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Abstract. Despite their high accuracy, complex neural networks de-
mand significant computational resources, posing challenges for deploy-
ment on resource constrained devices such as mobile phones and em-
bedded systems. Compression algorithms have been developed to ad-
dress these challenges by reducing model size and computational de-
mands while maintaining accuracy. Among these approaches, factoriza-
tion methods based on tensor decomposition are theoretically sound and
effective. However, they face difficulties in selecting the appropriate rank
for decomposition. This paper tackles this issue by presenting a unified
framework that simultaneously applies decomposition and rank selec-
tion, employing a composite compression loss within defined rank con-
straints. Our method includes an automatic rank search in a continu-
ous space, efficiently identifying optimal rank configurations for the pre-
trained model by eliminating the need for additional training data and
reducing computational overhead in the search step. Combined with a
subsequent fine-tuning step, our approach maintains the performance of
highly compressed models on par with their original counterparts. Using
various benchmark datasets and models, we demonstrate the efficacy of
our method through a comprehensive analysis.
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1 Introduction

In recent years, deep learning has revolutionized various scientific fields, including
computer vision and natural language processing [26]. Complex neural networks
with millions or billions of parameters have achieved unprecedented accuracy.
However, their size poses challenges for deployment on resource-limited devices
like mobile phones and edge devices [27]. The storage, memory, and processing
requirements of these models often prove to be unfeasible or excessively costly,
thus limiting their practicality and accessibility.

Recent research has introduced various compression algorithms to address
cost-effectiveness, scalability, and real-time responsiveness [22]. These approaches,
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which reduce a model’s size and computational demands while preserving accu-
racy, can be classified into four primary categories. One straightforward method
is pruning, which involves removing insignificant weights from the model [4].
Quantization reduces the precision of numerical values, typically transition-
ing from 32-bit floating-point numbers to lower bit-width fixed-point numbers
[24]. Knowledge distillation trains a smaller “student” model to mimic a larger
“teacher” model, resulting in a compact model with similar performance [3].
Lastly, low-rank factorization decomposes weight matrices or tensors into smaller
components, reducing the number of parameters [2, 35, 36]. While effective, se-
lecting the appropriate rank for decomposition remains a significant challenge.

Non-uniqueness in tensor rank is a major challenge in tensor decomposition
research. Most tensor decomposition problems, especially CP decomposition, are
NP-hard [13], and allow different decompositions of a same tensor even though
some works tries to approximating the ranks of a tensor in a practical way [34,
11]. Finding the ideal rank is an ongoing research topic, and determining multi-
ple tensor ranks for deep neural network layers is not suitable for conventional
hyperparameter selection methods like cross-validation. Typically, a single rank
is chosen for the decomposition of layers based on a compression rate, but this
can lead to significant performance degradation in complex models.

Recent studies propose automated methods for determining tensor decom-
position ranks [5,20, 33]. However, these approaches, including reinforcement
learning, greedy search algorithms, and SuperNet search, can be computationally
expensive and time-consuming, especially for large models and datasets. Their
effectiveness often depends on hyperparameters like learning rates or regulariza-
tion parameters, which are challenging to tune. Additionally, existing methods
do not cover a wide enough search space to achieve ideal compression rates.

This paper introduces a unified framework that simultaneously addresses ten-
sor decomposition and optimal rank selection using a composite compression loss
within specified rank constraints. Also, when we combine this rank search with
a subsequent fine-tuning step, our experiments show that the highly compressed
model performs similarly to the original model. The key contributions of this
paper are:

— Our proposed method allows to achieve maximum compression rates by cov-
ering all ranks in the search space through a simple and efficient multi-step
search process that explores ranks from low to high resolution.

— The proposed search method involves an automatic rank search in a contin-
uous space, which efficiently identifies the optimal rank configurations for
layer decomposition without requiring training data.

— We perform a comprehensive analysis of the various components of our ap-
proach, highlighting its efficacy across various benchmark datasets and mod-
els such as convolution and transformer-based models. we achieved improve-
ment in some experiments specifically improvement in all metrics in the
case of ResNet-18, while in another experiment we had competitive results.
Moreover, our method speeds up the search phase compared to other related
work.
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2 Related Work

Low-rank factorization techniques, particularly tensor decomposition, have gained
attention in deep learning, especially in natural language processing (NLP) [22].
These methods provide an efficient means of fine-tuning large language models,
offering advantages over alternative techniques such as quantization [24], knowl-
edge distillation [3], and gradient-based pruning [37]. In this paper, we focus on
tensor decomposition, which proved to be a robust compression tool with a high
compression rate and a relatively lower computational cost. Their applications
extend beyond NLP and have also been applied in computer vision [36]. How-
ever, selecting the appropriate rank for compressing deep neural models using
decomposition techniques is NP-hard [13]. Research in this area falls into two
main approaches.

The first approach relies on a rank-fixed setting, where the ranks of layers
are determined based on a predefined compression rate target. Some work used a
low-rank loss to substitute the weights of convolution layers with their low-rank
approximations [38]. The two main low-rank approximation methods applied on
pre-trained models are CP and Tucker decomposition [16]. Recent studies have
revealed that fine-tuning after CP decomposition can be unstable and have ad-
dressed this issue by integrating a stability term into the decomposition process
[25]. In addition, some work decomposed convolution and fully connected layers
with tensor train, and trained the model from scratch [22]. However, tensor de-
composition in a fixed-rank setting presents certain challenges. First, selecting
the appropriate rank for different layers is complex and often relies on human
expertise. Second, there is a lack of interpretable patterns between layer ranks,
leading to inconsistencies among the chosen ranks between layers. Furthermore,
the fixed rank strategy overlooks the varying importance of layers [19], which
can result in suboptimal approximations that can lead to accuracy drops or
insufficient compression rates.

The second approach involves determining the optimal ranks by setting the
optimization problem on the basis of the ranks of layers. One technique consists
in iteratively decreasing the ranks of the layers at each step of the search phase
[12]. The discrete nature of rank search lends itself to discrete search algorithms,
such as reinforcement learning and progressive search, to identify optimal ranks
[20]. Other methods impose constraints on ranks and budget, using iterative
optimization strategies [37]. More recent studies explore continuous search spaces
to determine optimal ranks [8, 33, 32, 6].

To address time complexity issues, these approaches depend on training data
to search for ranks, restricting exploration to a limited search space, and thereby
limiting the achievable compression rate. In contrast, we introduce a novel op-
timization problem that minimizes a decomposition loss while enforcing a rank
loss constraint independent of the training data, which accelerates the search
process for large models. For rank selection, we propose an efficient dichoto-
mous search method that is both fast and allows for a broader range of rank
exploration, ultimately enhancing the compression rate.
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3 Background and Preliminaries

In the following, we represent indices using italicized letters and sets with italic
calligraphic letters. For two-dimensional arrays (matrices) and one-dimensional
arrays (vectors), we use bold capital letters and bold lowercase letters, respec-
tively. Finally, tensors are represented as multidimensional arrays with bold cal-
ligraphic capital letters.

A fundamental technique for efficiently representing and processing tensors
is tensor decomposition. This technique transforms a multidimensional array
of data into a series of lower-dimensional tensors, thereby reducing both the
representation size and computational complexity. The prevalent tensor decom-
position techniques encompass canonical polyadic (CP) [10], Tucker [29], tensor
train (TT) [23], and tensor ring (TR) decomposition [22].

In our work, we employ both the TT and CP decompositions. TT decompo-
sition supports fast multilinear multiplication and integration while preserving
structure, and CP decomposition has been shown to achieve high parameter re-
duction in CNNs with small performance drops [22]. In the following, we present
the TT decomposition due to its structural advantages in capturing complex
dependencies.

TT decomposition decomposes a tensor into smaller tensors with dimensions
connected as a chain to each other. This decomposition mathematically can be
represented as follows:

Ry_1

Ry
A (Ri,...RN—1),. . . .. .
w 1(217127---71N):§ E G1(i1,51)G2(j1, 12, J2)
1

ji=1 JN-1=

- GN(IN-1,iN), (1)

where the tuple (Ry, Ra, ..., Ry—1) represents the rank of the TT decomposition,
and Gy are the TT cores with sizes Ry_1 X I X Ry, and Ry = Ry = 1. For
a given convolutional layer with a weight tensor W € RV*hxwxc the forward
process for an input tensor X € RF1*k2Xks can be expressed as:

k1—1ka—1ks—1

y: Z Z Z W(t7x+Z.hy+i272+i3)X(i1,i2,i3). (2)

i1=0 ix=0 i3=0

Specifically, we investigate how the weight tensor of a convolutional layer can
be decomposed into multiple smaller convolution operations. We utilize TT de-
composition, as detailed in the following formulations:
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Fig.1: An illustration of matrix decomposition (upper row) using SVD for a
matrix M € R**? alongside Tensor Train decomposition (middle row), and
CP decomposition (bottom row) for a tensor T~ € R3*¥*¢,

The CP decomposition expresses a multi-dimensional tensor into a sum of rank-
one tensors. It follows a well-established factorization process that has been
extensively studied in prior works [10]. Figure 1 illustrates TT decomposition
and CP decomposition in relation to matrix decomposition using SVD.

4 Optimal Rank Tensor Decomposition

The proposed method, denoted as Rank adapt tENsor dEcomposition (RENE)
and illustrated in Figure 2, involves tensor decomposition with an automatic
search for optimal ranks. The approach begins with a pre-trained neural net-
work and aims to decompose its weight tensors layer by layer into lower-rank
approximations while minimizing both decomposition and rank losses. This is
achieved through an iterative optimization process that updates the decomposi-
tion weights and rank coeflicients.

At each layer i € {1,...,n}, rank coefficients (p;)] related to a set of ranks R;
for decomposition (Figure 2 (left)) are found iteratively and progressively refined
until a single optimal rank is determined. The decomposed network with this
optimal rank is fine-tuned to align its outputs with the original model (Figure
2 (right)), ensuring that the compressed model retains the performance of the
original while being more efficient.

Equations (1) and (3) show that both the number of parameters and com-
putation complexity are directly proportional to the rank of the layer. Conse-
quently, selecting a lower rank results in a reduction in these computational costs.
From this observation, we define the decomposition problem as the minimization
of a decomposition error under a rank constraint.
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Fig.2: Overview of RENE: Starting with a pre-trained neural network, weight
tensors are decomposed layer by layer into lower-rank approximations. Rank
coefficients for each layer are refined until optimal (left), followed by fine-tuning
of the decomposed network (right).

4.1 Problem Formulation

Given a pre-trained neural network with n hidden layers and weights {W,}™ ,,
our objective is then to achieve a low-rank decomposition of these weights with
the smallest possible ranks, formulated as the following optimization problem:

—~

min L4(W ) si. min L.(R), (4)
wr R
where L4(.) and £, (.) are a decomposition loss and a rank loss, respectively,
R ~,(R1 ~(Rn . el .
and W = {Wi ), e ,Wi )} is the set of decompositions to be found with

~ (Ri . "
R ={Ri,...,Ry} the set of ranks, and WS ) are the weights of decomposition
corresponding to the ranks R; = {r},...,r¥} of layer i.

For each layer i € {1,...,n} of the network, we consider a set of decom-

positions (Wﬁ”)reni of varying ranks defined in the set R;, for each weight

tensor W,. To make the optimization problem under the rank constraint (4)
(r)

continuous, we associate a rank coeflicient p, ’ with each decomposition of rank
()

%

softmax(«

r in layer 7 based on a learnable parameter «

) _ (r)

This rank coefficient, defined as pl(-r ; ), is adjusted via the
parameter agr) to reflect the probability that the rank r will be used in the de-
composition of the weight tensor W; for the layer 4. Inspired by [31], we formalize

the rank constraint in (4) using a normalized rank loss:

n ﬁ
L.(R)= ’YZ (Z PET)HWZRJ ) (5)

i=1 \reR;

where 3,7 € [0, 1] are hyperparameters.
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4.2 Tensor Decomposition and Rank Exploration

Building on the definition of £,.(R), we introduce two total losses to update
weights and parameters (O‘ET))LT- The total weights loss for a neural network

model with n layers is defined as follows:

reR;

Lty (WRa PR) = Z

i=1

2 n B
T Z(Zpgr)malRi> ’

F i=1 \reR;
(6)

and the total parameters loss for the same neural network can be formulated
as:

n B
—~R —~7R r
£To<(W aPR) = ‘Cval(w >PR) Xy Z (Z pi(‘ )’r) ) (7>

maxR;
i=1 \r€R; v

The first term in (6) is referred to as the decomposition loss, while L, in
(7) denotes the cross-entropy loss on the validation data. The minimization of
the losses, is tackled through a two-step iterative process. First, the weights

—~TR
of the decomposition, denoted as W , are updated by minimizing (6) while
keeping the rank coefficients, denoted as P”, fixed across all layers. Next, the

—~TR
parameters (al(-r))w, are updated using the newly updated weights YW . This

update is performed by minimizing the (7), where the weights between the layers
are adjusted with the corresponding rank parameters. This two-steps updates
ensures that each a update is based on well-trained weights, avoiding noisy
signals from still-learning weights. This prevents the architecture from overfitting
to transient weight states.

The updates of the decomposition weight parameters and rank coefficients
are performed using stochastic gradient descent to ensure efficient and iterative
optimization. The update rules are as follows:

Weight update: Wz(-r)<— WZ(-T) - nwvw<v-> (Lrw), (8)

Rank coefficient update: agr) o - NaV o (LTa)- 9)

K3
For each layer i and each rank r € R;, the weight update (8) and rank co-
efficient update (9) are performed iteratively until a local minimum of the total
loss (6) is reached. Each loss is a multiplication combination, where decompo-
sition and validation losses are scaled by the rank loss (and vice versa). This
scale-invariant feature balances both terms without requiring separate trade-off

hyperparameters, enabling more stable training and better results compared to
additive combinations.
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4.3 Rank Search Space

Previous approaches to rank search in neural network compression typically rely
on evaluating a small, fixed set of candidate ranks. While this strategy offers com-
putational efficiency, it risks overlooking the most optimal rank configurations,
as the true optimum may lie between the preselected candidates. To address
this limitation, we propose a multi-step rank search method that systematically
explores the entire rank space and progressively refines the search around the
most promising solutions.

The process begins by defining a broad search space for each layer, denoted
as R;, which spans all feasible rank values from 7.,in t0 rmax. An initial step
size s(9 is chosen to sample candidate ranks at regular intervals across this
range, ensuring a coarse but complete coverage of the search space. For each
sampled rank, the network weights and associated rank coefficients are updated,
allowing the model to adapt to the current rank configuration. The quality of
each candidate rank is assessed according to a loss function that may include
both reconstruction error and a regularization term to encourage lower ranks.

After this initial exploration, the method identifies, for each layer 4, the rank
7; that achieves the highest rank coefficient, indicating its potential as a promis-
ing candidate. To focus the search more precisely, the algorithm then defines new
lower and upper bounds, Lb; and Ub;, centered around 7; and separated by half
the previous step size on either side. This effectively narrows the search space to
a region most likely to contain the optimal rank. The step size is then reduced
by a factor f > 1, yielding a finer sampling resolution for the next iteration. The
new set of candidate ranks for layer ¢ is thus given by:

R;={r|r=0Lb+ks, for keN, and Lb; <r < Ub;},

where s denotes the updated step size. Before commencing the next iter-
ation, the weights and rank coefficients are reinitialized for the refined search
space. The process of sampling, updating, and selecting is then repeated. With
each iteration, the search space contracts and the step size decreases, leading
to an increasingly precise localization of the optimal rank. This iterative refine-
ment continues until, for each layer, the candidate set R; contains only a single
element, signifying convergence to a unique rank selection.

Throughout this procedure, the weights and rank coefficients are jointly opti-
mized, ensuring that both the model parameters and the rank configuration are
adapted to minimize the overall loss. The loss function can incorporate not only
the reconstruction or decomposition error but also a regularization component
that penalizes higher ranks, thereby promoting model compression.

At the conclusion of the search, the final rank configuration r = (71, ...,7,) is
validated using a cross-entropy loss or another appropriate metric on a held-out
validation set. This step ensures that the selected ranks yield not only a compact
model but also satisfactory predictive performance. The balance between com-
pression and accuracy can be tuned by adjusting the regularization parameters
~v and $ in the loss formulation.
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Fig.3: A toy example illustrates the search for rank spaces. Initially, the search
space includes integers from 100 to 800, with a step size of 100. After the first
iteration, the selected rank is ¥ = 200, narrowing the search interval to [150, 250]
with a step size of 10. The second iteration selects 7 = 240, refining the search
space to [235,245] with a step size of 1. After 3 iterations, the optimal rank is
identified within this interval.

This multi-step, progressive rank search method offers several advantages
over traditional approaches. By systematically narrowing the search space and
refining the sampling granularity, it combines the thoroughness of exhaustive
search with the efficiency of adaptive optimization. The method is capable of
escaping the limitations imposed by fixed candidate sets and can converge to
globally optimal or near-optimal rank configurations. Figure 3 illustrates the
evolution of the search space for a single layer: the process begins with a wide
interval and large step size, then successively narrows and refines the search until
the optimal rank is identified with maximal precision.

4.4 Final Decomposition and Fine-Tuning

The optimal ranks for decomposing the tensor weights for each layer, denoted as
R* ={r},...,rt}, are determined from these final sets and used to construct the
decomposed network. To ensure the decomposed model replicates the behavior
of the original model, it is crucial that the layers not only align their decomposed
weights with the original weights but also produce the same outputs. To achieve
this, our fine-tuning loss (£ f) consists of two components: a cross entropy loss
(L) and distillation loss (L4;ss). The cross entropy loss adjusts the model’s
weights based on the training data labels. Distillation loss aligns the decomposed
weights with the original weights by minimized Frobenius distance, and enforces
consistency between the outputs of the original and decomposed layers. The
distillation and fine-tuning losses are defined as follows:

R n ~ (rF 2 n
Lis W ) =D W=+ 33 10i@) - Di@)E, (10)
=1

zeX i=1
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Algorithm 1: Rank adapt tENsor dEcomposition (RENE)

1 Input: Pretrained model M, Training data X, Rank lower bounds
Lb = {Lbs,...,Lby} and upper bounds Ub = {Ub1,...,Ub,}, Number of
iterations T', Step size s > 1, Factor f;

2 Initialize: Vi, R; < {r |7 = Lb; + ks, for k € N, and Lb; <r < Ub;};

3 while s > 1 do

4 for i€ {1,...,n} do

5 for r € R; do

6 fort=1toT do

7 WET) — update(WET)); // Eq. (8)
8 o\« update(a); // Eq. (9)

9 se{%J;
10 forie {1,...,n} do

11 Ti 4 argmazrcr,; (Softmax(al(-r)));

12 Lb; 7 — 3;

13 Ub; + 7 + 53

14 Ri <« {r|r=Lb;+ ks, for k€N, and Lb; <r < Ub;};

*

o~

15 Output: Decomposed model M™ by minimizing L¢(W ) using X ;
// Eq. (11)

Ef(w ) = Ece + )\Edism (11)

where X is the training set, O;(.) and D;(.) are the outputs of layer ¢ of the

original model and the decomposed one, respectively and A is hyperparameter

to control combination of losses. In this approach, the original model serves

as the teacher model and the decomposed model acts as the student model.

The pseudocode for the overall procedure retracing these steps is presented in
Algorithm 1.

5 Experiments

5.1 Experimental Setup

We evaluate RENE! on 3 datasets including CIFAR-10/100 [17] and ImageNet-1K
[9]. To prevent convergence collapse during the updating of Eq.(6) and Eq.(7),
we initially update only the weights for several iterations before jointly updating
both weights and rank coefficients in an iterative manner. Each experiment is
performed five times, and the best result from the fine-tuning step is reported.
For TT decomposition, due to computational resource constraints, we assume
that the two TT ranks are equal. In the search phase of RENE, for CIFAR-10,/100,

! The code is available for research purposes at https://github.com/aah94/RENE
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we set the initial rank space to {10,...,100} with a step size of s = 10, which
corresponds to 2 search steps. For ImageNet-1K, we set the initial rank space to
{50,...,850} with the step size s = 100, corresponding to 3 search steps. Across
all datasets, we use f = 10. We used the standard SGD optimizer with Nesterov
momentum set to 0.9, and hyperparameters A\, v and 3 set to 0.5, 0.4 and 0.8,
respectively. The initial learning rates were 0.001 for CIFAR-10/100 and 0.0001
for ImageNet-1K. For the fine-tuning step we consider learning rate 0.00001 for
all experiments and grid search with cross-validation is employed to select all
hyperparameters, optimizing model performance based on validation accuracy.
For comparing different approaches, the TOP-1 accuracy is used to compare the
performance of the compressed model against the original uncompressed model.
Additionally, we consider the gain in floating operations per second (FLOPs)
and the compression rate.

5.2 Experimental Results

The following sections present a comprehensive analysis of RENE’s performance
and compression capabilities across various models and datasets.

Performance and Compression Analysis. For the initial evaluation, we
tested RENE on CIFAR-10 using the ResNet-20 and VGG-16 models, with the
results presented in Table 1. RENE with both CP and TT decomposition tech-
niques yields competitive results compared to state-of-the-art methods. Using
ResNet-20 as the original model, RENE with CP decomposition achieves 1.24%
and 1.52% greater reduction of FLOPs and parameters, respectively, compared
to the HALOC method [33]. Additionally, RENE with TT decomposition im-
proves accuracy by 0.08% over the original uncompressed model. This suggests
that our approach has effectively reduced the number of parameters of the orig-
inal model, leading to a better generalization. Furthermore, with the VGG-16
model, RENE achieves significant compression rates while preserving performance.
For instance, using RENE with CP decomposition reduces FLOPs by 85.23% and
parameters by 98.6%. Furthermore, applying RENE with TT decomposition on
VGG-16 improves generalization, resulting in a 0.04% increase in TOP-1 accu-
racy compared to the original uncompressed model.

The results on the ImageNet-1K dataset are presented in Table 2, where we
evaluated RENE using ResNet-18 and MobileNetV2 models. For ResNet-18, our
approach with CP decomposition yields competitive results, while TT decom-
position outperformed other methods, achieving state-of-the-art performance
across all metrics, including Top-1 accuracy, reduction in FLOPs, and parame-
ters. With MobileNetV2, the CP method did not yield high performance, likely
due to the model’s reliance on depthwise convolution, which does not signifi-
cantly benefit from decomposition in certain dimensions. However, RENE with
TT decomposition demonstrated superior compression results, achieving 1.86%
and 2.31% greater reductions in FLOPs and parameters, respectively, along with
competitive Top-1 accuracy. Our results underscore the importance of selecting
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Table 1: Results of different compres-
sion approaches for ResNet-20 and
VGG-16 on CIFAR-10. C.T and A.R
stand for compression technique and
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Table 2: Results of different compres-
sion approaches for ResNet-18 and
MobileNetV2 on ImageNet-1K.

) . Method C.T AR Top-1 FLOPs ({%) Comp. Rate

automatic rank, respectively. oot 18 Original 015 :

Method C.T A.R Top-1 FLOPs ({%) Comp. Rate RENE(CP) Low-rank v/ 6846 57.1

RENE(TT) Low-rank v  70.88 68.9

ResNet-20 Original - 9125 - THALOC 3~ Lowrank ~ v~ 7063 6616

RENE(CP) Lowrank v  90.82 73.44 77.62 ALDS [21] Lowrank v  60.22 4351

RENE(TT) Low-rank v  91.40 70.4 72.28 TETD [37] Low-rank X 69.00 59.51
"HALOC[33] ~  Low-ramk v 9132 7220 76.10 Stable EPC [25] Low-rank v 68.50 59.51

ALDS [21] Low-rank v  90.92 67.86 74.91 MUSCO [12] Low-rank X  69.29 58.67

LCNN [15] Low-rank v 90.13 66.78 65.38 CHEX [14] Pruning - 69.60 43.38

PSTR-S [20] Low-rank v 90.80 65.00 60.87 EE [39] Pruning 68.27 46.60

Std. Tucker [16] Low-rank X  87.41 62.00 61.54 SCOP [28] Pruning 69.18 38.80

VGC-16 Original - 9278 - MobileNetV2 ~ Original 71.85 -

RENE(CP) Low-rank v 9251 86.23 98.60 RENE(CP) Low-rank v  65.39 1178 51.6
RENE(TT) Low-rank v 93.20 86.10 95.51 RENE(TT) Low-rank v/ 70.1 26.7 42.34
"HALOC[33] ~  Low-ramk v 9316  86.44 9856 "HALOC[33] ~ Lowrank v 70.98 248 4003

ALDS [21] Low-rank v 92.67 86.23 95.77 ALDS [21] Low-rank v 70.32 11.01 32.97

LCNN [15] Low-rank v 92.72 85.47 91.14 HOSA [28] Pruning - 64.43 43.65 91.14

DECORE [1] Pruning - 92.44 81.50 96.60 DCP [7] Pruning 64.22 44.75 96.60

Spike-Thrift [18] Pruning -  91.79 80.00 97.01 FT [40] Pruning 70.12 20.23 2131

the appropriate decomposition method based on the model’s complexity. Our
experiments indicate that TT decomposition is more effective for compressing
higher-complexity models, such as those trained on the ImageNet-1K dataset,
while CP decomposition excels in compressing lower-complexity models, like
those classically used on CIFAR-10.

Automatic vs. Manual Rank Selection. We now examine the effectiveness
of our rank search process compared to manual rank setting. In this experiment,
we used pretrained ResNet18 and VGG16 models on the CIFAR-10 and CIFAR-
100 datasets. For manual rank setting, we apply the TT decomposition and fix
the rank across all layers to achieve a decomposed model with a specific percent-

Cifar10_TT Cifar100_TT
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Fig.4: Search vs Manual: Compression results for manual setting at different
levels compression, compare to searched setting (left CIFAR10 and right CI-

FAR100).
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age of the initial model’s parameters, chosen from the set {1,5, 10,25, 50, 75}. All
models are pre-trained on the ImageNet-1K dataset and fine-tuned for 20 epochs.
Figure 4 presents these results. As shown, increasing the number of ranks (or
equivalently, increasing the percentage of parameters of the decomposed model)
improves the performance of both the decomposed VGG16 and ResNet18 mod-
els. When the decomposed models have 75% of the parameters of the initial
models, the performance almost matches that of the original pretrained mod-
els. With RENE, We achieve comparable results while compressing the model by
more than 80% on both ResNet18 and VGG16 across both datasets. These re-
sults indicate that fixing the ranks across layers is suboptimal. In contrast, RENE
enables the automatic selection of ranks across different layers, achieving a good
compression rate without significant performance loss.

Rank selection Figure 5 illustrates the selected ranks for both CP and TT de-
compositions using ResNet-18 as the original model on the ImageNet-1K dataset,
highlighting that CP ranks are generally larger than those of TT.

I CP Ranks
BN TT Ranks

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Layer

Fig.5: Distribution of ranks achieved using CP and TT decompositions on
ResNet-18 for the ImageNet-1K dataset.

This difference arises from the inherent characteristics of the decomposition
methods: CP decomposition tends to produce larger ranks because it decomposes
the tensor into a sum of rank-one tensors, capturing more detailed interactions
but potentially leading to higher complexity. In contrast, TT decomposition
typically results in smaller ranks due to its chain-like structure, which can lead
to more compact representations and potentially better compression. The dis-
tribution of ranks reveals that even among layers of the same dimensions, the
effective ranks can differ. This reflects the varying contributions of each layer
to the model’s performance. Some layers may capture more complex features,
requiring higher ranks, while others may focus on simpler features, allowing for
lower ranks. These results are in line with the case of selecting the ranks manually
and the same over all layers that were been presented in the previous section.
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Double Compression In this experiment, we investigate the effects of double
compression by applying RENE in conjunction with knowledge distillation. Our
goal is to assess whether combining these two compression techniques can yield
further reductions in model size and computational requirements without sacri-
ficing performance. We focus on TT decomposition for this analysis, using two
datasets: CIFAR-100 and ImageNet-1K.

For the CIFAR-100 dataset, we employ ResNet-56 as the teacher model and
ResNet-20 as the student model. Similarly, for the ImageNet-1K dataset, ResNet-
34 serves as the teacher model, while ResNet-18 acts as the student model. The
distillation process involves training the student model to mimic the behavior
of the larger, more complex teacher model, thereby transferring knowledge and
improving performance.

Table 3: Double compression: RENE with distillation on CIFAR-100 and
ImageNet-1K. The notations T and S denote the teacher and student, respec-
tively.

CIFAR-100 (T: ResNet56 (72.34%), S: ResNet20 (69.6%))

Method Top-1 (%) FLOPs (%) Comp. rate (%)
Distillation [30]  72.53 67.7 68.24
RENE(Teacher) 72.23 64.23 61.75
RENE(Student)  72.46 89.01 86.54
ImageNet-1K (T: ResNet34 (73.31%), S: ResNet18 (69.76%))
Method Top-1 (%) FLOPs (%) Params (%)
Distillation [30]  71.98 50.27 46.33
RENE(Teacher) 73.23 59.91 63.46
RENE(Student) 71.9 76.77 78.69

After applying distillation, we further compress both the teacher and the
distilled student models using RENE. The results, presented in Table 3, demon-
strate that our decomposition method achieves competitive performance com-
pared to distillation alone for both the teacher and student models. Notably,
when applying RENE to the distilled student model, we achieve a significant re-
duction in both parameters and computational complexity. Specifically, on the
ImageNet-1K dataset, the decomposed distilled student model reduces parame-
ters by 78.69% and FLOPs by 76.77% compared to the original teacher model.

This double compression approach not only maintains the accuracy of the
original model but also highlights the potential for substantial reductions in
model size and computational requirements. These findings underscore the ef-
fectiveness of combining distillation with decomposition techniques to achieve
efficient and high-performing compressed models.
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6 Conclusion

In this paper, we presented an approach for compressing deep neural networks
through decomposition and optimal rank selection. Our solution stands out with
two key features: it considers all layers during the optimization process, aiming
for high compression rates without compromising accuracy by identifying the
optimal rank pattern across layers. This approach capitalizes on the varying
contributions of different layers to the model’s inference, allowing for smaller
ranks in less critical layers and determining the most effective rank pattern for
each. To achieve significant compression, we explore a broad range of ranks, ad-
dressing the substantial memory challenges of this extensive exploration with a
multistage rank search strategy. This strategy enables comprehensive exploration
while ensuring efficient memory usage. Our experimental results demonstrate
that this approach effectively reduces the number of parameters and computa-
tional complexity, leading to better generalization and competitive performance
across various models and datasets.
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