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Abstract. Sparse attacks are to optimize the magnitude of adversarial perturba-
tions for fooling deep neural networks (DNNs) involving only a few perturbed
pixels (i.e., under the l0 constraint), suitable for interpreting the vulnerability of
DNNs. However, existing solutions fail to yield interpretable adversarial exam-
ples due to their poor sparsity. Worse still, they often struggle with heavy compu-
tational overhead, poor transferability, and weak attack strength. In this paper, we
aim to develop a sparse attack for understanding the vulnerability of DNNs by
minimizing the magnitude of initial perturbations under the l0 constraint, to over-
come the existing drawbacks while achieving a fast, transferable, and strong at-
tack to DNNs. In particular, a novel and theoretical sound parameterization tech-
nique is introduced to approximate the NP-hard l0 optimization problem, mak-
ing directly optimizing sparse perturbations computationally feasible. Besides, a
novel loss function is designed to augment initial perturbations by maximizing
the adversary property and minimizing the number of perturbed pixels simulta-
neously. Extensive experiments are conducted to demonstrate that our approach,
with theoretical performance guarantees, outperforms state-of-the-art sparse at-
tacks in terms of computational overhead, transferability, and attack strength, ex-
pecting to serve as a benchmark for evaluating the robustness of DNNs. In ad-
dition, theoretical and empirical results validate that our approach yields sparser
adversarial examples, empowering us to discover two categories of noises, i.e.,
“obscuring noise” and “leading noise”, which will help interpret how adversarial
perturbation misleads the classifiers into incorrect predictions. Our code is avail-
able at https://github.com/fudong03/SparseAttack.

Keywords: Sparse Attack · Adversarial Attack · Interpretability.

1 Introduction

Deep neural networks (DNNs) have demonstrated impressive performance on a range
of challenging tasks, including image classification [21,42,16,12], natural language pro-
cessing [48,8], and various other domains [18,17,26,39,28,31,1,24,55,5]. However, re-
cent studies [45,15] have revealed a critical vulnerability: DNNs can be easily fooled by
adversarial examples. These examples are generated by adding small, human-imperceptible
perturbations to natural images, causing the models to make incorrect predictions with
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high confidence. This vulnerability leads to severe security threats on DNNs, e.g., a
prior study [13] reported that adding human-imperceptible perturbation to a Stop sign
made state-of-the-art classifiers misclassify it as a Speed Limit 45, thereby hindering
DNNs’ wide applicability to such security-critical domains as face recognition [22,46],
autonomous driving [13,19], etc.

The mainstream attack strategy targeting DNNs is to optimize the magnitude of
adversarial perturbations. In general, a perturbation is constrained by lp norm, with
p = 0, 1, 2, or ∞, and can be categorized into two clusters, i.e., dense attack and sparse
attack. The former needs to modify almost all pixels under the l2 or l∞ constriant [9],
while the latter perturbs a few pixels under the l0 (or sometimes l1) constriant [57].

To date, Fast Gradient Sign Method (FGSM)-based approaches [15,22,10,53,11] are
known to be prominent dense attacks, because they arrive at fast and highly transfer-
able adversarial attacks by optimizing adversarial perturbations under the l∞ constraint.
However, they tend to perturb almost all pixels, making them hard to interpret adversar-
ial attacks due to their overly perturbed adversarial examples. In sharp contrast, sparse
attacks [43,35,14,9,57,38,6,51,34,49] minimize the l0 distance between natural images
and adversarial examples, for attacking DNNs with only a few perturbed pixels. Hence,
sparse attacks usually provide additional insights into adversarial attacks, able to better
interpret the vulnerability of DNNs [14]. However, optimizing the magnitude of per-
turbations under the l0 constraint falls into the NP-hard problem, so previous solutions
often get trapped in local optima [35,57], making the resulted attacks possess an insuf-
ficient adversary property. As such, existing sparse attacks suffer from the drawbacks
of heavy computational overhead [9], poor transferability, and weak attack intensity.
Worse still, their resultant adversarial examples suffer from poor sparsity, making them
unsuitable for interpreting the vulnerability of DNNs.

In this work, we focus on the sparse attack, aiming to develop a new solution that
yields interpretable adversarial examples, allowing us to have a deep understanding
in the vulnerability of DNNs. To achieve our goal, we introduce a novel and theoreti-
cally solid reparameterization technique to effectively approximate the NP-hard l0 opti-
mization problem, making direct optimization of sparse perturbations computationally
tractable. In addition, a novel loss function is proposed to augment initial perturbations
through maximizing the adversary property and minimizing the number of perturbed
pixels simultaneously. As such, our approach, underpinned by theoretical performance
guarantees, can yield a fast, transferable, and powerful adversarial attack while un-
veiling the mystery underlying adversarial perturbations. Extensive experimental re-
sults demonstrate that our approach outperforms state-of-the-art sparse attacks in terms
of computational complexity, transferability, and attack strength. Meanwhile, we the-
oretically and empirically validate that our approach yields much sparser adversarial
examples, suitable for interpreting the vulnerability of DNNs. Through analyzing the
minimal perturbed adversarial examples, we discover two categories of adversarial per-
turbations to help understand how adversarial perturbations mislead the classifiers, re-
sulted directly from “obscuring noise” and “leading noise”, where the former obscures
the classifiers from identifying true classes, while the latter misleads the classifiers into
targeted predictions.
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2 Related Work

The state-of-the-art solutions for adversarial attacks can be grouped into two categories,
i.e., dense attack and sparse attack. We shall discuss how our work relates to, and differs
from, prior solutions.
Dense attacks optimize the magnitude of adversarial perturbations under the l2 or
l∞ constriant. Popularized by Fast Gradient Sign Method (FGSM) [15], FGSM-based
methods are the most prominent dense attacks, where adversarial examples (under the
l∞ constraint) are effectively produced by adding the gradients of the classification
loss to natural images. Subsequent work includes I-FGSM [22] which applies FGSM
in multiple rounds, R-FGSM [47] which augments FGSM with random initialization,
PGD [32] which extends I-FGSM with multiple random restarts, MI-FGSM [10] which
boosts I-FGSM with momentum, and DI-FGSM [53] and TI-FGSM [11] which improve
transferability respectively with random resizing and translation operations. Other dense
attacks include [45,36,2,4,3,33,27], which perform effective dense attacks by minimiz-
ing the l2 (or l∞) distance between natural images and adversarial examples. However,
this category of solutions requires modification of almost all pixels, infeasible to be
used for interpreting the vulnerability of DNNs. Our solution, by contrast, perturbs
only a few pixels, able to provide additional insights about adversarial vulnerability.
Sparse attacks minimize the magnitude of perturbations under the l0 (or sometimes l1)
constraint. Previous sparse attacks include C&W L0 attack [2] which iteratively fixes
less important pixels, OnePixel [43] which applies an evolutionary algorithm, Sparse-
Fool [35] which converts the l0 optimization problem to the l1 constraint one, Greedy-
Fool [9] which uses a two-stage greedy strategy, Homotopy attack [57] which utilizes a
homotopy algorithm to jointly optimize the sparsity and the perturbation bound, among
many others [37,54,7,14,38,6,51,34,49]. Unfortunately, prior sparse attacks suffer from
considerable computational overhead, poor transferability, and weak attack intensity.
In contrast, we propose a theoretical sound reparameterization technique to approxi-
mate the NP-hard l0 optimization problem and a novel loss function to augment initial
perturbations. As such, our approach advances existing sparse attacks in terms of com-
putational efficiency, transferability, and attack strength. In addition, we theoretically
and empirically validate that our approach yields much sparser adversarial examples,
empowering us to interpret the vulnerability of DNNs.

3 Preliminary

Given a well-trained classifier fθ, the cross-entropy loss function J , and a natural image
x with the ground-truth label ytrue, the adversary aims to mislead the classifier fθ into
an incorrect prediction via adding certain perturbation δ (under the constraint ϵ) into
the natural image, mathematically expressed as follows:

fθ(x+ δ) = yadv s.t. ∥δ∥p ≤ ϵ and x+ δ ∈ [0, 1]d, (1)

where yadv represents the adversarial label and is different from ytrue, ∥·∥p denotes the lp
norm (with p = 0, 1, 2, or ∞), and manipulating a natural image should yield one valid
image. Note here the pixel values are normalized over [0, 1] to simplify the calculation.



4 F. Lin, J. Lou, et al.

FGSM (Fast Gradient Sign Method) [15] aims to mislead classifiers to predict incor-
rectly through adding gradients to natural images. The sign function is leveraged to
ensure the perturbation δ under the l∞ constraint of ϵ, i.e.,

δ = ϵ · sign(∇x J(x, ytrue)) s.t. fθ(x+ δ) = yadv and x+ δ ∈ [0, 1]d. (2)

FGSM is deemed as the fastest attack algorithm [10]. Subsequent solutions [22,32,53,11]
have been proposed, yielding fast and highly transferable dense attacks.
I-FGSM (Iterative Fast Gradient Sign Method) [22] augments FGSM to have a stronger
white-box attack by applying a small step length α to FGSM iteratively:

xadv
0 = x, xadv

N+1 = xadv
N + α · sign(∇x J(x, ytrue)). (3)

We can simply set α = ϵ/T (T is the number of iterations) to satisfy the l∞ constraint
ϵ. Note that Eq. (3) performs a non-target attack by adding positive gradients to natu-
ral images x for maximizing the classification loss. To perform a targeted attack, we
can maximize the logical probability of yadv on natural image x (i.e., log p(yadv|x)) by
iteratively moving towards the direction of sign{∇x log p(yadv|x)}:

xadv
0 = x, xadv

N+1 = xadv
N − α · sign(∇x J(x, yadv)). (4)

The intuition behind Eq. (4) is that adding negative gradients to the natural image x
can make the prediction of classifier fθ iteratively move towards the adversarial class
yadv. Notably, both Eq. (3) and Eq. (4) must also satisfy the constraint xadv

N+1 ∈ [0, 1]d

to ensure that the resulting adversarial examples remain valid input images.

4 Our Approach

4.1 Problem Statement

Sparse attacks optimize the magnitude of perturbations under the l0 constraint, aiming
to achieve successful attacks with a small number of perturbed pixels, as formulated
below:

minimize ∥δ∥0 s.t. fθ(x+ δ) = yadv and x+ δ ∈ [0, 1]d. (5)

Unfortunately, Eq. (5) is an NP-hard problem. When solving it, prior sparse attacks
often got trapped in local optima [7,57], causing the resulting attacks to suffer from poor
sparsity, unable to be used for interpreting the vulnerability of DNNs. To address this
limitation, we develop a sparse attack that yields highly sparse adversarial examples,
suitable for understanding the vulnerability of DNNs.

4.2 Challenges

Several challenges are to be addressed, as elaborated below.
Box Constraint. “Box constraint” is fundamental to adversarial attacks. It ensures that
manipulating natural images should yield valid images (i.e., x + δ ∈ [0, 1]d). Two
strategies exist to meet the box constraint for sparse attacks: i) clipping invalid pixels
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(a) I-FGSM
“mink”

98.6% confidence

(b) BruSLeAttack
“panda”

13.5% confidence

(c) Ours
“mink”

97.9% confidence

(d) perturbation
∥δ∥0 = 150523

(99.99%)
0.52 seconds

(e) perturbation
∥δ∥0 = 425
(0.282%)

36.9 seconds

(f) perturbation
∥δ∥0 = 4
(0.003%)

3.86 seconds

Fig. 1: Illustration of adversarial examples (AEs) computed by different attack algo-
rithms. (a), (b), and (c) show AEs computed by I-FGSM, BruSLeAttack, and our ap-
proach, respectively, dependent on the classifier VGG-16. (d), (e), and (f) exhibit the
adversarial perturbation with respect to (a), (b), and (c). The classification results, i.e.,
“mink”, “panda”, “mink” (below (a), (b), and (c), respectively) and classification con-
fidence levels, are reported by VGG-19. The number of (∥δ∥0) and the percentage of
perturbed pixels, as well as the computation time, are all listed below (d), (e), and (f).

which exceed the valid range and ii) changing the optimization direction to make re-
sulting adversarial examples valid. However, the former results in a severe reduction
in the fooling rate, while the latter incurs a large computational burden. So far, how to
effectively handle the “box constraint” with desired properties remains challenging.

Computational efficiency. Optimizing the magnitude of perturbations under the l0 con-
straint is NP-hard. Prior sparse attacks attempt different approximation algorithms to
reduce the computational burden, e.g., BruSLeAttack [49]. Yet, considerable computa-
tional overhead still incurs (see Figure 1e, where 36.9 seconds are taken). Hence, how
to efficiently minimize the number of perturbed pixels remains open.

Transferability and Attack Strength. Prior sparse attacks often suffer from poor trans-
ferability and weak attack intensity. For example, as shown in Figure 1b, BruSLeAttack
fails to perform a black-box attack, i.e., the adversarial example generated by VGG-16
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fails to fool VGG-19. It is challenging to develop a transferable and powerful sparse
attack with only a small amount of perturbed pixels.

4.3 Our Idea

To overcome the aforementioned challenges, we aim to develop a novel sparse attack
by optimizing the magnitudes of initial perturbations generated by I-FGSM under the
l0 constraint. In particular, a novel loss function is introduced to augment initial per-
turbations through maximizing the adversary property and minimizing the number of
perturbed pixels simultaneously. Two observations motivate this idea. First, a prior
study [29] reported that different models tend to learn similar decision boundaries.
Hence, starting from initial perturbations generated by dense attacks accelerates conver-
gence and makes our approach more likely to reach the global optima [44]. Second, I-
FGSM results in overly perturbed adversarial examples, and thereby reducing the num-
ber of perturbed pixels may not negatively affect its adversary property. For example, as
depicted in Figure 1a (I-FGSM) and Figure 1c (Our Approach), both I-FGSM and our
approach mislead VGG-19 into the same incorrect prediction (i.e., “mink”). Therefore,
it is feasible to optimize the magnitude of perturbations produced by I-FGSM under the
l0 constraint without sacrificing its transferability. Furthermore, a new box constraint
strategy is designed to make our solution always yield valid adversarial examples.

4.4 Our Proposed Approach

Objective. To achieve our goal, we propose a novel sparse attack by optimizing the
magnitude of initial perturbations under the l0 constraint. Our problem can be formu-
lated as follows:

minimize ∥w∥0 s.t. fθ(x+w ⊙ δ) = yadv and x+w ⊙ δ ∈ [0, 1]d, (6)

where δ indicates the initial perturbation, w denotes the weight with the same dimen-
sion as perturbation δ, and ⊙ represents an element-wise product. Motivated by the
“pre-train then tune” paradigm [56], instead of randomly initializing the perturbation
δ, we pre-compute it by using Iterative Fast Gradient Sign Method (I-FGSM) [22],
which in turn accelerates convergence and makes the resulting perturbation more likely
to reach the global optima [44]. Note that solving the problem formulated by Eq. (6)
yields near-optimal solutions for Eq. (5), i.e., with the fewest perturbed pixels.

To augment initial perturbations, we follow prior work [2,29] to reformulate our
problem of Eq. (6) via the Lagrangian relaxation formulation for concurrently maxi-
mizing the classification loss and minimizing the number of perturbed pixels, yielding:

Jadv = J(fθ(x+w ⊙ δ), yadv) + λ ∥w∥0, (7)

where λ is a hyperparameter to balance the classification loss and the degree of per-
turbation. As negative elements in w indicate that the corresponding perturbations in δ
negatively affect the adversary property, a simple but effective way to augment Eq. (7)
is via applying the ReLU function to drop negative values in w, i.e.,

Jadv = J(fθ(x+ π(w)⊙ δ), yadv) + λ ∥π(w)∥0, (8)
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where π(·) represents the ReLU function.

Reparameterization Technique. However, as indicated by [30], the l0 norm of π(w)
is non-differentiable, so directly optimizing Eq. (8) is computationally intractable. To
address this intractability, let H(·) be the Heaviside step function and consider a simple
re-parametrization technique:

∥π(w)∥0 =

d∑
j=1

H(π(wj)), with H(x) =

{
1, x > 0

0, x ≤ 0
. (9)

As such, we can reformulate Eq. (8) as follows,

Jadv = J(fθ(x+ π(w)⊙ δ), yadv) + λ

d∑
j=1

H (π(wj)) . (10)

Obviously, penalizing the second term of Eq. (10) is equivalent to penalize the l0 norm
of π(w). However, it is impractical to directly optimize Eq. (10) because the distribu-
tional derivative of the Heaviside step function, i.e., the Dirac delta function, equals
to zero almost everywhere [50]. The Dirac delta function, by definition, can be simply
regarded as a function that is zero everywhere except at the origin, where it is infinite,
i.e.,

p(x) ≃

{
∞, x = 0

0, x ̸= 0
. (11)

To make the Heaviside step function differentiable, we devise a novel reparametrization
technique to approximate the Dirac delta function, resorting to the zero-centered normal
distribution presented as follows:

qa(x) =
1

|a|
√
π
exp−(x/a)2 . (12)

Here, the variance of qa(x) is determined by the hyperparameter a. When the hyper-
parameter a approaches zero, the function qa(x) converges to the Dirac delta function
p(x), as stated next.

Theorem 1. (Convergence) Let p(x) denote the Dirac delta function. Consider qa(x)
defined as qa(x) = 1

|a|
√
π
exp−(x/a)2 , which represents a zero-centered normal distri-

bution with variance dependent on the hyperparameter a. Then, in the distributional
sense, we have:

lim
a→0

qa(x) = p(x). (13)

Proof. First, consider the case when x = 0, we always have:

lim
a→0

qa(x) = lim
a→0

1

|a|
√
π
exp−(0/a)2 = lim

a→0

1

|a|
√
π

= ∞. (14)
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Fig. 2: Distribution of qa(x) under different values of a. As a approaches to 0, qa(x)
increasingly resembles the Dirac delta function.

Second, when x ̸= 0, we need to consider both the positive and negative directions of
a, i.e., lima→0+ and lima→0− . Starting with the positive direction, let t = 1

a , we have

lim
a→0+

qa(x) = lim
a→0

1

a
√
π
exp−(x/a)2 = lim

t→∞

√
πt · exp−x2t2 = lim

t→∞

√
πt

expx2t2

= lim
t→∞

√
π

2x2t · expx2t2
(L’Hopital’s rule) =

√
π

∞
= 0.

(15)

Similarly, for the negative direction of a, we have:

lim
a→0−

qa(x) = lim
a→0

− 1

a
√
π
exp−(x/a)2 = lim

t→∞
−
√
πt · exp−x2t2

= lim
t→∞

−
√
πt

expx2t2
= lim

t→∞
−

√
π

2x2t · expx2t2
= −

√
π

∞
= 0.

(16)

Based on the above discussion, we have:

lim
a→0

qa(x) =

{
∞, x = 0

0, x ̸= 0
= p(x). (17)

Figure 2 presents the distribution of qa(x) for various values of a. It is clear that
as a approaches zero, the shape of qa(x) more closely resembles the Dirac delta func-
tion, a crucial aspect in estimating the derivative of the Heaviside step function. This
estimation is significant as it allows for the differentiability of Eq. (10), demonstrated
by:

dH

dx
≈ 1

|a|
√
π
exp−(x/a)2 . (18)

Here, the hyperparameter a modulates the balance between optimization smoothness
and approximation accuracy.
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Performance Guarantees. A simple trick to increase the sparsity for convergence ac-
celeration is to tailor the ReLU function as follows:

π′(w) = π(w − τ

ϵ
), (19)

where ϵ is the l∞ constraint for I-FGSM and τ is used to simplify hyperparameter
tuning. By using our tailored ReLU function π′(·), we can re-write the loss function
given below:

Jadv = J(fθ(x+ π(w − τ

ϵ
)⊙ δ), yadv) + λ

d∑
j=1

H
(
π(wj −

τ

ϵ
)
)
. (20)

By employing Eq. (20), our approach yields much sparser adversarial examples, as
stated below.

Proposition 1 (Sparsity) Given an initial perturbation δ ∈ [−ϵ, ϵ]d under some l∞
constraint ϵ (ϵ > 0), let w ∈ Rd be the weight matrix used in our study, and π(·) be
the ReLU function, in terms of the l0 norm, we have:

∥π(w − τ

ϵ
)⊙ δ∥0 ≤ ∥π(w)⊙ δ∥0 ≤ ∥w ⊙ δ∥0. (21)

The proof of Proposition 1 is deferred to Appendix A.1 for conserving sparse.
Although Eq. (20) can yield more sparse adversarial examples, it cannot guarantee

valid pixel values, i.e., ∃ wj ∈ w, xj + π(wj − τ
ϵ ) ⊙ δj /∈ [0, 1]. To remedy this, we

devise a new strategy to satisfy the box constraint:

w′ = Ω ⊙H
(
π(w − τ

ϵ
)
)
, (22)

where Ω serves to impose a tight bound on the resulting perturbation. Following this
step, we are able to obtain valid adversarial examples, as stated next.

Proposition 2 (Box constraint) Let x ∈ [0, 1]d be a natural image, δ ∈ [−ϵ, ϵ]d be the
initial perturbation under a l∞ constraint ϵ (ϵ > 0), and w′ be the output of Eq. (22).
If Ω = min(xϵ ,

1−x
ϵ ), the resulting adversarial example is valid, i.e.,

x+w′ ⊙ δ ∈ [0, 1]d. (23)

The proof of Proposition 2 is deferred to Appendix A.2. Note that such a box con-
straint strategy can automatically yield valid pixels, making adversarial attacks escape
from local optima, as stated in the prior study [2]. Details of our algorithm flow are
deferred to Appendix B.

5 Experiments and Results

5.1 Experimental Settings

Datasets. We experimentally benchmark our approach on three widely used image
datasets: i) 70, 000 greyscale examples of MNIST [25]; ii) 60, 000 RGB examples of
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CIFAR-10 [20]; iii) 10, 000 RGB examples randomly selected from the ImageNet [40]
validation set.
Compared Methods. We compare our approach to ten sparse attack counterparts, i.e.,
C&W L0 [2], OnePixel [43], SparseFool [35], GreedyFool [9], FMN [38], Homo-
topy [57], Sparse-RS [6], SA-MOO [51], EGS-TSSA [34] and BruSLeAttack [49].
Hyperparameters for compared methods, if not specified, are set as mentioned in their
respective articles. All comparative results represent the average of 5 trials.
Parameter Settings. Four pre-trained models, VGG-16 [42], VGG-19, ResNet-101 [16],
and ResNet-152, are exploited to evaluate the adversarial perturbation under ImageNet.
The hyperparameters for I-FGSM, unless specified otherwise, are set as ϵ = 4/255,
α = 1/255, and the number of iterations equal to 10. We optimize the weight in our
approach by using SGD with a momentum of 0.9 and a learning rate of 1e − 2. A
mini-batch of 256 is used for MNIST and CIFAR-10, and of 64 for ImageNet. We set
λ = 1e− 2 for MNIST and CIFAR-10, and λ = 1e− 3 for ImageNet. We grid-search
a (and τ ) and empirically set them to 0.1 (and 0.30) for all three datasets. The num-
ber of iterations for our approach is set to 100, 100, and 200 for MNIST, CIFAR-10,
and ImageNet, respectively. For the targeted attack, we follow prior studies [22,23] by
setting the least-likely class as the targeted label. All experiments were conducted on a
workstation equipped with an RTX 4090 GPU.

5.2 Evaluation on Sparsity

We compare our approach to sparse attacks listed in Section 5.1 in terms of sparsity
(i.e., l0 norm of perturbation) under the non-targeted and targeted attack scenarios.
ResNet-18 and VGG-16 are used to generate adversarial examples and report the clas-
sification results for CIFAR-10 and ImageNet, respectively. For all methods (except for
OnePixel), we report the averagely required amount of perturbed pixels for achieving
a fooling rate of 100% in both scenarios. Note that OnePixel cannot achieve such a
fooling rate because its perturbations are limited to an extreme case. Table 1 presents
the experimental results. Under the non-targeted attack scenario, we observe that except
for OnePixel, our approach achieves the minimal magnitude of perturbations, with the
averaged number of 44 (1.45% pixels) and of 57 (0.04% pixels) for CIFAR-10 and Ima-
geNet, respectively. Although OnePixel outperforms our approach in terms of sparsity,
it suffers from an extremely poor fooling rate, substantially inferior to our approach.
Similarly, under the targeted attack scenario, our approach achieves the best sparsity of
69 (2.27% pixels) and of 136 (0.09% pixels) for CIFAR-10 and ImageNet, respectively,
significantly outperforming all its counterparts. Notably, OnePixel and SpareFool can-
not perform effective targeted attacks, so their results are unavailable.

Next, we conduct qualitative experiments to evaluate the sparsity under the targeted
attack scenario. Figure 3 shows the visualized results, where our approach modifies
only 123, 107, and 218 pixels, respectively, with its adversarial examples able to mis-
lead the classifier into targeted mispredictions. In contrast, C&W L0, GreedyFool, and
Homotopy have to perturb 3555, 1070, and 1731 pixels, respectively, to perform ef-
fective targeted attacks. These qualitative results demonstrate the effectiveness of our
approach on sparsity. We also conduct qualitative comparison under the non-targeted
attack scenario, with the results deferred to Appendix C.1 of supplementary materials.
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Table 1: Comparative results of sparsity under CIFAR-10 and ImageNet, with the mini-
mum amounts of perturbed pixels required to achieve the fooling rate (FR) of 100% for
non-targeted and targeted attacks reported

Method
Non-targeted Attack Targeted Attack

CIFAR-10 ImageNet CIFAR-10 ImageNet

FR Sparsity FR Sparsity FR Sparsity FR Sparsity

C&W L0 100% 52 100% 424 100% 102 100% 5132
OnePixel 35.2% 1 20.5% 3 - - - -

SparseFool 100% 76 100% 234 - - - -
FMN 100% 106 100% 632 100% 183 100% 1087

Sparse-RS 100% 167 100% 758 100% 244 100% 1293
SA-MOO 100% 173 100% 1392 100% 305 100% 2896

EGS-TSSA 100% 105 100% 549 100% 218 100% 1054
BruSLeAttack 100% 93 100% 164 100% 148 100% 678

Ours 100% 44 100% 57 100% 69 100% 136

(a) C&W L0

“wombat",
∥δ∥0 = 3555

(b) GreedyFool
“garter snake",
∥δ∥0 = 1070

(c) Homotopy
“tailed frog",
∥δ∥0 = 1731

(d) Ours
“wombat",
∥δ∥0 = 123

(e) Ours
“garter snake",
∥δ∥0 = 107

(f) Ours
“tailed frog",
∥δ∥0 = 218

Fig. 3: Illustration of targeted attacks by sparse attack counterparts (Top) and our ap-
proach (Bottom). From left to right, the ground-truth classes are “castle”, “airship", and
“guitar", respectively. The incorrect predictions and the sparsity (i.e., ∥δ∥0) are listed
under each image.

5.3 Interpreting the Adversarial Perturbation

Despite extensive attention to sparse attacks, limited work has ever clearly explained
how adversarial perturbations mislead DNNs into incorrect predictions. This is due to
the mediocre performance results of prior sparse attacks on sparsity, as discussed in Sec-
tion 5.2. We aim to fill this gap by unveiling the mystery underlying the proposed adver-
sarial perturbation, resorting to Grad-CAM and Guided Grad-CAM visualizations [41].
Specifically, we let the prediction made by a well-trained VGG-16 as the decision of
interest for Grad-CAM and Guided Grad-CAM visualizations. As such, we can inter-
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(a) Clean image
“candle”

(b) Grad-CAM
“candle”

(c) Guided
Grad-CAM

“candle”

(d) Adversarial
example

“toilet tissue”

(e) Grad-CAM
“toilet tissue”

(f) Guided
Grad-CAM

“toilet tissue”

Fig. 4: Illustration of how adversarial perturbations computed by our approach mislead
VGG-16 to predict the label of “candle” to “toilet tissue”. Left: clean image and ad-
versarial example with their predicted labels. Middle: Grad-CAM visualization. Right:
Guided Grad-CAM visualization.

pret adversarial perturbations by comparing visualizations on clean images with those
on their corresponding adversarial examples.

Figure 4 exhibits the experimental results, where our generated perturbations mis-
lead VGG-16 to mispredict “toilet tissue” on an image as “candle”. In particular, Fig-
ures 4a, 4b and 4c show visualizations on the clean image. We observed that the “candle
wick” is the critical region for making a correct prediction on the “candle”. By contrast,
Figures 4d, 4e and 4f depict visualizations of the adversarial example generated by
our approach. From Figure 4d, we observe that the adversarial perturbation can be di-
vided into two categories, namely, “obscuring noise" (i.e., perturbations within the red
box) and “leading noise" (i.e., perturbations within the green box). The former prevents
the classifier from identifying the true label by covering essential features of the true
class, i.e., obscuring the feature of “candle wick”, whereas the latter leads the classifier
to mispredict the adversarial example by adding the essential features of the targeted
class, i.e., adding noise within the shape of “toilet tissue”; see Figures 4b versus 4e and
Figures 4c versus 4f.

We also conduct experiments to show how the two types of perturbations mislead
ResNet-50 to make an incorrect prediction as “wing” on an image of “canoe”, with the
results deferred to Appendix C.2 of the supplementary materials. To the best of our
knowledge, we are the first to interpret how adversarial perturbations mislead DNNs
into incorrect predictions, by discovering the “obscuring noise” and “leading noise”.
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Table 2: The fooling rates (%) on different robust models trained adversarially by PGD-
AT and Fast-AT, respectively, with the best results are shown in bold

Method PGD-AT Fast-AT

MNIST CIFAR-10 MNIST CIFAR-10 ImageNet

C&W L0 11.8 52.8 12.1 62.3 67.8
GreedyFool 3.6 26.8 4.9 23.5 24.9

FMN 7.9 55.0 9.8 52.9 54.1
Homotopy 8.5 51.9 7.2 53.2 58.7
Sparse-RS 10.3 54.6 10.9 57.1 56.3
SA-MOO 11.5 56.9 7.8 58.9 62.8

EGS-TSSA 10.7 57.8 8.4 61.6 63.8
BruSLeAttack 11.2 61.2 9.6 58.9 65.1

Ours 13.8 62.5 14.6 66.4 72.1

5.4 Attacking Robust Models

We next compare our approach to sparse attacks in terms of attack strength, i.e., the
fooling rate on robust models trained adversarially by PGD Adversarial Training (PGD-
AT) [32] or Fast Adversarial Training (Fast-AT) [52]. We set ϵ = 0.3, ϵ = 8/255,
ϵ = 2/255 for MNIST, CIFAR-10, and ImageNet, respectively. Table 2 presents the
experimental results.

From Table 2, we observe that our approach achieves the most powerful attacks un-
der all scenarios, with the best fooling rate of 14.6%, 66.4%, and 72.1% on MNIST,
CIFAR-10, and ImageNet, respectively. The reason is that i) our novel loss function
(i.e., Eq. (20)) significantly augments the adversary property; and ii) the proposed the-
oretically sound box constraint strategy yields valid adversarial examples without the
need of clipping invalid pixels, empowering our approach to generate more optimized
solutions. Meanwhile, all sparse attacks, including our approach, achieve smaller fool-
ing rates on MNIST than those on CIFAR-10 and ImageNet. This is because adversarial
training can significantly improve the model’s robustness on the simple dataset. But, for
CIFAR-10 (or ImageNet), our approach can achieve the averaged fooling rate of 62.5%
and of 66.4% (or 72.1%), respectively, on PGD-AT and Fast-AT.

5.5 Comparison on Transferability

We take two models, i.e., VGG-19 and ResNet-101, to generate adversarial examples,
which are then employed to attack four different classifiers, i.e., VGG-16, VGG-19,
ResNet-101, and ResNet-152. Table 3 presents the comparative results of our approach
and sparse attack counterparts in terms of transferability. Notably, the adversarial ex-
amples generated via VGG-19 (or ResNet-101) to attack VGG-19 (or ResNet-101) are
considered as white-box attacks, while all others are black-box attacks. We observe that
compared to other sparse attacks, our approach achieves the best performance under all
scenarios, with the largest fooling rate of 99.1% (or 99.9%) under the black-box (or
white-box) attack. This demonstrates that modifying a few pixels is sufficient to make
our approach enjoy high transferability.
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Table 3: Comparison of transferability (i.e., Mean Fooling Rate (%)) under ImageNet.
The first column denotes the models where adversarial samples are generated while the
first row indicates the target models for attacking, with the best results shown in bold
and ∗ indicating white-box attacks

Model Method VGG-16 VGG-19 ResNet-101 ResNet-152

VGG-19

C&W L0 84.6 96.2∗ 55.6 47.5
GreedyFool 10.6 19.2∗ 8.2 9.0

FMN 83.4 91.8∗ 43.0 46.8
Homotopy 65.8 87.6∗ 24.0 9.8
Sparse-RS 85.2 96.0∗ 46.8 48.2
SA-MOO 86.2 92.8∗ 44.5 49.2

EGS-TSSA 87.7 93.2∗ 51.3 51.2
BruSLeAttack 89.4 94.4∗ 56.7 51.8

Ours 99.1 99.9∗ 63.3 55.1

ResNet-101

C&W L0 82.6 81.9 91.2∗ 50.5
GreedyFool 11.4 13.4 9.4∗ 8.4

FMN 82.6 81.8 60.1∗ 41.6
Homotopy 63.6 63.6 72.0∗ 46.2
Sparse-RS 85.2 76.8 89.4∗ 65.6
SA-MOO 86.6 84.3 91.1∗ 61.3

EGS-TSSA 86.1 83.8 91.5∗ 62.6
BruSLeAttack 86.8 84.2 92.6∗ 67.8

Ours 87.6 86.3 99.9∗ 89.9

Table 4: Comparing various sparse attacks in terms of computational complexity under
different models, with the best results shown in bold

Method Time Cost (s)

VGG-16 VGG-19 ResNet-101 ResNet-152

C&W L0 20.8 23.4 28.7 43.6
Homotopy 519.4 531.5 1011.9 1462.2
Sparse-RS 69.0 76.4 71.6 99.7
SA-MOO 537.4 628.1 1123.8 1379.1

EGS-TSSA 71.8 79.5 120.9 175.9
BruSLeAttack 87.2 93.7 142.2 212.3

Ours 4.6 5.3 18.7 27.5

5.6 Comparison on Computational Complexity

We conduct the white-box attacks under ImageNet to show the superior computational
efficiency of our approach for high-dimensional data. Four classifiers, i.e., VGG-16,
VGG-19, ResNet-101, and ResNet-152, are taken into account. Table 4 lists the experi-
mental results. Clearly, our approach runs much faster than all sparse attack counterparts
(i.e., C&W L0, Homotopy, Sparse-RS, SA-MOO, EGS-TSSA, and BruSLeAttack) for
all examined classifiers, enjoying 3.0x, 62.8x, 4.6x, 64.0x, 8.0x, and 13.0x, and com-
putational speedups on average. Specifically, our approach takes only 4.6s, 5.3s, 18.7s,
and 27.5s, on VGG-16, VGG-19, ResNet-101, and ResNet-152, respectively. This is be-
cause our reparameterization technique (i.e., Eq. (18)) can efficiently approximate the
NP-hard l0 optimization problem and hence substantially accelerate the convergence.



Towards Interpretable Adversarial Examples via Sparse Adversarial Attack 15

We also conducted ablation studies to exhibit the hyperparameter sensitivity of a,
λ, and τ respectively in Eq. (18), Eq. (19), and Eq. (20), with their details deferred to
Section C.3 of supplementary materials.

6 Conclusion

This paper has addressed a sparse attack that yields interpretable adversarial examples,
thanks to their superb sparsity. Meanwhile, our approach enjoys fast convergence, high
transferability, and powerful attack strength. The key idea is to approximate the NP-hard
l0 optimization problem via a theoretical sound reparameterization technique, making
direct optimization of sparse perturbations computationally tractable. Besides, a novel
loss function and a theoretically sound box constraint strategy have been proposed to
make our solution generate superior adversarial examples, yielding fast, transferable,
and powerful sparse adversarial attacks. Experimental results demonstrate that our ap-
proach clearly outperforms state-of-the-art sparse attacks in terms of computational ef-
ficiency, transferability, and attack intensity. In addition, theoretical and empirical re-
sults verify that our approach yields sparser adversarial examples, empowering us to
experimentally interpret how adversarial examples mislead state-of-the-art DNNs into
incorrect predictions. Our work is expected to i) serve as the benchmark for evaluat-
ing the robustness of DNNs, and ii) shed light on future work about interpreting the
vulnerability of DNNs.
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