [2], TSDiff [13], and Diffusion-TS [35] have further advanced
time series generation by producing high-fidelity sequences, outperforming the
mainstream GANs and VAE-based techniques. Despite their effectiveness, these
models operate in centralized settings and assume fully aligned data with con-
sistent features and timestamps. They are not equipped to handle feature and
temporal misalignments common in real-world distributed scenarios, making

4 Z.W. Soi et al.

Table 1: Overview of the related work.

Method Model
Type

Time
Series

FL
Type

Handles Temporal
Misalignment

Handles Feature
Misalignment

GTV [38] GAN × Vertical × ✓
DPGDAN [33] GAN × Vertical × ✓
SiloFuse [28] DDPM × Vertical × ✓
VFLGAN-TS [36] GAN ✓ Vertical × ✓
FedGAN [25] GAN ✓ Horizontal ✓ ×
T2TGAN [3] GAN ✓ Horizontal ✓ ×

FedTDD (Ours) DDPM ✓ Hybrid ✓ ✓

them unsuitable for federated environments with heterogeneous data distribu-
tions [21,24].

Federated learning with generative models Federated learning [37] has primarily
been applied to image generation, such as FedCycleGAN [29] leverages Cycle-
GAN [39] in federated settings to generate synthetic images while preserving
data privacy. For tabular data, methods like GTV [38], DPGDAN [33], and
SiloFuse [28] employ GANs and diffusion models within vertical federated learn-
ing frameworks to synthesize tabular datasets. However, these approaches focus
on vertically partitioned data, where all clients have features corresponding to
the same sample ID, and do not address data redundancy or misalignment is-
sues. Federated learning with generative models for time series data remains
under-explored. Existing works such as FedGAN [25], VFLGAN-TS [36], and
T2TGAN [3] extend GANs to federated time series generation. VFLGAN-TS op-
erates in a vertical federated learning context, tackling feature misalignment, but
does not handle temporal misalignment. In contrast, T2TGAN tackles horizontal
federated learning settings but introduces data redundancy due to overlapping
data among clients and cannot handle feature mismatches between clients. As
summarized in Table 1, these methods encounter issues as shown in Figure 1,
making them less effective for federated time series generation where both feature
and temporal misalignments are prevalent.

Preliminary on generative modeling with DDPMs For the generative backbone,
we adopt the Diffusion-TS architecture [35], which extends DDPMs [9] to cap-
ture temporal patterns using a generative modeling process. DDPMs are models
trained using a forward noising and backward denoising process. The forward
phase progressively adds random Gaussian noise to the data s0 at diffusion step t,
where the transition is parameterized by q(st | st−1) = N (st;

√
1− βt st−1, βt I)

with βt ∈ (0, 1), eventually transforming it into pure noise sT ∼ N (0, I). The
backward phase is where the model learns to reverse this noising process. Start-
ing from random noise sT ∼ N (0, I), it iteratively removes the added noise step
by step via pθ(st−1 | st) = N (st−1;µθ(st, t), Σθ(st, t)), to reconstruct a new data

FedTDD 5

sample resembling the original input distribution. The functions µθ and Σθ are
generally estimated using a model.

Diffusion-TS extends standard DDPMs by incorporating mechanisms specif-
ically designed for time series characteristics such as trends and seasonality [12].
Instead of treating data points independently, it utilizes an encoder-decoder
transformer architecture [31] that processes entire sequences, effectively mod-
eling temporal relationships. To handle trends, Diffusion-TS decomposes the
time series into components that represent slow-varying behaviors over time.
For capturing seasonality and periodic patterns, it employs frequency domain
analysis using the Fast Fourier Transform (FFT) [8]. By integrating FFT, the
model can analyze and reconstruct cyclical patterns [4] within the data, allowing
it to learn both time and frequency domain representations [6]. This combina-
tion enables Diffusion-TS to generate more accurate and realistic time series
data by effectively modeling complex temporal dynamics. Besides, Diffusion-TS
supports both unconditional and conditional generation. In the unconditional
generation, the model produces new samples solely based on the learned data
distribution, starting from random noise and applying the learned denoising pro-
cess. In the conditional generation, Diffusion-TS utilizes gradient-based guidance
during sampling to incorporate the observed data y. At each diffusion step, the
model refines its estimated time series ŝ0 by adjusting it with a gradient term
that enforces consistency with the observed data. The refinement can be com-
puted via s̃0(st, t; θ) = ŝ0(st, t; θ) + η∇st(∥y − ŝ0(st, t; θ)∥2 + γ log p(st−1 | st)),
where η is a hyperparameter that controls the strength of the gradient guidance,
and γ balances the trade-off between fitting the observed data and maintaining
the generative model’s prior distribution p(st−1 | st). This iterative refinement
ensures that the generated time series aligns with the provided observations
and preserves the temporal patterns learned during training. Further details of
Diffusion-TS are shown in Appendix B.2.

3 FedTDD

In this work, we address the problem of collaborative time series imputation
in the presence of temporal and feature misalignments, without requiring the
sharing of raw data. In a federated learning setting, clients may possess different
subsets of features. We categorize features into two types: common features and
exclusive features. Common features are those present in all clients and also
available in a public dataset, while exclusive features are unique to each client and
not shared. For example, market indices might be common features in financial
data, while individual portfolio holdings are exclusive. Our proposed framework,
FedTDD, as shown in Figure 2, tackles this problem using two models. A global
distiller first imputes missing common features across clients. Local imputer
models then use the imputed common features to predict the missing exclusive
features for each client, addressing both temporal and feature misalignments.
Furthermore, clients protect their privacy by sharing only synthetic versions of
the common features while collaboratively improving the global distiller. This

6 Z.W. Soi et al.

Minimize Difference

Distiller
backward
process 3

 Imputer
backward
process 4

Imputer
backward
process 5

6

Client m

Minimize Difference

 Distiller
backward
process 3

 Imputer
backward
process 4

Imputer
backward
process 5

6

Client …

Minimize Difference

Client 1
Distiller

backward
process 3

Imputer
backward
process 4

Imputer
backward
process 5

Coordinator

Public Dataset

7 674
675
…

697

1 2
0.52 0.52
0.49 0.51
… …

0.55 0.56

Time
Channel

… 64
0.49 0.55
0.51 0.53
… …

0.48 0.54…

674
675
…

697

A B
0.04 1.11
0.02 1.09
… …

0.15 1.28

Time Feature

674
675
…

697

1 2
0.54 0.65
0.52 0.63
… …

0.68 0.72

Time Channel
… 64
… 0.85
… 0.81
… …
… 0.88

674
675
…

697

1 2
0.52 0.52
0.49 0.51
… …

0.55 0.56

Time
Channel

… 64
0.49 0.55
0.51 0.53
… …

0.48 0.54

Fo
rw

ar
d

no
isi

ng
 p

ro
ce

ss

B
ackw

ard denoising process

Decode All
Channels

Encode
A, B

674
675
…

697

A B
0.03 1.08
0.02 1.07
… …

0.14 1.24

Time Feature

Minimize
Difference

2904
2905
2906
2907

A B
0.08 1.15

0.12 1.12

Time Feature

…
2928

… …

C D
0.18 0.82
M M
M M

0.23 0.91
… …
M M

2904
2905
2906
2907

Time
Feature

…
2928

A B
0.08 1.15
0.09 1.17

0.12 1.19
… …

0.15 1.11

C D
0.18 0.82
0.20 0.91

0.23 0.91
… …

0.35 0.95

0.10 1.20 0.21 0.85

Imputer
Decodes
Exclusive
Features

Distiller
Decodes
Common
Features

M M
M M

M M

M M
M M

Distiller noising-
denoising process

Minimize Difference

Distiller
backward
process

DDPM for Time Series as Distiller

1

2

Unconditional
Sampling6

Fig. 2: FedTDD Structure. First, the Distiller is pre-trained on a public dataset.
Then, each client uses the distiller and imputer to impute common and exclusive
features, respectively. Finally, synthetic data is sent back to the coordinator to
expand the public dataset for the next round. The order of execution(1-7) is
labeled in the figure. Here the common features are A and B, and the exclusive
features are C and D.

cycle of iterative imputation and model refinement ultimately converges to yield
good quality imputations, while ensuring that no raw data is shared.

3.1 Problem Definition

We consider a federated learning setup involving N clients and a coordinator.
Each client i possesses a time series dataset, denoted as Xi =

[
Xi

j,k

]
{j=1...T i,k=1...Ci}

,

where T i is the number of time steps, and Ci is the number of channels. These
datasets can be split into two components, one for the common features and one
for the exclusive features, i.e., Xi = Xi

comm∪Xi
ex. The coordinator holds a public

dataset Xpub =
[
Xpub

j,k

]
∀j;k∈Fcomm

, which contains data for the common features

Fcomm but without any missing values. This public dataset is time-indexed dif-
ferently from the clients’ data and provides a reliable reference for the common
features. Each client’s time series data comes from a distinct time interval, mean-
ing that each client’s time indices j are unique. The feature set for each client i,
F i, consists of common features Fcomm, which are shared across all clients, and
exclusive features F i

ex, which are specific to each client. Thus, the overall feature
set for client i is represented as F i = Fcomm ∪F i

ex. Conversely, clients may have
missing values in both the common and exclusive features. These missing values
are indicated by a binary mask matrix Mi =

[
M i

j,k

]
∀j,k

, where M i
j,k = 1 if the

value Xi
j,k is observed while 0 indicates it is missing. The mask can be split into

FedTDD 7

two parts: Mi
comm, which corresponds to missing data in the common features,

and Mi
ex, which corresponds to missing data in the exclusive features. The goal

is to design a collaborative method that enables clients to leverage shared knowl-
edge and the public dataset to input the missing data locally without sharing
raw data. Appendix A summarizes the mathematical notations used.

3.2 Hybrid Federated Learning for Imputation Under Misalignment

Algorithm 1 presents the overview of FedTDD. The framework consists of two
key components: the global distiller model D and the local imputer models U i.
The global distiller D imputes missing common features shared across all clients,
while each client trains a local imputer U i to infer missing exclusive features
specific to their data. These components work together to address temporal
and feature misalignment by iteratively improving the imputation process over
several rounds r ranging from 1 to R.

Algorithm 1: FedTDD
Input: Public dataset Xpub, clients’ datasets Xi

Result: Global distiller model D, local imputer models U i

1 Initialize: Train D on Xpub

2 for r = 1 to R do
3 for each client i do
4 Receive global distiller D
5 X̂i

comm ← D
(
Xi

comm, Mi
comm

)
; ▷ Impute common features

6 X̂i
ex ← U

(
Xi

ex, M
i
ex
)

; ▷ Impute exclusive features
7 Xi

train ← X̂i
comm ∪ X̂i

ex ; ▷ Combine with exclusive features
8 Train U i on Xi

train ; ▷ Train local imputer
9 X̂i ← U i(z), z ∼ N (0, I) ; ▷ Generate synthetic data

10 Send X̂i
comm from X̂i to coordinator

11 end
12 for each client i do
13 Select nr =

r

R
α · L sequences from X̂i

comm

14 Xpub ← Xpub ∪ X̂i
comm[1 : nr] ; ▷ Expand public dataset

15 end
16 Finetune D on updated Xpub

17 end

The process begins with the coordinator training a global distiller model D
using the public dataset Xpub. D leverages a temporal DDPM backbone to apply
a forward diffusion process by gradually adding noise to the data and learns to
reverse this process. During training, D conducts unconditional generation by
starting from Gaussian noise ϵ and learning to approximate the data distribution

8 Z.W. Soi et al.

through the time and frequency domain components [35]. Formally, we have

Ltime = E(j,k,t) |Mpub
j,k =1

[∥∥∥Xpub
j,k − X̃pub

j,k (Xpub
j,k,t, t, ϵ; θ)

∥∥∥2] and (1)

Lfreq = E(j,k,t) |Mpub
j,k =1

[∥∥∥FFT(Xpub
j,k)− FFT

(
X̃pub

j,k (Xpub
j,k,t, t, ϵ; θ)

)∥∥∥2] , (2)

where ϵ ∼ N (0, I), Xpub
j,k is the (j, k)-th entry of Xpub, X̃pub

j,k is the denoised
estimate from D, and FFT denotes the Fast Fourier Transform [8], which is a
mathematical operation that converts a finite-length time domain signal to its
frequency domain representation. We take the following objective

Ldistiller(Di) = E(j,k,t) |Mpub
j,k =1 [wt (λ1Ltime + λ2Lfreq)] , wt =

λγt(1− γ̄t)

δ2t
,

(3)
where λ1 and λ2 control the balance between time and frequency losses while
wt emphasizes learning at larger diffusion steps, with λ being a small constant.
The parameter δt ∈ (0, 1) determines the amount of noise added at each forward
diffusion step, where t is a diffusion time step uniformly sampled from 1 to T
during training. The cumulative product γ̄t =

∏t
v=1 γv, with γt = 1 − δt, track

how the original signal diminishes over time due to the added noise. By weighting
the loss at different steps, wt helps the model focus on reconstructing the signal
under high-noise conditions.

After this initial training, the coordinator distributes the trained global dis-
tiller model D to all participating clients. Each client i then utilizes D to impute
their missing common features. Since clients may have missing values in Xi

comm,
they input their data along with the corresponding mask Mi

comm to the dis-
tiller model, which will perform conditional generation to iteratively refine the
imputed data by sampling from the conditional distribution guided by the ob-
served data, shown in Equation 17 in Appendix B.2. The imputation process
follows X̂i

comm = D(Xi
comm,Mi

comm), where D reconstructs only the missing
values, indicated by Mi

comm = 0. Similarly, the local imputer imputes missing
values in Xi

ex by inputting their data along with the corresponding mask Mi
ex

to the imputer model via X̂i
ex = U(Xi

ex,M
i
ex). The imputed common features

X̂i
comm are then combined with the available exclusive features X̂i

ex to form the
training data Xi

train = X̂i
comm∪X̂i

ex for the local imputer. Meanwhile, each client
trains their local imputer model U i using Xi

train as the ground truth. Since the
imputed common features X̂i

comm are fully known (as they are outputs from the
pre-trained and fine-tuned D), they are entirely used as ground truth for training
U i, regardless of the original mask Mi

comm. For the exclusive features, only the
observed entries indicated by the mask Mi

ex are used as ground truth since the
quality of the imputer’s generated data during training is not sufficient to be
used as ground truth. We define the loss mask as Mi

loss = 1i
comm ∪Mi

ex, where
1i

comm is a matrix of ones corresponding to the common features of client i. This
loss mask ensures that the reconstruction loss is computed over all entries of

FedTDD 9

the imputed common features and the observed entries of the exclusive features.
The training loss for the imputer U i can be defined as follows:

Limputer(Ui) = E(j,k,t) |Mi
lossj,k

=1

[
wt

(
λ1Li

time + λ2Li
freq

)]
, (4)

where Li
time = E(j,k,t) |Mi

lossj,k
=1

[∥∥∥Xi
trainj,k

− X̃i
trainj,k

(Xi
trainj,k,t

, t; θ)
∥∥∥2]

and Li
freq = E(j,k,t) |Mi

lossj,k
=1

[∥∥∥FFT(Xi
trainj,k

)− FFT
(
X̃i

trainj,k
(Xi

trainj,k,t
, t; θ)

)∥∥∥2] ,
where Xi

trainj,k
is the (j, k)-th entry of Xi

train, X̃i
trainj,k

is the denoised estimate
from U . After training, each client uses the trained imputer U i to generate a
synthetic dataset through unconditional synthesis, which includes both the com-
mon features X̂i

comm and the exclusive features X̂i
ex. Starting from Gaussian

noise, the imputer generates samples X̂i = U i(z), z ∼ N (0, I), that capture the
distribution of both common and exclusive features.

To protect privacy, only the common features from the synthetic dataset,
X̂i

comm, are shared with the coordinator. This ensures that no raw or exclusive
client data is exposed during the collaborative learning. The coordinator uses
the synthetic common feature data from the clients to expand its public dataset.
Rather than simply absorbing all the synthetic data, the coordinator carefully
controls the growth of the dataset by accepting a fraction of the sequences from
each client. Specifically, the coordinator adds r

Rα ∗ L, where L represents the
length of the synthetic datasets X̂i

comm;∀i ∈ {1, 2, . . . , N}, α is a hyperparameter
between 0 and 1, and the ratio of r and R yields a number that linearly increases
up to 1, allowing for a gradual expansion as the rounds increase. The coordina-
tor retrains the global distiller D using this expanded dataset. The addition of
synthetic data enhances the distiller’s ability to learn the patterns necessary for
imputing missing common features.

The overall process creates an iterative cycle of improvement. As clients’
generative models, specifically their local imputers, become more accurate with
each round, the quality of the synthetic data they generate also improves. This
higher-quality synthetic data, in turn, improves the distiller model at the coor-
dinator, which benefits all clients when it is redistributed. Over several training
rounds, this mutual reinforcement drives both the global distiller and the local
imputers to improve continuously. Ultimately, the process converges, yielding
robust imputation models without requiring clients to share their raw data.

4 Experiments

We assess FedTDD’s performance by showing its advantages and disadvan-
tages when applied to multiple benchmark datasets. We leave the analysis of
different training configurations in the Appendix C, where we examine the im-
pact of limited public data, abundant sequences with missing data, imbalanced
data distributions and different aggregation strategies on model performance.

10 Z.W. Soi et al.

Datasets To assess the quality of synthetic data, we consider four real-world
datasets and one simulated dataset with different properties, such as the num-
ber of features, correlation, periodicity, and noise levels. Each dataset is prepro-
cessed using a sliding window technique [34] to segment the data into sequences of
length 24 to capture meaningful temporal dependencies while keeping the com-
putational cost manageable. Stocks is the daily historical Google stock data
from 2004 to 2019 with highly correlated features. ETTh recorded the electric-
ity transformers hourly between July 2016 and July 2018, including load and
oil temperature data that consists of 7 features. Energy from UCI appliances
energy prediction dataset with 10-minute intervals for about 4.5 months. fMRI
is a realistic simulation of brain activity time series with 50 features. MuJoCo
is a physics-based simulation time series containing 14 features. We show the
statistics of all datasets in Appendix D.2.

Baselines We compare FedTDD against approaches show in Figure 3a, 3b, 3c
and 3d. For the Centralized* training, we aggregate all data from individual
clients, including public data, into a single location, where a global model is
trained using the combined dataset, and this will be trained with all available
features in the dataset and without missing values. While Centralized uses the
same training procedure as Centralized*, it is, however, trained on a combined
dataset with missing values and corresponding features available from each client
plus the public data. To deal with differing features across clients, we create the
combined dataset consisting of the total number of features in the particular
benchmark dataset and zero-fill any remaining features to ensure uniformity. On
the other hand, Local training involves training a separate model for each client
using only their local data, without any communication or data aggregation.
This approach has to be done to verify that FedTDD can perform relatively
better than train locally. Finally, the Pre-trained approach leverages a model
trained on a public dataset and uses it to impute the common features in local
data from each client. Again, there is no data aggregation for this approach.
In comparison, FedTDD integrates the Pre-trained approach and applies data
aggregation to it. We utilized a SOTA diffusion-based multivariate time series
generative model, Diffusion-TS [35], as the backbone for these baselines and
FedTDD. Alternatively, any other time series generative model can be adopted
in these approaches in a plug-and-play manner.

Evaluation metrics We quantitatively assess the quality of the generated syn-
thetic data using four key metrics (see Appendix D.3 for more details). Context-
Fréchet Inception Distance (Context-FID) score [10] evaluates the sim-
ilarity between the distribution of real and synthetic time series data by com-
puting the Fréchet distance. Correlational score [15] measures the correlation
between the features of multivariate time series in the synthetic data compared
to its real data. Discriminative score [34] measures the realism of the syn-
thetic data by training a binary classifier to distinguish between real and syn-
thetic data. Predictive score [34] evaluates the utility of the synthetic data
by training a sequence-to-sequence model on the synthetic data and measuring

FedTDD 11

Coordinator

...
Client 1 Client

Data

DataModel

Data

(a) Centralized*

Coordinator

...
Client 1

Data

Client

Data

DataModel

(b) Centralized

Coordinator

...
Client 1

DataModel

Client

DataModel

(c) Local

Coordinator

...
Client 1

DataModel

Client

DataModel

DataModel

(d) Pre-trained

Coordinator

...
Client 1

DataModel

Client

DataModel

DataModel

(e) FedTDD

Fig. 3: Illustrations of different baselines compared to FedTDD. The data in
the coordinator, also called public data, in Figure 3b, 3d and 3e consists only
common features time series. Dashes indicate temporal missing values.

its performance on real data. All evaluation metrics are computed based on the
respective features of the individual clients and then averaged over five trials,
followed by calculating the overall average across the number of clients. The
quality of synthetic data is considered the “best” when all metrics approach 0,
meaning lower values indicate better quality.

Training configurations We run FedTDD and the baselines mentioned above
with ten clients, five global rounds, 7500 local epochs for the first round, and
5000 for the rest. Besides, the coordinator trains on the public data consisting
of common features, and each client contributes a set of features, which is the
combination of common and exclusive features. The number of common features
is around 50% of the total number of features in the original dataset. On the
other hand, we use public ratio (PR) to manipulate the proportion of the public
data that has to be reserved from the entire dataset before partitioning the
dataset to all clients. Split ratio (SR) divides all sequences into two groups. In
the first group, a mask is applied to just the common features, while in the second
group, the mask is applied to all features. Moreover, missing ratio (MR) is the
missing rate to mask on a sequence of multivariate time series, and we consider
the missing scenario as shown in Appendix D.4. In the main experiments, we set
PR, SR, and MR to 0.5. All the hyperparameters are listed in Appendix D.5.

4.1 Time Series Generation

In Table 2, we quantitatively analyze the quality of unconditionally generated
24-length time series for diverse time series datasets. FedTDD shows a strong

12 Z.W. Soi et al.

performance comparable to the Centralized* approach. The proposed aggrega-
tion mechanism during fine-tuning proved essential to prevent the degradation
of the coordinator model’s performance and, in turn, the client models. By doing
this, we achieved strong results across most datasets. We also present the gener-
ated synthetic samples of one representative client for ETTh and fMRI datasets
in Figure 4.

Table 2: Results on multiple time series datasets. Bold indicates best perfor-
mance.
Metric Method Stocks ETTh MuJoCo Energy fMRI

Context-FID

Centralized* 0.682±0.106 0.281±0.040 0.782±0.138 0.533±0.082 1.737±0.125
Centralized 3.548±0.990 8.870±2.295 10.00±2.814 9.343±2.808 13.56±3.357
Local 1.648±0.229 1.313±0.188 0.751±0.121 1.179±0.179 1.694±0.153
Pre-trained 1.047±0.169 0.326±0.040 0.617±0.090 0.412±0.054 1.411±0.102
FedTDD 0.675±0.087 0.271±0.038 0.529±0.068 0.376±0.056 1.459±0.099

Correlational

Centralized* 0.061±0.043 0.253±0.094 1.989±0.247 5.231±1.294 7.900±0.384
Centralized 0.769±0.336 0.340±0.097 2.230±0.518 5.681±0.634 18.07±2.311
Local 0.156±0.120 0.239±0.079 1.298±0.260 3.447±0.838 5.992±0.383
Pre-trained 0.077±0.052 0.165±0.074 1.323±0.171 2.821±0.651 6.049±0.349
FedTDD 0.058±0.050 0.161±0.064 1.296±0.215 2.800±0.686 6.017±0.364

Discriminative

Centralized* 0.136±0.091 0.199±0.061 0.297±0.108 0.230±0.080 0.422±0.074
Centralized 0.476±0.042 0.475±0.017 0.474±0.024 0.496±0.006 0.477±0.030
Local 0.340±0.153 0.298±0.060 0.200±0.092 0.329±0.087 0.397±0.061
Pre-trained 0.175±0.117 0.115±0.060 0.208±0.068 0.141±0.068 0.419±0.051
FedTDD 0.185±0.105 0.106±0.061 0.153±0.120 0.153±0.072 0.414±0.051

Predictive

Centralized* 0.040±0.000 0.127±0.003 0.112±0.015 0.292±0.009 0.137±0.004
Centralized 0.047±0.012 0.223±0.020 0.165±0.060 0.427±0.053 0.233±0.051
Local 0.043±0.003 0.118±0.011 0.048±0.006 0.204±0.012 0.135±0.006
Pre-trained 0.046±0.001 0.104±0.004 0.052±0.004 0.177±0.005 0.133±0.006
FedTDD 0.041±0.001 0.101±0.004 0.048±0.004 0.175±0.006 0.133±0.004

Challenges on fMRI dataset We observe that the fMRI dataset’s imputation
quality was lower than other datasets, as the mean square error between the
imputed and real data is greater. Consequently, client models degraded due to
training on low-quality imputed data. This suggests that the imputation strategy
may need further refinement for such datasets, where the data distribution and
complexity present greater challenges for accurate synthetic data generation and
imputation. Besides, the Local approach achieves the best Correlational and
Discriminative scores for the fMRI dataset. However, we cannot conclude that
training locally is the best overall approach for fMRI. As we mentioned, the low
performance of FedTDD and Pre-trained is primarily due to the poor quality
of the imputed data, which affects training. This shows the advantage of Local
training not relying on imputed data, making it seem better suited for the fMRI
dataset compared to FedTDD and Pre-trained.

FedTDD 13

Comparison between Centralized and Local training Both Centralized and Local
approaches are trained on datasets with missing values, but their performance
differs significantly. This could be due to the different model architectures used
in each approach. As aforementioned, the Centralized model is trained on a com-
bined dataset where the additional features are filled with zeros, which results in
the worst performance. This shows the advantage of having an individual model
trained locally for each client.

0.60

0.80

Va
lu

e

Real

0.60

0.80

FedTDD

0.50
0.60
0.70

Local

0 5 10 15 20
Time

0.25

0.50

0.75

Va
lu

e

0 5 10 15 20
Time

0.25

0.50

0.75

0 5 10 15 20
Time

0.40

0.60

0.80

Fig. 4: Real samples and synthetic samples generated unconditionally from
FedTDD and Local. The first and second rows of samples are from ETTh and
fMRI datasets, respectively.

4.2 Ablation Study

In Table 3, we show the result of reducing the number of common features
in FedTDD. We set the number of common features to around 25% of the total
number of features in the corresponding dataset. As a result, we can observe the
robustness of FedTDD when dealing with a relatively small number of common
features across most datasets. However, FedTDD does not perform as expected
on the fMRI dataset because of the poor quality of imputed data, as mentioned in
Section 4.1. On the other hand, the performance of Centralized training slightly
decreased due to more zeros filling out the combined dataset, especially in the
public data.

5 Conclusion

While federated learning is increasingly applied for different regression tasks
for time series (TS), it is still limited in handling generative tasks, especially
when time series features are vertically partitioned and temporarily misaligned.
We propose a novel federated TS generation framework, FedTDD, which trains
TS diffusion model by leveraging the self-imputing capability of the diffusion
model and globally aggregating from clients’ knowledge through data distillation
and clients’ synthetic data. The central component of FedTDD is a distiller at the
coordinator that first is pre-trained on the public datasets and then periodically
fine-tuned by the aggregated intermediate synthetic data from the clients. Clients

14 Z.W. Soi et al.

Table 3: Ablation study for a relatively small number of common features. Bold
indicates best performance.
Metric Method Stocks ETTh MuJoCo Energy fMRI

Context-FID

Centralized* 0.682±0.106 0.281±0.040 0.782±0.138 0.533±0.082 1.737±0.125
Centralized 3.733±0.959 11.54±3.894 14.68±4.263 13.17±3.035 15.34±4.789
Local 1.982±0.234 0.824±0.105 0.660±0.100 0.844±0.127 1.220±0.098
Pre-trained 0.738±0.142 0.316±0.032 0.547±0.099 0.381±0.066 1.178±0.104
FedTDD 0.680±0.123 0.267±0.036 0.510±0.072 0.331±0.051 1.196±0.098

Correlational

Centralized* 0.061±0.043 0.253±0.094 1.989±0.247 5.231±1.294 7.900±0.384
Centralized 0.697±0.168 0.523±0.095 2.317±0.597 5.781±0.924 31.35±4.923
Local 0.091±0.052 0.167±0.057 1.079±0.196 1.984±0.594 4.929±0.395
Pre-trained 0.028±0.027 0.132±0.054 1.115±0.233 1.795±0.577 5.033±0.323
FedTDD 0.025±0.022 0.137±0.064 1.060±0.209 1.737±0.282 5.005±0.317

Discriminative

Centralized* 0.136±0.091 0.199±0.061 0.297±0.108 0.230±0.080 0.422±0.074
Centralized 0.475±0.041 0.469±0.020 0.479±0.026 0.494±0.010 0.484±0.023
Local 0.300±0.116 0.208±0.070 0.190±0.088 0.241±0.071 0.398±0.058
Pre-trained 0.119±0.088 0.116±0.067 0.163±0.088 0.130±0.058 0.418±0.050
FedTDD 0.112±0.097 0.107±0.078 0.157±0.104 0.120±0.067 0.412±0.057

Predictive

Centralized* 0.040±0.000 0.127±0.003 0.112±0.015 0.292±0.009 0.137±0.004
Centralized 0.168±0.025 0.196±0.027 0.198±0.049 0.314±0.052 0.223±0.029
Local 0.084±0.038 0.114±0.009 0.069±0.010 0.199±0.007 0.130±0.005
Pre-trained 0.028±0.007 0.108±0.004 0.063±0.007 0.190±0.005 0.132±0.005
FedTDD 0.028±0.005 0.107±0.005 0.062±0.006 0.186±0.004 0.130±0.005

keep their personalized TS diffusion models and train them with local data and
synthetic data of the latest distiller periodically. Our extensive evaluation across
five datasets shows that FedTDD effectively overcomes the hurdle of feature
partition and temporal misalignment, achieving improvements of up to 79.4%
and 62.8% over local training on Context-FID and Correlational scores, while
delivering performance comparable to centralized baselines.

Acknowledgments. This research is part of the Priv-GSyn, 200021E_229204, of
Swiss National Science Foundation and the DEPMAT project, P20-22 / N21022, of
the research programme Perspectief which is partly financed by the Dutch Research
Council (NWO).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Alaa, A., Chan, A.J., van der Schaar, M.: Generative time-series modeling with
fourier flows. In: International Conference on Learning Representations (2021)

2. Alcaraz, J.M.L., Strodthoff, N.: Diffusion-based time series imputation and fore-
casting with structured state space models. arXiv preprint arXiv:2208.09399 (2022)

FedTDD 15

3. Brophy, E., De Vos, M., Boylan, G., Ward, T.: Estimation of continuous blood
pressure from ppg via a federated learning approach. Sensors 21(18), 6311 (2021)

4. Ceneda, D., Gschwandtner, T., Miksch, S., Tominski, C.: Guided visual exploration
of cyclical patterns in time-series. In: Proceedings of the IEEE Symposium on
Visualization in Data Science (VDS). IEEE Computer Society (2018)

5. Desai, A., Freeman, C., Wang, Z., Beaver, I.: Timevae: A variational auto-encoder
for multivariate time series generation. arXiv preprint arXiv:2111.08095 (2021)

6. Fons, E., Sztrajman, A., El-Laham, Y., Iosifidis, A., Vyetrenko, S.: Hypertime: Im-
plicit neural representation for time series. arXiv preprint arXiv:2208.05836 (2022)

7. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial networks. Communications of the
ACM 63(11), 139–144 (2020)

8. Heckbert, P.: Fourier transforms and the fast fourier transform (fft) algorithm.
Computer Graphics 2(1995), 15–463 (1995)

9. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in
neural information processing systems 33, 6840–6851 (2020)

10. Jeha, P., Bohlke-Schneider, M., Mercado, P., Kapoor, S., Nirwan, R.S., Flunkert,
V., Gasthaus, J., Januschowski, T.: Psa-gan: Progressive self attention gans for
synthetic time series. In: The Tenth International Conference on Learning Repre-
sentations (2022)

11. Kingma, D.P.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114
(2013)

12. Kitagawa, G., Gersch, W.: A smoothness priors–state space modeling of time se-
ries with trend and seasonality. Journal of the American Statistical Association
79(386), 378–389 (1984)

13. Kollovieh, M., Ansari, A.F., Bohlke-Schneider, M., Zschiegner, J., Wang, H., Wang,
Y.B.: Predict, refine, synthesize: Self-guiding diffusion models for probabilistic time
series forecasting. Advances in Neural Information Processing Systems 36 (2024)

14. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated
optimization in heterogeneous networks. Proceedings of Machine learning and sys-
tems 2, 429–450 (2020)

15. Liao, S., Ni, H., Szpruch, L., Wiese, M., Sabate-Vidales, M., Xiao, B.: Conditional
sig-wasserstein gans for time series generation. arXiv preprint arXiv:2006.05421
(2020)

16. Lim, B., Zohren, S.: Time-series forecasting with deep learning: a survey. Philo-
sophical Transactions of the Royal Society A 379(2194), 20200209 (2021)

17. Liu, Y., Kang, Y., Zou, T., Pu, Y., He, Y., Ye, X., Ouyang, Y., Zhang, Y.Q.,
Yang, Q.: Vertical federated learning: Concepts, advances, and challenges. IEEE
Transactions on Knowledge and Data Engineering (2024)

18. Luu, K., Khashabi, D., Gururangan, S., Mandyam, K., Smith, N.A.: Time waits
for no one! analysis and challenges of temporal misalignment. arXiv preprint
arXiv:2111.07408 (2021)

19. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Artificial intelligence and statistics. pp. 1273–1282. PMLR (2017)

20. Meijer, C., Huang, J., Sharma, S., Lazovik, E., Chen, L.Y.: Ts-inverse: A gradient
inversion attack tailored for federated time series forecasting models. In: 2025 IEEE
Conference on Secure and Trustworthy Machine Learning (SaTML). pp. 110–124.
IEEE (2025)

16 Z.W. Soi et al.

21. Mendieta, M., Yang, T., Wang, P., Lee, M., Ding, Z., Chen, C.: Local learning
matters: Rethinking data heterogeneity in federated learning. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 8397–
8406 (2022)

22. Mogren, O.: C-rnn-gan: Continuous recurrent neural networks with adversarial
training. arXiv preprint arXiv:1611.09904 (2016)

23. Pratama, I., Permanasari, A.E., Ardiyanto, I., Indrayani, R.: A review of missing
values handling methods on time-series data. In: 2016 international conference on
information technology systems and innovation (ICITSI). pp. 1–6. IEEE (2016)

24. Qu, L., Zhou, Y., Liang, P.P., Xia, Y., Wang, F., Adeli, E., Fei-Fei, L., Rubin,
D.: Rethinking architecture design for tackling data heterogeneity in federated
learning. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 10061–10071 (2022)

25. Rasouli, M., Sun, T., Rajagopal, R.: Fedgan: Federated generative adversarial net-
works for distributed data. arXiv preprint arXiv:2006.07228 (2020)

26. Rasul, K., Seward, C., Schuster, I., Vollgraf, R.: Autoregressive denoising diffu-
sion models for multivariate probabilistic time series forecasting. In: International
Conference on Machine Learning. pp. 8857–8868. PMLR (2021)

27. Sachdeva, N., McAuley, J.: Data distillation: A survey. arXiv preprint
arXiv:2301.04272 (2023)

28. Shankar, A., Brouwer, H., Hai, R., Chen, L.: Silofuse: Cross-silo synthetic data
generation with latent tabular diffusion models (2024)

29. Song, J., Ye, J.C.: Federated cyclegan for privacy-preserving image-to-image trans-
lation. arXiv preprint arXiv:2106.09246 (2021)

30. Tashiro, Y., Song, J., Song, Y., Ermon, S.: Csdi: Conditional score-based diffusion
models for probabilistic time series imputation. Advances in Neural Information
Processing Systems 34, 24804–24816 (2021)

31. Vaswani, A.: Attention is all you need. Advances in Neural Information Processing
Systems (2017)

32. Voigt, P., Von dem Bussche, A.: The eu general data protection regulation (gdpr).
A Practical Guide, 1st Ed., Cham: Springer International Publishing 10(3152676),
10–5555 (2017)

33. Wang, Z., Cheng, X., Su, S., Wang, G.: Differentially private generative decom-
posed adversarial network for vertically partitioned data sharing. Information Sci-
ences 619, 722–744 (2023)

34. Yoon, J., Jarrett, D., Van der Schaar, M.: Time-series generative adversarial net-
works. Advances in neural information processing systems 32 (2019)

35. Yuan, X., Qiao, Y.: Diffusion-ts: Interpretable diffusion for general time series
generation. arXiv preprint arXiv:2403.01742 (2024)

36. Yuan, X., Zhao, Z., Gope, P., Sikdar, B.: Vflgan-ts: Vertical federated learning-
based generative adversarial networks for publication of vertically partitioned time-
series data. arXiv preprint arXiv:2409.03612 (2024)

37. Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., Gao, Y.: A survey on federated learning.
Knowledge-Based Systems 216, 106775 (2021)

38. Zhao, Z., Wu, H., Van Moorsel, A., Chen, L.Y.: Gtv: generating tabular data via
vertical federated learning. arXiv preprint arXiv:2302.01706 (2023)

39. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: Proceedings of the IEEE interna-
tional conference on computer vision. pp. 2223–2232 (2017)

	Federated Time Series Generation on Feature and Temporally Misaligned Data

