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Abstract. Large language models exhibit remarkable proficiency across
a wide array of tasks by leveraging in-context learning, wherein they learn
from a limited number of examples. However, the efficacy of ICL is highly
sensitive to the choice of demonstrations provided. Existing approaches
primarily focus on the selection of individual examples, often neglecting
the broader context of the entire example bank. In this paper, we intro-
duce a novel framework aimed at augmenting the example bank through
Diverse Prototype Selection (DPS). DPS decomposes the ICL process
into two distinct stages: Prototype Selection and Prompt Synthesis. In
the first stage, DPS identifies a set of prototype functions that closely
approximate the underlying data distribution. In the second stage, these
prototype functions dynamically generate query-specific demonstrations,
thus guiding the LLM more effectively in its task. Empirical evaluations
conducted across thirteen reasoning benchmarks demonstrate that DPS
significantly enhances ICL performance, providing substantial improve-
ments when integrated with downstream LLMs.

Keywords: In-context Learning · Few-shot Learning.

1 Introduction

Large language models (LLMs) [14] have achieved remarkable success across a
broad range of natural language processing tasks [23], owing to their exceptional
emergent capabilities. One of the most prominent emergent abilities is in-context
learning (ICL), which utilizes a small number of input-output examples to en-
hance model predictions [4]. ICL has proven to be highly effective in unlocking
the advanced potential of LLMs and has become a widely adopted strategy for
tackling complex tasks.

However, due to the constraints imposed by the context window [10], only
a limited number of examples can be incorporated into the prompt. Prior re-
search [16, 13] has also demonstrated that ICL is highly sensitive to the selection
and ordering of chosen examples [8], with even minor changes leading to signif-
icant performance fluctuations. Consequently, a key area of research has been
the selection of high-performing demonstrations from the example bank.
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Fig. 1: Comparison of Static and Adaptive In-context Learning. Unlike Static
ICL, which concatenates a small number of fixed inference examples into the
prompt, Adaptive ICL first evaluates a large set of similar examples to determine
the optimal prototype, then use them to generate diverse and adaptive examples.

A prominent line of research in example selection is the development of
heuristic evaluation metrics to assess candidate examples. Some works focus on
selecting examples that exhibit higher similarity to the input query [16], while
other approaches aim to balance relevance and diversity [37]. Despite their effec-
tiveness, these methods are inherently based on subjective judgments, which lim-
its their robustness across different task scenarios. To address these limitations,
iterative frameworks such as SE2 [15] and ConE [22] refine the selection process
by incorporating feedback from downstream LLMs, enabling more context-aware
adjustments and improving the adaptability of example selection across varying
task demands.

Despite some success, current methods primarily focus on selecting intact
examples from the example bank. However, the quality of the example bank
is often overlooked. Since it is typically human-annotated, constructing the ex-
ample bank is both time-consuming and costly, resulting in a smaller and less
diverse set of examples that may fail to cover all potential scenarios. This limited
selection space restricts the model’s ability to access a sufficiently varied set of
examples. Moreover, the reasoning paths in these human-labeled examples are
typically single-faceted. Even when multiple valid approaches exist for a given
problem, the solutions in the example bank usually follow a single predefined



DPS: Diverse Prototype Selection for Adaptive In-Context Learning 3

path. This overreliance on fixed frameworks hinders the model’s flexibility, pre-
venting it from adapting effectively to new tasks. Therefore, rather than solely
relying on pre-existing samples from the example bank, it is crucial to improve
the adaptiveness and diversity of demonstrations for input queries by dy-
namically generating contextually relevant examples that align with different
reasoning perspectives, as shown in Fig. 1. This enables the model to explore
multiple approaches to problem-solving instead of rigidly following a single pre-
defined path, enhancing its ability to tackle diverse and unfamiliar tasks.

Nevertheless, generating adaptive demonstrations for in-context learning is
a non-trivial task due to several inherent challenges. First, human-annotated
examples inherently limit the model’s generation diversity. On the other hand,
without human-annotated examples, LLM-generated results may not align with
task-specific preferences, compromising the effectiveness of reasoning paths. Al-
though increasing temperature and performing multiple sampling rounds can
introduce diversity to some extent, the model’s reasoning ability remains con-
strained by its intrinsic capabilities. Second, the absence of ground-truth labels
during inference complicates the assessment of different demonstrations. Without
clear evaluation criteria, it becomes challenging to determine which demonstra-
tions are truly effective, making it difficult to identify the most suitable examples
for in-context learning.

To address these challenges, as shown in Fig. 2, we propose a novel framework
that enhances in-context learning through Diverse Prototype Selection (DPS).
To ensure the diversity of the generated examples,DPS first collects
a set of reasoning patterns that approach queries from diverse perspectives,
referred to as prototype functions (Section 4.1). It then utilizes the traditional
example bank to evaluate and select the most suitable prototype functions upon
receiving a user query. This is achieved through the construction of a prototype
bank (Section 4.2), where DPS identifies similar problems and assesses different
prototype functions to generate diverse reasoning paths. To ensure the quality
of the selected examples, DPS employs two advanced reranking techniques:
frequency-based reranking and decay-based reranking. These techniques refine the
model’s output by effectively leveraging consensus across the selected prototype
functions, enhancing both accuracy and reasoning diversity (see Section 4.4).

Experimental results on thirteen datasets across three tasks demonstrate
DPS ’s effectiveness in significantly improving the performance of downstream
LLMs. For instance, in mathematical reasoning tasks, an average improvement
of 11.9% was achieved. To summarize, our contributions are as follows:

– We introduce DPS, an effective framework that leverages the prototype bank
to generate demonstrations with diverse perspectives, adaptively tailored to
the input query.

– To better leverage the inferences among prototype functions, we propose two
advanced techniques: frequency-based reranking and decay-based reranking.
These techniques further refine the selection of high-quality demonstrations.

– Extensive experimental results across thirteen reasoning datasets demonstrate
the effectiveness of DPS compared to existing methods.
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2 Related Work

While large language models have demonstrated impressive zero-shot perfor-
mance across a variety of tasks, including complex reasoning and agent-based
tasks [31, 25], recent studies show that in-context learning can further harness
their potential and enhance their performance [4]. In addition to improving ef-
fectiveness, ICL can provide structural guidance that helps mitigate prompt
bias during model inference [35]. Due to the constraints imposed by the con-
text window [17], only a limited number of examples can be incorporated into
the prompt. Previous research [16, 13] has also demonstrated that ICL is highly
sensitive to the selection and ordering of examples [8].

Some studies focus on selecting examples with greater similarity to the in-
put query [16], while others strive to balance both relevance and diversity [37].
Although these methods have shown promise, they are often based on subjec-
tive criteria, limiting their generalization across different tasks. To overcome
these challenges, iterative frameworks such as SE2 [15] and ConE [22] introduce
feedback loops from downstream LLMs, allowing for more contextually sensitive
adjustments and improving the selection process for various task requirements.

In contrast to these approaches, our method removes the constraint of re-
lying solely on an example bank for selecting in-context examples. Instead, we
propose generating task-specific demonstrations using existing models, offering
a fresh perspective on how ICL capabilities can be leveraged more effectively for
downstream tasks.

3 Preliminary

Consider a downstream task T that involves an example bank B, which consists
of a set of input-output pairs {(xn, yn)

N
n=1}, and a pre-trained LLM with fixed

parameters θ. For a given input query xt, the LLM generates an output yt by
sampling from the following distribution:

yt ∼ LLMθ,τ [Demo(xt, B)⊕ xt] (1)

Here, τ represents the sampling temperature, which controls the random-
ness of the model’s predictions. The function Demo(xt, B) selects a sequence of
examples from B based on xt to generate demonstrations, and ⊕ denotes the
concatenation of these examples with the input query xt.

In subsequent sections, we will omit the fixed parameters θ and assume τ = 0,
which corresponds to greedy decoding (i.e., choosing the most likely output at
each step). The goal of in-context learning is to design the Demo(xt, B) algorithm
to optimize performance for the task T .
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Fig. 2: The DPS pipeline consists of two main stages: (1) Prototype Selection:
selecting a diverse set of prototype functions optimized to provide various reason-
ing perspectives, and (2) Prompt Synthesis: leveraging these prototype functions
to generate adaptive demonstrations tailored to the input query.

4 Methodology

4.1 Overview

As shown in Fig. 2, we provide a comprehensive overview of our framework.
Unlike conventional in-context learning methods that rely on static example
selection, DPS dynamically selects and synthesizes demonstrations, optimizing
reasoning from multiple perspectives. This framework consists of two key stages:
Prototype Selection and Prompt Synthesis.

In the Prototype Selection stage, we first employ a set of specialized models
with diverse prompting methods as prototype functions. The example bank is
then reorganized into a prototype bank, which serves as the foundation for evalu-
ating different prototype functions. Upon receiving a user query, DPS retrieves
similar examples from the prototype bank, evaluates the effectiveness of different
prototype functions based on their responses, and selects the most suitable ones
for the query.

During the Prompt Synthesis stage, DPS prompts the selected prototype
functions to generate adaptive demonstrations tailored to the input query. Ad-
ditionally, two voting-based reranking strategies are employed to refine the se-
lection process, ensuring that only the most effective demonstrations are used as
contextual examples. The following sections will provide a detailed breakdown
of each component of the DPS framework.
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4.2 Prototype Bank Construction

Existing example selection methods work by selecting examples from an ex-
ample bank based on similarity and then directly concatenating them into the
prompt. These examples are considered perfectly accurate as they are manually
annotated. Thus, the example bank is formally defined as:

B = {(xn, F (xn), 1)
N
n=1}, (2)

where F (xn) represents the ground truth, and the label 1 confirms its correctness.
However, the high cost of manual annotation limits the example bank to a sin-

gle analytical perspective, reducing its informational diversity. To mitigate this
limitation, we expand the example bank by incorporating reasoning strategies
from multiple perspectives. Specifically, we introduce several prototype functions
as alternatives to ground truth and track their accuracy p in answering these
questions. This reconstructed example bank, referred to as the Prototype Bank,
is formally defined as:

B′ = {(xn, fk(xn, promptk), p
k
n)

K
k=1

N
n=1}, (3)

where fk refers to the k-th prototype function, promptk refers to the k-th prompt
method and pkn indicates the accuracy of fk in answering xn.

4.3 Prototype Selection

Given an input query xt, we begin by embedding it using a pre-trained model,
then calculate its similarity with other examples:

stn =
Emb(xn) · Emb(xt)

∥Emb(xn)∥∥Emb(xt)∥
(4)

Based on the similarity scores, we filter out the top-M similar examples,
denoted as Q. For each prototype function fk, we then compute its average
performance score across the examples in Q:

sfk =
1

|Q|
∑
xn∈Q

pkn (5)

Here, pkn denotes the average performance of fk on the example question xn,
while sfk represents the mean accuracy across Q.

Rather than relying on pre-defined prompts, DPS actively learns which pro-
totype functions yield the most effective demonstrations. By filtering out sub-
optimal prototypes, our method ensures that only the most informative rele-
vant functions contribute to downstream reasoning, leading to more precise and
adaptable prompt generation. The selected prototype functions are denoted as:

P = {fk, promptk | sfk > sLLM} (6)
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Fig. 3: Frequency-Based Reranking uses total voting frequency, while Decay-
Based Reranking applies a decaying weight to each prototype function.

Here, P represents the set of prototype functions fk whose scores sfk are
greater than the score of the downstream LLMs. The selected prototype functions
serve as the foundation for the next stage, where they are leveraged to generate
tailored demonstrations.

4.4 Prompt Synthesis

Traditional example selection methods rely on static retrieval and direct concate-
nation, limiting their adaptability to different queries. In contrast, DPS employs
dynamic prototype selection and synthesis, allowing for adaptive and context-
aware prompting. This ensures that the demonstrations are optimally tailored
to the input query xtt, significantly improving reasoning diversity and accuracy.

Specifically, when generating diverse reasoning paths, we can incorporate
existing prompting methods to guide the prototype function, such as Task In-
struction and Zero-shot CoT [12]. We would like to emphasize that previous
prompt-based approaches can be integrated as part of our framework to en-
hance the quality of diverse reasoning paths. The impact of demonstration path
quality on our method is discussed in detail in the analysis section. Formally, we
prompt each function fk ∈ P to generate D distinct demos for xt with prompt
method promptk, denoted as:

fd
k (xt, promptk) =

(
Exmpd

k, C
d
k

)
, (7)

where Exmpd
k represents the d-th response, and Cd

k is the conclusion drawn
from Exmpd

k, ensuring that the generated demonstrations are both diverse and
contextually relevant.
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4.5 Voting-Based Reranking

Given the limited context window size, passing all D × |P | responses to the
downstream LLMs is impractical. To retain the most relevant information, we
propose a voting-based reranking method, scoring each Exmpd

k as ydk by aggre-
gating contributions from all prototype functions using a Softmax-like approach:

ydk =
∑
fk∈P

exp(sfk − sLLM ) · vpk, (8)

where, vpk represents the voting weight of fk for the p-th conclusion Cp among
all distinct conclusions cdk, and exp(sfk − sLLM ) serves as a weighting factor
that prioritizes high-performing prototype functions. The calculation of vpk is
performed using one of two methods:

Frequency-based Reranking vpk is assigned based on the frequency of each
conclusion Cp across all responses, as illustrated in Fig. 3.

Decay-based Reranking To prevent a prototype function from dominating
due to repeatedly producing the same conclusion, we apply an exponential decay
strategy to the voting weights of each function’s conclusions:

vpk =
1

D

Tp
k∑

t=1

(
2−t

)
(9)

Here, T p
k denotes the number of times fk produces the conclusion Cp. After

voting-based reranking, we concatenate the top H highest-scoring demonstra-
tions to form Demo(xt, B). This ensures that only the most relevant and high-
quality examples are passed to the LLM, maximizing contextual coherence and
reasoning effectiveness.

5 Experimental Setup

5.1 Datasets

To evaluate DPS, we consider three reasoning tasks, each presenting unique
challenges that necessitate diverse prototype selection.

– Mathematical Reasoning requires multi-step calculations and symbolic
manipulations. This category includes five representative datasets: GSM8K [6]
(GSM), MATH [9] (MTH), SVAMP [21] (SVA), ASDIV [18] (ASD), and
MathQA [2] (MQA). These datasets allow us to examine how DPS improves
problem-solving by leveraging multiple reasoning paths.

– Commonsense Reasoning involves understanding implicit world knowl-
edge. Unlike mathematical reasoning, commonsense knowledge is often non-
explicit and context-dependent. We use five benchmarks: CommonsenseQA [27]
(CSQ), CommonsenseQA2 [28] (CS2), OpenbookQA [19] (OBQ), PIQA [3]
(PIQ), and Com2Sense [26] (C2S). This task tests whether DPS can generate
adaptive demonstrations that incorporate diverse commonsense perspectives.
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– Natural Language Inference (NLI) requires determining logical relation-
ships between sentence pairs. Compared to mathematical and commonsense
reasoning, NLI involves recognizing entailment, contradiction, and neutral-
ity in textual data. We evaluate on MNLI [33] (MLI), QNLI [30] (QLI), and
ANLI [20] (ALI), focusing on whether DPS enhances reasoning robustness
across different logical structures.

5.2 Baselines

We compare DPS with three baseline categories.

– Basic Baselines. Fundamental strategies with minimal guidance. Prompt-
ing: Task instructions without examples. Random: Randomly selecting ex-
amples from the bank. CoT: Prompting the model with "Think step by step."

– Selection-based Methods. Retrieving static examples from an example
bank. KNN: Selecting the most similar examples via two embeddings: BGE [34]
(bge-large-en-v1.5) 3. Sentence-BERT [24] (all-MiniLM-L6-v2) 4. MMR [37]:
Balancing relevance and diversity. ConE [22]: Refining selection via LLM
feedback. These methods retrieve relevant examples but remain static, which
might limit adaptability in diverse tasks.

– Generation-based Methods. Dynamically constructing examples. Anal-
ogy [36]: Generating examples by recalling similar problems. ComplexCoT [7]:
Constructing examples based on bank distributions. AutoCoT [39]: Auto-
matically generating chain-of-thought demonstrations. These methods intro-
duce adaptiveness but might not ensure diversity and task alignment, as
they lack explicit quality control.

5.3 Implementation Details

Dataset Usage. We extract 500 samples from the official dataset for construct-
ing the example bank and 1,000 samples for evaluation. For datasets with fewer
than 1,500 samples, we retain 500 for the example bank and use the remainder
for evaluation. If there is an official ground truth partition for the test or de-
velopment sets, we directly adopt it. In the absence of an official partition, we
perform random sampling to divide the dataset.

Prototype Bank Construction. We selected N = 500 examples to form the Proto-
type Bank. The candidate prototype functions used are LLaMA3-8B-Instruct [1],
MAmmoTH2-8B [38] and Apollo-7B [32]. Our framework is flexible, allowing for the
reuse of prototype functions and downstream models.

Prototype Selection. From the Prototype Bank, we select M = 100 most sim-
ilar examples. For each prototype function, we sample 3 responses to calculate
pkn. The generation temperature for all prototype functions was set to 0.7. For
each model, we apply two prompting methods: Vanilla-Prompting and CoT-
Prompting. This results in a total of six distinct prototype functions.
3

https://huggingface.co/BAAI/bge-large-en-v1.5
4

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Table 1: Experimental results on Commonsense Reasoning benchmarks. The best
results are highlighted in bold, and the second-best results are underlined.
Category Model CSQ OPQ PIQ CS2 C2S Avg.

Basic
Prompting 71.4 71.6 79.4 62.6 62.0 69.4
Random 72.6 74.2 77.2 63.8 66.5 70.8
CoT 71.8 73.6 73.5 67.3 66.6 70.6

Selection

KNN w/Mini [16] 72.7 74.6 79.9 65.2 67.3 71.9
KNN w/BGE [16] 72.9 76.6 80.1 65.0 66.6 72.2
MMR w/BGE [37] 72.2 74.6 78.6 65.2 66.6 71.4
ConE [22] 73.0 76.2 79.7 66.0 66.5 72.3

Generation
Analogy [36] 66.2 73.4 67.7 60.2 62.5 66.0
ComplexCoT [7] 74.4 76.6 76.2 68.7 71.7 73.5
AutoCoT [39] 75.8 75.4 76.4 68.9 71.5 73.6

Ours frequency 77.9 80.0 81.8 71.7 68.7 76.1
decay 79.2 80.6 82.3 71.6 69.9 76.7

Prompt Synthesis. Each selected prototype function generated D = 4 responses.
Finally, the top H = 4 samples were selected for use in the demonstration. All
baseline methods that provide examples follow a 4-shot setting to ensure a fair
comparison. Due to computational resource constraints, each experiment was
conducted once, and the performance results are reported accordingly. We use
LLaMA3-8B-Instruct [1] as the downstream model. Al so, we report performance
across various model types and sizes to provide a broader evaluation.

6 Main Results

6.1 Commonsense Reasoning Results

DPS achieves state-of-the-art accuracy on commonsense reasoning benchmarks,
outperforming the strongest generative method, AutoCoT, by 3.1 points and the
best selection-based model, Con [22], by 4.4 points (Table 1).

Notably, Analogy [36] exhibits subpar performance (66.0 avg.), significantly
lower than basic prompting methods. We attribute this to its automatic genera-
tion of exemplars without validation, which often reinforces incorrect reasoning
patterns. In contrast, other methods benefit from explicit or implicit example
signals, leading to more stable performance improvements over prompting. This
observation suggests that providing examples helps align large language models
(LLMs) with human preferences.

Furthermore, in the PIQA benchmark, we observe that generative approaches
perform markedly worse than selection-based methods. We hypothesize that this
discrepancy arises because PIQA requires selecting the better option from two
sentences, a task that relies more on human preference alignment than pure rea-
soning ability. In this context, DPS effectively balances preference exploitation
and reasoning flexibility, thus surpassing all baselines.
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Table 2: Results on Mathematical Reasoning benchmarks. The best results are
highlighted in bold, and the second-best results are underlined.
Model GSM MTH SVA ASD MQA Avg.
CoT 75.4 29.9 84.8 79.7 53.3 64.6
Analogy [36] 60.0 27.0 75.0 78.6 51.1 58.3
ComplexCoT [7] 74.7 15.7 85.4 75.6 50.0 60.3
AutoCoT [39] 78.8 32.2 86.6 80.3 54.0 66.4
DPS-frequency 88.0 43.9 93.2 89.8 63.5 75.7
DPS-decay 88.2 45.4 93.0 89.9 66.0 76.5

6.2 Mathematical Reasoning Results

Table 2 shows that DPS achieves an average accuracy of 76.5, outperforming
standard CoT (+11.9) and AutoCoT (+10.1) [39], highlighting the benefits of
dynamic prototype selection and adaptive prompt synthesis in multi-step rea-
soning. Notably, ComplexCoT [7] underperforms compared to standard CoT,
particularly on the MTH dataset. This may be due to its fixed reliance on the
longest reasoning path, which often results in verbosity and error propagation.
This observation suggests that heuristic rule-based exemplar selection tends to
lack generalization capability. In comparison, DPS dynamically selects effec-
tive demonstrations and reduces redundancy through a voting-based mechanism,
achieving the highest accuracy across all datasets.

In addition, the decay-based variant consistently achieves higher accuracy
compared to the frequency-based variant. This suggests that decay-based rerank-
ing better prioritizes informative in-context demonstrations, reducing the influ-
ence of less relevant examples and thereby enhancing overall performance.

6.3 Natural Language Inference Results

DPS achieves the best overall performance on logical reasoning benchmarks, with
DPS-decay attaining an average accuracy of 71.2, surpassing the strongest CoT-
based method, AutoCoT, by 0.5 points and outperforming the best retrieval-
based method, MMR w/BGE, by 9.5 points (Table 3).

Breaking down the results, selection-based approaches show modest improve-
ments over the basic CoT model, but their effectiveness remains highly depen-
dent on the quality of retrieved exemplars. In contrast, generation-based methods
exhibit higher variance: ComplexCoT achieves strong performance in QLI (87.9)
but suffers from severe instability in ALI and MLI, suggesting that its reliance
on complexity-based heuristics leads to inconsistent reasoning across tasks.

In response to these limitations, DPS dynamically selects and ranks high-
quality demonstrations, ensuring stable performance across datasets. Notably, its
frequency-based variant already outperforms all baselines, while the decay-based
strategy further refines example weighting, leading to improved robustness and
adaptability. These findings underscore DPS as an effective and generalizable
approach for in-context learning in logical reasoning tasks.
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Table 3: Results on Logical Reasoning benchmarks. The best results are high-
lighted in bold, and the second-best results are underlined.
Category Model ALI MLI QLI Avg.

Basic
Prompting 57.9 59.7 58.3 58.6
Random 61.0 59.7 58.8 61.5
CoT 67.2 61.7 78.0 69.0

Selection

KNN w/Mini [16] 61.4 61.7 60.0 61.2
KNN w/BGE [16] 61.5 61.8 57.7 61.0
MMR w/BGE [37] 61.9 62.0 58.1 61.7
ConE [22] 63.3 62.0 59.2 61.5

Generation
Self-Gen [36] 42.4 39.8 43.4 41.9
ComplexCoT [7] 21.6 16.1 87.9 41.9
AutoCoT [39] 70.4 61.4 80.3 70.7

DPS (Ours) frequency 71.1 61.9 79.7 70.9
decay 71.5 62.1 80.0 71.2

Table 4: Ablation study of DPS (frequency-based reranking) on six datasets.
Method GSM MTH SVA ASD CSQ CS2 Avg.
DPS 88.0 43.9 93.2 89.8 77.9 71.7 77.4
w/o Prototype Selection 86.6 28.0 89.4 86.8 74.4 66.7 72.0
w/o Prompt Synthesis 72.8 28.7 84.8 79.6 76.0 70.3 68.7
w/o Demo Reranking 81.5 37.4 85.8 81.1 77.3 70.9 72.3

7 Analysis

The contribution of different components. We test DPS in three settings (Ta-
ble 4). w/o Prototype Selection: prototypes are randomly selected; w/o
Prompt Synthesis: only final answers are sampled from prototypes, exclud-
ing the chain of thought; and w/o Demo Ranking: demonstrations are pre-
sented in random order. The results show that each component is crucial for
high-quality demonstrations, with the largest performance drop occurring when
Prototype Selection is removed, emphasizing its importance in DPS.

Cost-Effectiveness Analysis. During Prototype Selection, DPS performs KNN
retrieval over a relatively small text corpus, resulting in negligible latency. During
Prompt Synthesis, DPS employs multiple sampling from prototype functions.
Thus we compare it with the self-consistency approach under various settings.
Table 5 shows that DPS consistently outperforms self-consistency across all task
types while utilizing only 15% of the sampling budget. This advantage arises from
DPS ’s ability to generate diverse reasoning paths from multiple perspectives,
thereby introducing greater variability compared to self-consistency.

Comparison of Models and Sizes. We evaluated DPS on four model families:
Vicuna [5], Mistral [11], Llama3 [1], and Qwen2.5 [29]. Fig. 4 shows average
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Table 5: Comparison of DPS and Self-Consistency methods across datasets. The
best results are highlighted in bold, and the second-best results are underlined.

SC-Vanilla SC-CoT D-freq D-decay
#sample 10 40 10 40 6 6
SVAMP 69.8 70.2 89.2 91.4 93.2 93.0
ASDIV 64.9 65.3 84.7 85.4 89.8 89.9
CSQA 71.2 71.2 73.1 74.2 77.9 79.2
CSQA2 62.4 62.9 68.9 69.2 71.7 71.6

GSM8K MATH SVAMP ASDIV MATHQA Avg.0%
20%
40%
60%
80%
100%

Vicuna-7B(CoT)
Vicuna-7B(DPS)

Mistral-7B(CoT)
Mistral-7B(DPS)

Llama3-8B(CoT)
Llama3-8B(DPS)

Qwen2.5-7B(CoT)
Qwen2.5-7B(DPS)

(a) Mathematical Reasoning.

CSQA OBQA PIQA CSQA2 C2S Avg.0%
20%
40%
60%
80%
100%

Vicuna-7B(CoT)
Vicuna-7B(DPS)

Mistral-7B(CoT)
Mistral-7B(DPS)

Llama3-8B(CoT)
Llama3-8B(DPS)

Qwen2.5-7B(CoT)
Qwen2.5-7B(DPS)

(b) Commonsense Reasoning.

Fig. 4: Accuracy of DPS across four different downstream LLMs on various rea-
soning tasks. The results demonstrate that the DPS framework brings significant
performance improvements to the different downstream LLMs.

Qwen2.5-3B Qwen2.5-7B Qwen2.5-14B65
70
75
80
85

69.1

75.4

81.977.2
79.8

82.8

CoT
DPS w/ Decay (Ours)

Fig. 5: The effect of different model
sizes on reasoning performance is re-
ported with the average accuracy
across datasets of the Qwen2.5 family.

1 2 3 4 5
CSQA

77.1
77.3
77.4
77.6
77.7

1 2 3 4 5
GSM8K

76.8
77.2
77.6
78.0
78.4

1 2 3 4 5
OBQA

79.0
80.0
81.0
82.0
83.0

Fig. 6: Accuracy trends with different
H values. Accuracy improves with in-
creasing H up to a certain threshold,
beyond which performance declines.

accuracy across all datasets, highlighting that models with lower baseline per-
formance benefit most from DPS. For example, Vicuna-7B improved by 35.5%,
while Qwen2.5-7B gained 4.4% despite a strong baseline. Fig. 5 shows that larger
models also benefit, though smaller models see larger gains.
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Number of Demonstrations. Fig. 6 reveals the following insights: 1) As more
demonstrations are introduced, the performance of DPS improves, indicating
that a single example is insufficient. 2) However, when the number of demon-
strations becomes too large, additional examples provide redundant information,
leading to a decline in performance. Based on these findings, we recommend us-
ing three demonstration examples and suggest adjusting this number for optimal
performance depending on the specific dataset.

8 Conclusion

We introduce DPS, a framework that enhances the example bank through di-
verse prototype selection. DPS decouples in-context learning into two stages:
Prototype Selection, where diverse prototype functions are chosen, and Prompt
Synthesis, where these functions generate demonstrations for the input query.
By incorporating voting-based reranking, DPS introduces high-quality demon-
strations to the downstream LLM. Extensive experiments across 13 benchmarks
in three reasoning domains show that DPS consistently improves model perfor-
mance, highlighting its effectiveness in refining in-context learning.

Our work has several potential limitations. While our framework does not face
significant computational budget constraints, the example selection process does
introduce some inference latency, which could become a concern for very large
models where inference speed is critical. Future work could explore more efficient
strategies for example selection to reduce this latency and improve scalability.

Acknowledgments. This work is supported in part by Ucap Cloud and the State
Key Laboratory of General Artificial Intelligence.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. AI@Meta: Llama 3 model card (2024), https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md

2. Amini, A., Gabriel, S., Lin, S., Koncel-Kedziorski, R., Choi, Y., Hajishirzi, H.:
MathQA: Towards interpretable math word problem solving with operation-based
formalisms

3. Bisk, Y., Zellers, R., Bras, R.L., Gao, J., Choi, Y.: Piqa: Reasoning about physical
commonsense in natural language (2019)

4. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. In: Proceedings of the 34th International Conference on Neural Informa-
tion Processing Systems. pp. 1877–1901 (2020)

5. Chiang, W.L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S.,
Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality (2023)



DPS: Diverse Prototype Selection for Adaptive In-Context Learning 15

6. Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert,
M., Tworek, J., Hilton, J., Nakano, R., Hesse, C., Schulman, J.: Training verifiers
to solve math word problems. arXiv preprint arXiv:2110.14168 (2021)

7. Fu, Y., Peng, H., Sabharwal, A., Clark, P., Khot, T.: Complexity-based prompting
for multi-step reasoning (2023)

8. Guo, Q., Wang, L., Wang, Y., Ye, W., Zhang, S.: What makes a good order of
examples in in-context learning. In: Ku, L.W., Martins, A., Srikumar, V. (eds.)
Findings of the Association for Computational Linguistics: ACL 2024

9. Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D.,
Steinhardt, J.: Measuring mathematical problem solving with the math dataset.
NeurIPS (2021)

10. Hosseini, P., Castro, I., Ghinassi, I., Purver, M.: Efficient solutions for an intrigu-
ing failure of LLMs: Long context window does not mean LLMs can analyze long
sequences flawlessly. In: Rambow, O., Wanner, L., Apidianaki, M., Al-Khalifa, H.,
Eugenio, B.D., Schockaert, S. (eds.) Proceedings of the 31st International Con-
ference on Computational Linguistics. Association for Computational Linguistics,
Abu Dhabi, UAE (2025)

11. Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., Casas,
D.d.l., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., et al.: Mistral 7b. arXiv
preprint arXiv:2310.06825 (2023)

12. Kojima, T., Gu, S.S., Reid, M., Matsuo, Y., Iwasawa, Y.: Large language models
are zero-shot reasoners. Advances in neural information processing systems 35,
22199–22213 (2022)

13. Lee, J., Yang, W., Gupta, G., Wei, S.: Automatic mathematic in-context example
generation for LLM using multi-modal consistency. In: Rambow, O., Wanner, L.,
Apidianaki, M., Al-Khalifa, H., Eugenio, B.D., Schockaert, S. (eds.) Proceedings
of the 31st International Conference on Computational Linguistics. Association for
Computational Linguistics, Abu Dhabi, UAE (2025)

14. Li, M., Liu, Z., Deng, S., Joty, S., Chen, N., Kan, M.Y.: DnA-eval: Enhancing large
language model evaluation through decomposition and aggregation. In: Rambow,
O., Wanner, L., Apidianaki, M., Al-Khalifa, H., Eugenio, B.D., Schockaert, S. (eds.)
Proceedings of the 31st International Conference on Computational Linguistics.
Association for Computational Linguistics, Abu Dhabi, UAE (2025)

15. Liu, H., Liu, J., Huang, S., Zhan, Y., Sun, H., Deng, W., Wei, F., Zhang, Q.:
se2: Sequential example selection for in-context learning. In: Ku, L.W., Martins,
A., Srikumar, V. (eds.) Findings of the Association for Computational Linguistics:
ACL 2024. Association for Computational Linguistics, Bangkok, Thailand (2024)

16. Liu, J., Shen, D., Zhang, Y., Dolan, W.B., Carin, L., Chen, W.: What makes good
in-context examples for gpt-3? In: DeeLIO (2022)

17. Liu, N.F., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua, M., Petroni, F., Liang,
P.: Lost in the middle: How language models use long contexts. Transactions of
the Association for Computational Linguistics 12, 157–173 (2024)

18. Miao, S.y., Liang, C.C., Su, K.Y.: A diverse corpus for evaluating and developing
english math word problem solvers. In: Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics. pp. 975–984 (2020)

19. Mihaylov, T., Clark, P., Khot, T., Sabharwal, A.: Can a suit of armor conduct
electricity? a new dataset for open book question answering. In: Conference on
Empirical Methods in Natural Language Processing (2018)

20. Nie, Y., Williams, A., Dinan, E., Bansal, M., Weston, J., Kiela, D.: Adversarial
nli: A new benchmark for natural language understanding. In: ACL (2020)



16 Xuanbo Fan, Kaiyuan Li et al.

21. Patel, A., Bhattamishra, S., Goyal, N.: Are NLP models really able to solve simple
math word problems? In: NAACL. Online (2021)

22. Peng, K., Ding, L., Yuan, Y., Liu, X., Zhang, M., Ouyang, Y., Tao, D.: Revisiting
demonstration selection strategies in in-context learning. In: Ku, L.W., Martins,
A., Srikumar, V. (eds.) Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Association for Compu-
tational Linguistics, Bangkok, Thailand (2024)

23. Peng, K., Ding, L., Zhong, Q., Shen, L., Liu, X., Zhang, M., Ouyang, Y., Tao,
D.: Towards making the most of chatgpt for machine translation. In: Findings of
EMNLP (2023)

24. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-
networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics (2019)

25. Ren, Z., Zhan, Y., Yu, B., Ding, L., Tao, D.: Healthcare copilot: Eliciting the
power of general llms for medical consultation. arXiv preprint (2024), https://
arxiv.org/abs/2402.13408

26. Singh, S., Wen, N., Hou, Y., Alipoormolabashi, P., Wu, T.l., Ma, X., Peng, N.:
COM2SENSE: A commonsense reasoning benchmark with complementary sen-
tences. In: Zong, C., Xia, F., Li, W., Navigli, R. (eds.) Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021

27. Talmor, A., Herzig, J., Lourie, N., Berant, J.: CommonsenseQA: A question an-
swering challenge targeting commonsense knowledge. In: NAACL. Association for
Computational Linguistics, Minneapolis, Minnesota (2019)

28. Talmor, A., Yoran, O., Bras, R.L., Bhagavatula, C., Goldberg, Y., Choi, Y., Berant,
J.: Commonsenseqa 2.0: Exposing the limits of ai through gamification (2022)

29. Team, Q.: Qwen2.5: A party of foundation models (2024)
30. Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.R.: Glue: A multi-

task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461 (2018)

31. Wang, S., Ding, L., Shen, L., Luo, Y., Du, B., Tao, D.: Oop: Object-oriented pro-
gramming evaluation benchmark for large language models. arXiv preprint (2024),
https://arxiv.org/abs/2401.06628

32. Wang, X., Chen, N., Chen, J., Hu, Y., Wang, Y., Wu, X., Gao, A., Wan, X., Li,
H., Wang, B.: Apollo: Lightweight multilingual medical llms towards democratizing
medical ai to 6b people (2024)

33. Williams, A., Nangia, N., Bowman, S.: A broad-coverage challenge corpus for sen-
tence understanding through inference. In: Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers). Association for Compu-
tational Linguistics (2018)

34. Xiao, S., Liu, Z., Zhang, P., Muennighoff, N.: C-pack: Packaged resources to ad-
vance general chinese embedding (2023)

35. Xu, Z., Peng, K., Ding, L., Tao, D., Lu, X.: Take care of your prompt bias! inves-
tigating and mitigating prompt bias in factual knowledge extraction. In: LREC-
COLING (2024)

36. Yasunaga, M., Chen, X., Li, Y., Pasupat, P., Leskovec, J., Liang, P., Chi, E.H.,
Zhou, D.: Large language models as analogical reasoners. In: The Twelfth Interna-
tional Conference on Learning Representations (2024)

37. Ye, X., Iyer, S., Celikyilmaz, A., Stoyanov, V., Durrett, G., Pasunuru, R.: Comple-
mentary explanations for effective in-context learning. In: Rogers, A., Boyd-Graber,



DPS: Diverse Prototype Selection for Adaptive In-Context Learning 17

J., Okazaki, N. (eds.) Findings of the Association for Computational Linguistics:
ACL 2023. Association for Computational Linguistics, Toronto, Canada (2023)

38. Yue, X., Zheng, T., Zhang, G., Chen, W.: Mammoth2: Scaling instructions from
the web. arXiv preprint arXiv:2405.03548 (2024)

39. Zhang, Z., Zhang, A., Li, M., Smola, A.: Automatic chain of thought prompting
in large language models. In: ICLR (2023)


