
Analyzing and Correcting Biased Machine

Learning-Based Tuning of Weight Shrinkage in

Forecast Combination

Veronika Wachslander (�)[0009−0009−0440−6749]

Catholic University of Eichstaett-Ingolstadt, Ingolstadt, Germany
veronika.wachslander@ku.de

Abstract. A forecast combination typically corresponds to a weighted
average of individual forecasts and aims at increasing predictive accu-
racy. Application �elds include business, economics, information sys-
tems such as recommender systems and �nancial portfolios. One pop-
ular weighting approach used in various studies is to learn weights op-
timal on past data (optimal weights) and shrink them towards equal
weights to mitigate over�tting. The required shrinkage hyperparame-
ter is usually tuned by machine learning-based techniques like K-fold
cross-validation (CV). This paper shows that CV-tuned shrinkage lev-
els are generally biased: Depending on the characteristics (parameters)
of training forecast data (e.g. number of forecasters, error correlations,
spread in predictive ability, training set size, number of CV-folds), such
approaches lead to systematic over- or undershrinkage. The impact of
di�erent parameters on these biases is studied on large sets of syn-
thetically generated data and a model is trained to predict the bias
(direction and degree) by using data characteristics as features. This
model is evaluated for its ability to correct biases on various sets of
synthetic data, where the corrected weights lead to improved predictive
accuracy across a range of data characteristics. Codes are available at
https://github.com/VeronikaWachslander/shrinkage-tuning-bias.

Keywords: Weight Shrinkage · Hyperparameter Tuning · Debiasing ·

Forecast Combination · Machine Learning.

1 Introduction

The combination of forecasts provided by di�erent models or humans is a tech-
nique used in business, economics and other �elds to generate more accurate and
reliable predictions. Typical applications of forecast combinations are predictions
of economic growth, in�ation rates or electricity demand [12, 14, 23, 25].

Besides business contexts, the approaches can be applied to hybrid recom-
mender systems (information systems that combine e.g. di�erent purchase or
movie recommendations) or used for �nancial portfolio optimization [17, 18, 20].

While various disciplines conduct research regarding combination approaches
and numerous methods already exist (see [11, 28]), there is still no generalizable
cross-domain suggestion how to determine the combination weights.
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Two weighting schemes often considered as benchmarks or bases for more
sophisticated approaches are optimal weights (OW ) � introduced in Bates and
Granger [4] for two forecasters and later extended (see, e.g., [27]) � and equal
weights (EW ). The OW are estimated on past forecast errors (training set),
leading to weights that minimize the mean squared error (MSE ) on this dataset.

However, numerous studies [2, 14, 15] show that, on unseen data, this and
other more sophisticated weighting schemes are mostly outperformed by the
simple average that assigns EW to all forecasters. This superiority of EW, named
forecast combination puzzle by Stock and Watson [25], is typically explained by
the consideration of random variations in training data when estimating OW

(see, e.g., [5, 9, 10]). These structures do not necessarily exist on unseen data, so
the OW over�t the training set � especially in the case of small training sizes.
In contrast, EW completely ignore potential di�erences in forecast ability.

Therefore, OW and EW can be seen as two opposite approaches and a com-
promise between these weighting schemes could be bene�cial. In various studies
[1, 12, 25], this is achieved by shrinking OW towards EW controlled by a shrink-
age parameter. However, there is no rule how to derive the optimal shrinkage
level, i.e. the one resulting in the minimum combination error on unseen data.

As the shrinkage level can be considered a hyperparameter, cross-validation
(CV ) can be used for the tuning as applied by Schulz and Setzer [22], Schulz
et al. [21], as well as Diebold and Shin [13]. However, Schulz et al. detected
slight deviations between the CV-optimal and the truly optimal shrinkage, while
Diebold and Shin recommend to combine only a few forecasters and assign EW.

According to Schulz and Setzer [22], these �ndings might be (at least partly)
due to the determination of inappropriate, typically too high shrinkage levels
with CV � in particular with small training sets and low to medium error corre-
lations among the forecasters (with moderate di�erences in predictive ability).

This paper addresses the phenomenon of shrinkage biases when the level
of shrinkage from OW towards EW is determined by CV, with all forecasters
being included in the combination. Since determining weights is particularly
challenging if available (past forecast) data is very limited, which is usually the
case in business and economics, the paper mainly focuses on small datasets.

First, the impact of various data- and CV-related properties on shrinkage
biases is analyzed in detail. Second, a regression tree is developed that predicts
shrinkage biases and serves as model to correct CV-determined shrinkage levels.
Third, this correction model is evaluated and discussed.

In addition, this paper aims to raise critical awareness of using CV for hy-
perparameter tuning in any machine learning task and to encourage reviews of
the tuning results.

The paper is structured as follows: Section 2 introduces weight shrinkage and
Section 3 CV-based tuning along with notation. In Section 4, the experimental
design for data generation and tuning as well as evaluation procedures are ex-
plained, while Section 5 provides analytical insights. Section 6 presents a model
to predict and correct tuning biases, which is evaluated in Section 7. Finally,
Section 8 draws conclusions and presents an outlook on future work.
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2 Shrinking Optimal to Equal Combination Weights

Assume J ∈ N, J > 1 forecasters are available and fij denotes the i-th forecast of
the j-th forecaster, with i ∈ {1, . . . , n} and j ∈ {1, . . . , J}. A combined forecast

for the i-th observation xi can be calculated as
∑J

j=1 wj · fij , i.e. by assigning
a weight wj ∈ R to forecaster j for all j ∈ {1, . . . , J}, multiplying the weight by
this forecaster's prediction for xi and adding up these weighted predictions.

One question is which weighting scheme to use, with
∑J

j=1 wj = 1 regardless
of the speci�c choice. The simplest weighting technique assigns EW to all fore-
casters by setting wj = J−1 for every j ∈ {1, . . . , J}. The corresponding weight
vector wEW ∈ RJ can be de�ned as wEW = J−1 · 1, with the column vector
1 ∈ RJ containing one in each entry and 1′ ·wEW = 1 as required.

Another common approach is the calculation of OW based on a matrix
E ∈ Rn×J with n past errors per forecaster j. This means, each entry eij ∈ E
represents the di�erence between the actual value of the observation xi and its
prediction provided by the forecaster j, calculated as eij = xi − fij .

For each forecaster, e�cient forecasts are assumed, i.e. multivariate normally
distributed forecast errors with a mean of zero and an error covariance matrix
Σe, which is typically unknown and estimated as Σ̂e = n−1 ·E′E.

The vector ŵOW ∈ RJ contains the OW and is estimated as shown in (1),

with Σ̂
−1

e denoting the inverse of Σ̂e, and ensuring 1′ · ŵOW = 1 (see [27]).

ŵOW =
Σ̂

−1

e 1

1′Σ̂
−1

e 1
(1)

As discussed, OW are typically prone to over�tting data structures and thus, do
not �t well unseen data, while EW consider all forecasts to be equally reliable.
To obtain less over�tted weights that still consider di�erences in forecast ability,
OW are shrunk towards EW by a shrinkage parameter 0 ≤ λ ≤ 1, with λ = 0
resulting in OW and λ = 1 in EW (100% shrinkage), as shown in (2) (see [22]).

ŵλ = (1− λ) · ŵOW + λ ·wEW (2)

The optimal shrinkage level λ∗ leads to weights ŵλ∗
= (ŵλ∗

1 , . . . , ŵλ∗

J ) that
minimize the MSE (shown in (3)) on unseen data {x1, . . . , xn}.

MSE(ŵλ) =
1

n
·

n∑
i=1

(
xi −

J∑
j=1

ŵλ
j · fij

)2

=
1

n
·

n∑
i=1

( J∑
j=1

ŵλ
j · eij

)2

(3)

Typically, the CV-optimal shrinkage λ∗
CV will deviate from the truly optimal

shrinkage λ∗
true. In the following, this deviation (in percentage points %P ) is

called shrinkage bias and calculated as provided in (4). A bias B(λ∗
CV ) > 0

corresponds to overshrinkage, while B(λ∗
CV ) < 0 means undershrinkage.1

B(λ∗
CV ) = λ∗

CV − λ∗
true (4)

The next section explains cross-validation and its use for shrinkage tuning.

1 E.g., if λ∗
CV = 0.25 = 25% and λ∗

true = 0.13 = 13%, then B(λ∗
CV ) = 0.12 = 12%P .
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3 Cross-Validation and Shrinkage Tuning

A frequently used resampling technique to both estimate the performance of
a model on unseen data and tune hyperparameters is K-fold cross-validation,
which randomly divides the training data into K (almost) equally sized, pairwise
disjoint subsets (called folds). The model is trained on the calibration set con-
sisting of K − 1 folds, and tested on the remaining fold that serves as validation
set. This is repeated until each fold has been part of the calibration set K − 1
times and represented the validation set once (for more details see, e.g., [16, 19]).

Typically, the errors (with respect to the chosen error measure) on the valida-
tion sets are averaged over the K iterations to estimate the overall performance
on unseen data. This can be done for di�erent hyperparameter values and the
one resulting in the lowest overall error is selected for the �nal model.

Di�erent variants of K-fold CV are distinguished, depending on the value of
K: The number of folds is either set to a value like the frequently recommended
ones K = 5 or K = 10 (see [3, 7]), or the number of observations n belonging
to each fold is �xed as with Leave-One-Out (LOO) and Leave-Two-Out (LTO)
CV � i.e., the training set is split into n folds for LOO and n/2 folds for LTO.2

However, there is no general rule to choose the number of folds K, as there is
a bias�variance trade-o� regarding this decision [16, 19]; rather, Zhang and Yang
[29] explain that the speci�c task the CV is used for should be considered.

In the context of weight shrinkage tuning, OW are estimated on the calibra-
tion sets and shrunk towards EW on the respective validation sets. Finally, the
shrinkage level with the lowest average MSE on these validation sets is chosen.

For a low number of folds, the calibration sets typically di�er strongly from
each other and also from the full training set. The OW estimated on a calibration
set will over�t its structure due to signi�cantly lower data amounts compared
to the full training set and thus, will be quite di�erent from the ones learned on
the other calibration sets and on the full training set. Since over�tted OW will
not re�ect the structure of the corresponding validation set well, these will be
shrunk strongly, resulting in weights near EW that can be highly biased.

In contrast, for LOO, the calibration sets and thus, the estimations for OW
will be similar and also close to the full training set and its estimated OW.
However, each validation set contains only one observation, which determines
the respective MSE values, so the results could have high variance.

In summary, the number of folds can severely a�ect the accuracy of combined
forecasts, as the estimation of OW and the shrinkage determination are sensitive
to the underlying dataset. For this reason, datasets with varying characteristics
are generated and the shrinkage biases are studied for di�erent numbers of folds
K, which leads to various scenarios (i.e., parameter constellations).

The next section describes the data generation and the procedures for ana-
lyzing shrinkage biases and evaluating the later introduced shrinkage correction.

2 Unlike the typically exhaustive Leave-p-out CV that creates folds for all
(
n
p

)
combi-

nations of the training observations as for example described in [8], the term LTO is
used in this paper to describe one random division of the training set into n/2 folds.
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4 Experimental Design

4.1 Data Generation

For analyzing, predicting and correcting shrinkage biases, synthetic error data-
sets are generated, as this allows to identify general relations and characteristics
without uncontrollable random e�ects (and is, e.g., also done in [10, 21, 24, 26]).

The synthetic errors are drawn from di�erent multivariate normal distribu-
tions with mean zero and covariance matrices that are calculated using prede-
�ned forecasters' variances and �xed values for the pairwise error correlation
among the forecasters.

Various data samples are generated with varying numbers of forecasters, dif-
ferent pairwise error correlations, and di�erent error variance structures to allow
for comprehensive analyses. Each data sample contains 20,000 error observations
for each of the J ∈ {5, 8, 10, 12, 15} forecasters.

The pairwise error correlations are either set to ρ ∈ {0.1, 0.2, . . . , 0.9}, identi-
cal for all pairs, or identical within two nearly equally sized groups, but slightly
di�erent between the groups.3 Therefore, the range of correlations ∆ρ (di�erence
between maximum and minimum correlation) takes the values ∆ρ ∈ {0, 0.2}.

Further, the error variances of the forecasters increase from σ2
1 = 1 to σ2

J ∈
{1.2, 1.5, 2, 4, 9}, either linearly with σ2

j = σ2
j−1+

σ2
J−σ2

1

J−1 or in a quadratic fashion

with σ2
j =

(
σj−1 + σJ−σ1

J−1

)2
for j ∈ {2, . . . , J}. In addition, ∆σ2 = σ2

J − σ2
1

represents the range of variances and thus, ∆σ2 ∈ {0.2, 0.5, 1, 3, 8}.
For analyzing the shrinkage bias on limited data, small training sets Etrain,

with n ∈ {10, 20, . . . , 100, 125, 150, 175, 200} error observations per forecaster,
are randomly drawn from the generated samples. The respective observations,
that are not part of Etrain, form a large test set Etest, which ensures stable
parameter values that approach those of the data generation.4

Etrain is used to estimate OW and apply K-fold CV to tune the shrinkage
hyperparameter, resulting in the CV-optimal shrinkage level λ∗

CV , while Etest

serves as unseen data to identify the truly optimal shrinkage level λ∗
true and to

calculate the resulting shrinkage bias B(λ∗
CV ).

The shrinkage tuning biases are studied for K ∈ {2, 5, 10, n/2, n} CV-folds,
with K = n/2 folds corresponding to LTO and K = n folds to LOO.

Table 1 (shown in Subsection 4.3) summarizes the parameters and values
used to generate datasets for the analyses and predictions of shrinkage biases.

A detailed explanation of the procedure to tune the shrinkage level by CV

and calculate the resulting shrinkage bias is provided in Algorithm 1.

The procedure is repeated 250 times for each scenario with new, randomly
drawn error data in each repetition to obtain reliable measures.

3 As an example for the second case, ρ = 0.1 in one group and ρ = 0.3 in the other,
while the correlations between the groups receive a value of ρ = 0.2.

4 For estimating OW, a su�cient amount of training observations is required. E.g., for
15 forecasters and 2-fold CV, at least 30 observations per forecaster are needed.
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Algorithm 1 Shrinkage Determination by CV and Shrinkage Bias Calculation.

1: Initialization: Set shrinkage values λs = 0.01 · s with s ∈ {0, . . . , 100}.
Set the number of folds K.
Generate error sample matrices Etrain and Etest.

2: Split Etrain (its rows) into K (almost) equally sized, pairwise disjoint folds.
3: For k = 1, ...,K do:

� Set fold k as validation E
(k)
val and E

(k)
cal = Etrain \E(k)

val as calibration set.

� Estimate ŵOWcal(k) as ŵOW on E
(k)
cal by (1), with E = E

(k)
cal for Σ̂e.

� For s = 0, . . . , 100 do:
• Calculate ŵλs(k) using (2) with λ = λs and ŵOW = ŵOWcal(k).

• Apply ŵλs(k) to E
(k)
val and calculate the MSE value MSE

(k)
s by (3).

End For.

End For.

4: For s = 0, . . . , 100 do:
� Calculate the mean MSE for λs, MSE

[val]
s = 1

K
·
∑K

k=1 MSE
(k)
s .

End For.

5: Identify the λs producing min(MSE
[val]
s ) as CV-optimal shrinkage λ∗

CV .
6: Estimate ŵOWtrain as ŵOW on Etrain by (1), with E = Etrain for Σ̂e.
7: For s = 0, . . . , 100 do:

� Calculate ŵλs using (2) with λ = λs and ŵOW = ŵOWtrain .

� Apply ŵλs to Etest and calculate the MSE value MSE
[test]
s by (3).

End For.

8: Identify the λs producing min(MSE
[test]
s ) as truly optimal shrinkage λ∗

true.
9: Calculate the shrinkage bias B(λ∗

CV ) using (4).

The results are compiled into a dataset comprising more than 13 million
cases, which is used for the analyses and to develop the correction model.5

However, the representation of some parameters is slightly modi�ed and ad-
ditional parameters are created to show the analytical results and to develop a
model for predicting shrinkage biases, as will be explained next.

4.2 Parameter Estimation and Representation

Besides the already discussed variables, there are two more used to predict the
shrinkage bias. These are ncal and n%

cal, corresponding to the number and share
of training observations being part of each calibration set, which depend on the
number of folds (e.g., for LOO, the values are ncal = n−1 and n%

cal = (n−1)/n).

Further, it can be distinguished between observable parameters, which are
J, n,K, ncal and n%

cal, as their values can be directly observed, and estimable
ones. The estimable parameters are ρ,∆ρ and ∆σ2, as their values depend on
the respective randomly drawn dataset, so these need to be estimated.

While the values of the estimable variables will deviate on the datasets to
a negligible extent from those set for the data generation due to the large size,

5 See the codes at https://github.com/VeronikaWachslander/shrinkage-tuning-bias.
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their estimation on limited amounts of training data introduces uncertainty and
bears the risk of strong deviations, which will impact the weight determination.

For this reason and to enable an application of the later introduced bias
prediction model to datasets with other parameter values than studied here, the
estimable variables are modi�ed or binned, i.e. the values are assigned to groups.

The spread in predictive ability is re�ected by the range of estimated fore-
casters' variances ∆σ2 and grouped as shown in (5) based on the studied values.

∆σ2 =



tiny ∆σ2 < 0.45

low 0.45 ≤ ∆σ2 < 0.95

medium 0.95 ≤ ∆σ2 < 2.50

high 2.50 ≤ ∆σ2 < 6.00

extreme 6.00 ≤ ∆σ2

(5)

In addition, the pairwise error correlations among the forecasters are estimated,
with ∆ρ corresponding to their interquartile range and ρ to their mean, which
is assigned to one of the categories shown in (6).

ρ =


weak ρ < 0.25

moderate 0.25 ≤ ρ < 0.55

strong 0.55 ≤ ρ < 0.75

extreme 0.75 ≤ ρ

(6)

Since the bias prediction model will also be assessed regarding its ability to
correct shrinkage biases, the next subsection describes the evaluation.

4.3 Evaluation Setting

The bias predictions of the later introduced model can be treated as shrinkage
correction factors CVC , and the corrected shrinkage levels λ∗

CVC
can be expected

to improve the weight determination for known or precisely estimated data char-
acteristics and parameter values.

However, as the values of the estimable variables are typically not known and
to be estimated on limited training data, the model is evaluated for its ability
to correct shrinkage biases in case of uncertainties in parameter estimation.

For the evaluation, new synthetic datasets are generated, with the parameter
values provided in Table 1 and including scenarios, which are not part of the
database used to learn the model to check for a more general validity.

The application and evaluation of the shrinkage correction are formally de-
scribed in Algorithm 2, which is a continuation of Algorithm 1.

The shrinkage correction is repeated 250 times for each scenario with new,
randomly drawn error data in each repetition, so the evaluation database con-
tains 720, 000 cases.

The next section discusses shrinkage biases regarding di�erent parameters.
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Table 1. Parameters and Values for Bias Analyses and Evaluation of Correction.

Parameter Description Analyzed Values Evaluated Values

n Size of Training Set 10, 20, . . . , 100, 125, . . . , 200 25, 50, 100, 200
J Number of Forecasters 5, 8, 10, 12, 15 4, 9
K Number of CV-Folds 2, 5, 10, LTO,LOO 2, 5, LOO
ρ Pairwise Correlation 0.1, 0.2, . . . , 0.8, 0.9 0.15, 0.3, . . . , 0.75, 0.9

∆σ2 Range of Variances 0.2, 0.5, 1, 3, 8 0.1, 0.25, 0.7, 2, 5, 7
∆ρ Range of Correlations 0, 0.2 0, 0.3

Algorithm 2 Application and Evaluation of Shrinkage Correction.

10: Calculate ŵλ∗
CV using (2) with λ = λ∗

CV and ŵOW = ŵOWtrain .
11: Estimate ρ,∆ρ and ∆σ2 on the provided training set Etrain.
12: Apply the bias prediction model to determine the correction factor CVC .
13: Calculate the corrected shrinkage level λ∗

CVC
= λ∗

CV − CVC .

14: Calculate ŵ
λ∗
CVC using (2) with λ = λ∗

CVC
and ŵOW = ŵOWtrain .

15: Calculate MSE(ŵλ∗
CV ) and MSE(ŵ

λ∗
CVC ) on Etest using (3).

16: Calculate the percentage MSE deviation by MSE(ŵ
λ∗
CVC )−MSE(ŵ

λ∗
CV )

MSE(ŵ
λ∗
CV )

.

(Example: If MSE(ŵ
λ∗
CVC ) = 0.40 and MSE(ŵλ∗

CV ) = 0.50, the percentage de-
viation is −0.20 = −20%, which corresponds to a MSE reduction of 20%.)

5 Analytical Insights into Weight Shrinkage Biases

This section provides analytical insights into shrinkage biases, as these will vary
depending on the parameter values of the datasets and the number of CV-folds.

5.1 Impact of Variables on Shrinkage Biases

Table 2 provides shrinkage biases regarding the number of CV-folds K and fore-
casters J , their variance range ∆σ2 and pairwise correlations ρ with range ∆ρ.

The values represent the shrinkage bias (written in black if positive and in
gray if negative), averaged over the di�erent training sizes n and 250 repetitions
per scenario, with a darker cell background re�ecting a stronger bias.

As an example, the mean shrinkage bias for datasets with ∆σ2 = medium,
ρ = weak and ∆ρ < 0.1 equals B(λ∗

CV ) = 18.25(%P ) when applying 2-fold CV,
so the resulting shrinkage λ∗

CV is on average 18.25 percentage points higher than
the truly optimal shrinkage λ∗

true.

At �rst glance, most scenarios su�er from overshrinkage (i.e. B(λ∗
CV ) > 0),

while undershrinkage appears only for boundary values of ∆σ2 and ρ: The ma-
jority of scenarios with B(λ∗

CV ) < 0 shows little spread in forecast ability along
with identical, rather weaker pairwise correlations and will be studied in Subsec-
tion 5.2, while negligible undershrinkage can be observed for scenarios belonging
to the category extreme for both ∆σ2 and ρ (or ρ = strong) regardless of ∆ρ.
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Table 2. Mean Shrinkage Bias (in %P ) for Selected Values of Forecasters J , Folds K,
Variance Range ∆σ2 and Correlation ρ, Di�erentiated by Range of Correlations ∆ρ.

∆ρ < 0.1 ∆ρ ≥ 0.1
∆
σ
2 J 5 15 5 15

ρK 2 5 LOO 2 5 LOO 2 5 LOO 2 5 LOO

ti
n
y

ex
tr
em

e,
st
ro
n
g
,m

od
er
a
te
,w

ea
k

-6.62 -5.58 -4.88 -4.71 -6.94 -7.70 14.20 11.62 11.01 21.54 8.65 3.88
-3.53 -2.75 -2.11 -2.34 -5.47 -6.38 15.01 12.04 11.13 21.25 8.87 4.15
2.82 2.43 3.15 2.03 -1.77 -3.39 17.99 13.73 12.31 22.03 9.16 3.98

12.50 10.56 9.79 12.21 4.52 1.72 18.83 13.13 10.59 22.28 8.71 3.58

lo
w

8.25 7.32 7.05 1.85 -1.95 -3.34 20.20 15.27 13.79 22.29 8.53 3.64
13.01 11.00 10.19 8.78 2.32 -0.02 19.64 13.84 11.75 23.30 9.56 4.37
18.67 13.96 12.70 16.81 7.16 3.15 19.70 12.93 10.49 22.73 8.88 3.62
18.14 11.73 9.16 22.61 9.14 4.11 16.35 9.18 6.48 20.63 7.87 3.00

m
ed

iu
m

18.25 13.80 11.91 11.59 4.50 1.77 19.64 12.93 10.51 23.35 8.86 3.66
19.72 14.02 11.58 19.09 7.99 3.66 18.79 11.54 8.91 23.13 8.95 3.74
18.90 11.48 9.02 22.83 9.18 3.93 15.93 8.75 6.24 20.63 7.40 2.51
12.83 6.06 3.96 20.23 7.72 3.02 11.78 5.57 3.59 17.03 6.40 2.12

h
ig
h

16.46 9.07 6.61 22.77 9.45 4.39 13.92 7.43 5.28 21.32 7.64 2.90
13.45 6.76 4.61 22.65 8.73 3.54 11.55 5.07 3.12 19.13 7.18 2.75
9.26 3.72 2.08 17.84 6.56 2.11 8.74 3.10 1.67 14.40 5.26 1.41
5.60 1.18 0.34 11.44 4.31 1.05 5.75 1.19 0.20 10.27 4.05 0.94

ex
tr
em

e 9.66 3.73 2.14 21.45 8.05 3.04 7.86 2.72 1.38 16.65 5.90 1.77
7.06 2.12 0.94 16.93 6.30 2.10 6.42 1.73 0.66 13.86 5.42 1.67
4.36 0.74 -0.06 11.34 4.15 0.83 4.34 0.63 -0.12 9.50 3.55 0.61
2.68 -0.15 -0.59 6.21 2.41 0.22 2.94 -0.09 -0.59 6.27 2.37 0.21

However, in case of di�ering pairwise correlations, strong overshrinkage can
be observed for ∆σ2 = tiny: The di�erences in ρ might be used to out-balance
errors, so the calibration sets might be over�tted and strong shrinkage is required.

In contrast, the following relations can be identi�ed for scenarios with at
least medium di�erences in ∆σ2 independent of ∆ρ.

First, the bias typically decreases with increasing variance range. Since di�er-
ing weights are increasingly bene�cial for larger ∆σ2, less shrinkage is required,
so λ∗

CV and λ∗
true will be lower and closer to each other.

Second, overshrinkage typically decreases for increasing pairwise correlations,
as weights learned on calibration sets might indeed be more extreme than on the
full training set, but nevertheless, do not need to be shrunk strongly to EW, as
complementary weights are then increasingly bene�cial for out-balancing errors.

Third, overshrinkage usually increases with J for scenarios with larger ∆σ2.
This seems reasonable, as estimating more weights increases the uncertainty and
thus, stronger shrinkage of the more extreme weights is required.

However, opposite relations can be observed for ∆σ2 ∈ {tiny, low}, as the
bias increases with ρ and with decreasing J in many scenarios:

Regarding the number of forecasters, λ∗
true is usually much higher for many

forecasters than for a few, whereas λ∗
CV is generally quite high for comparable
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variances and increases to a lower extent than λ∗
true (and thus, the bias decreases)

for increasing J .
Regarding increasing correlations, more di�erentiated weights will be learned

on the calibration sets that require stronger shrinkage, as similar weights would
be more appropriate for such small di�erences in predictive ability.

In line with expectations, increasing K generally reduces overshrinkage, as
the calibration sets contain more observations, which leads to increasingly similar
and stable estimations of OW. These weights will also be more similar to those
estimated on Etrain, which enables a more accurate shrinkage determination.

The next subsection focuses on scenarios with identical pairwise correlations
(∆ρ < 0.1), as these show over- and undershrinkage. In addition, the general
development of shrinkage levels is discussed with regards to the training size.

5.2 Shrinkage Levels and Bias Development

This subsection discusses the development of the truly optimal (λ∗
true) and the

5-fold CV-optimal (λ∗
CV ) shrinkage and the respective biases shown in Fig. 1.

The solid lines represent λ∗
CV and the dashed ones the corresponding values of

λ∗
true identi�ed on Etest in the same color for the di�erent categories of ranges in

variance ∆σ2. The development is shown over the training size n, di�erentiated
by the strength of constant correlations ρ and averaged over all forecasters J .
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Obviously, both λ∗
CV and λ∗

true decrease with increasing n. This matches
expectations, as larger amounts of training data typically represent the structures
of the full dataset more precisely, which enables a more reliable estimation of
OW on the full training set and the calibration sets, so less shrinkage is required.

Furthermore, λ∗
CV and λ∗

true decrease with increasing ∆σ2 and ρ, as di�eren-
tiated weights seem reasonable for stronger di�erences in predictive ability and
almost complementary weights can be assigned to highly correlated forecasters
to neutralize error patterns.

Besides the shrinkage levels λ∗
CV and λ∗

true, the respective shrinkage bias can
be observed as vertical distance between their corresponding lines.

According to the previous �ndings, overshrinkage is dominating, while un-
dershrinkage is particularly pronounced for similar variances together with lower
correlations. However, with increasing ρ, the bias development of scenarios with
∆σ2 ∈ {tiny, low} approaches those with ∆σ2 ∈ {medium, high, extreme}.

In addition, the development of shrinkage biases regarding the training size
n can be observed. For ∆σ2 ∈ {high, extreme}, the bias is typically higher for
smaller n, as taking away parts of already small training sets fosters extreme
(over�tted) OW. These will not �t well the validation sets and will be shrunk
strongly to EW, whereas the OW learned on Etrain will be less extreme, with
no need to shrink as much as CV suggests. For increasing n, the OW estimated
on the calibration sets will be less over�tted, and λ∗

CV will be closer to λ∗
true.

In contrast, for comparable variances, the appearing undershrinkage decreases
with increasing n, but can turn into overshrinkage. Focusing on ∆σ2 = tiny,
λ∗
true is near 100% for low n, as learning weights on small training sets does then

not provide any bene�ts compared to assigning EW (i.e., full shrinkage). How-
ever, λ∗

CV is too low for n = 20 and does not decrease to the same extent as λ∗
true

for increasing n, which reduces undershrinkage, but can lead to overshrinkage.
Finally, the �ndings in [22] can be con�rmed, as overshrinkage appears to be

higher for weaker ρ and lower n in case of distinguishable variances.
Based on these analyses, a bias prediction model is developed in Section 6.

6 Prediction Model for Weight Shrinkage Biases

The discussions above indicate that CV-based shrinkage tuning mostly leads to
biased shrinkage levels, whereby the bias degree and direction are in�uenced by
various parameters and their values.

Based on all studied scenarios, a CART regression tree [6] is learned to predict
the shrinkage bias (target variable), depending on the CV-variant used and data
characteristics, as trees can handle numerical as well as categorical variables with
linear and non-linear relationships and also incorporate interaction e�ects.

The �nal tree, tuned by 5-fold CV regarding the complexity parameter, has
a depth of 21 and considers all variables discussed in Section 4. For reasons of
conciseness, Fig. 2 shows a simpli�ed version (the �rst few splits).6

6 The complete regression tree model can be generated using the code available online.
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Fig. 2. Simpli�ed Version of Regression Tree to Predict and Correct Shrinkage Biases.

The �rst value displayed in a node corresponds to the mean shrinkage bias
of all cases assigned to this node during the learning process, while the second
value indicates the share of the dataset used to learn the tree that belongs to the
respective node. In addition, a darker node color re�ects a stronger bias, with
positive bias values written in black and negative ones in gray.

Starting with the root node, the mean shrinkage bias of all studied scenarios
equals 6.07%P . All scenarios with calibration sets containing at least 65% of
the available training observations (n%

cal ≥ 0.65) are assigned to the left child
node and their mean bias is 4.28%P . The remaining scenarios (i.e., those with
n%
cal < 0.65) take the right branch and have a mean bias of 13.47%P .

Next, the range of variances ∆σ2 serves as splitting variable for both root
child nodes. Considering the left child node, all scenarios with n%

cal ≥ 0.65 and

∆σ2 ∈ {tiny, high, extreme} take the left branch, while the ones with n%
cal ≥

0.65 and ∆σ2 ∈ {low,medium} are assigned to the right. The splitting process
continues until a branch terminates in a leaf node (no more outgoing branches).

The most left branches of both root child nodes use similar splitting criteria
(at least for the �rst three splits). Also, the bias continuously decreases for these
cases and is negative (−2.33%P ) for n%

cal ≥ 0.65, ∆ρ < 0.1, ∆σ2 = tiny, but
slightly positive (0.60%P ) otherwise. In addition, the shrinkage bias is lower for
∆σ2 = tiny than for ∆σ2 ∈ {(high), extreme} in case of ∆ρ < 0.1.

Also in line with the previous �ndings, the availability of more training ob-
servations per fold (n%

cal) reduces overshrinkage and the model predicts a higher

bias on average for less forecasters, if ∆σ2 ∈ {low,medium} and n%
cal ≥ 0.65.

Considering ∆ρ, similar pairwise error correlations (∆ρ < 0.1) lead to a
lower shrinkage bias than di�ering ones (∆ρ ≥ 0.1) when averaging over ∆σ2 ∈
{tiny, (high), extreme} due to the much higher overshrinkage for ∆σ2 = tiny in
the case of ∆ρ ≥ 0.1 compared to ∆ρ < 0.1.

Since the regression tree provides predictions for the shrinkage bias, it can
serve as bias correction model. For this purpose, the CV-optimal shrinkage level
λ∗
CV is determined by Algorithm 1 for the provided dataset denoted as Etrain

and the number of folds K randomly chosen.



Analyzing and Correcting Biased Machine Learning-Based Tuning 13

Subsequently, the tree is used to predict the bias, depending on the observed
and estimated parameter values of Etrain. This bias prediction is treated as
correction factor CVC and subtracted from λ∗

CV , resulting in the corrected CV-

optimal shrinkage λ∗
CVC

.
The correction can be expected to improve shrinkage tuning if parameter

values are known or precisely estimated. However, as their estimation on limited
training samples can deviate from those of the complete dataset and/or test data,
the correction model is evaluated by applications to provided training data.

7 Evaluation of Shrinkage Correction

This section evaluates the bias prediction model for its ability to correct shrink-
age biases, if parameter values are estimated on limited training data and are
therefore subject to uncertainty.

For this purpose, new synthetic samples (with 20, 000 multivariate error ob-
servations per set) are generated, with J ∈ {4, 9} forecasters, variance ranges
∆σ2 ∈ {0.1, 0.25, 0.7, 2, 5, 7}, and pairwise correlations ρ ∈ {0.15, 0.3, 0.45, 0.6,
0.75, 0.9} with ranges ∆ρ ∈ {0, 0.3}.

Per sample, small training sets Etrain containing n ∈ {25, 50, 100, 200} ob-
servations per forecaster are randomly drawn, while the respective remaining
observations form a large test set Etest.

Table 3 shows the mean percentage deviation of the MSE on Etest (rounded
to two digits) for various scenarios when shrinking OW towards EW by the
corrected shrinkage λ∗

CVC
instead of λ∗

CV , tuned on K ∈ {2, 5, LOO} CV-folds.7

The evaluation results are averaged over ∆ρ, J and 250 repetitions per sce-
nario and faceted by n,K,∆σ2 and ρ. For example, considering datasets with
∆σ2 = medium and ρ = extreme, for which n = 25 training observations are
available and 2-fold CV is applied. In this scenario, applying the correction
model can reduce the MSE by 7.99% on average.

Overall, the correction is bene�cial (i.e., negativeMSE deviation, highlighted
in bold) for the majority of scenarios.

However, in scenarios with comparable variances, the correction typically
leads to worse results. This could be due to the fact that deviations between
estimated variances or correlations and the actual (true) values are particularly
critical with smaller ∆σ2: According to Table 2, di�erent categories for ρ and ∆ρ
are associated with di�erent degrees and even opposite directions of biases, which
can also be expected for bias predictions, resulting in unreliable corrections.

Also, OW are typically shrunk strongly to EW for lower ∆σ2 (see Fig. 1),
so it is suggested to simply assign EW if comparable variances are assumed.

For stronger spread in variances, the following relations are observed: First,
the correction is successful for scenarios with few folds (even for smaller spread
in variances), in which overshrinkage is typically higher. This seems reasonable,
as the MSE on test data might be large in case of strong overshrinkage, so the
correction has great potential for improvements.

7 For a detailed description of the procedure, see Algorithm 2 in Subsection 4.3.
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Table 3. Mean Percentage Deviation of MSE with λ∗
CVC

from MSE with λ∗
CV for

Selected Values of Training Size n, Folds K, Variance Range ∆σ2 and Correlation ρ.

∆
σ
2 K 2 5 LOO

n
ρ weak,moderate, strong, extreme

ti
n
y

25 1.92 1.73 1.58 1.31 1.33 1.53 1.63 0.93 1.05 1.28 1.35 0.78
50 1.61 0.79 0.44 0.37 1.09 0.64 0.61 0.29 0.96 0.66 0.59 0.29

100 0.62 0.15 -0.01 0.04 0.43 0.26 0.25 0.14 0.32 0.27 0.24 0.17
200 0.12 -0.03 -0.07 -0.07 0.11 0.07 0.08 0.04 0.08 0.08 0.09 0.07

lo
w

25 1.73 0.80 -0.81 -1.47 1.35 1.37 1.00 0.08 1.11 1.18 1.02 0.33
50 1.13 0.07 -0.54 -1.69 0.87 0.45 0.35 -0.31 0.80 0.49 0.41 -0.08

100 0.23 -0.32 -0.56 -1.05 0.18 0.05 0.01 -0.22 0.16 0.13 0.10 -0.08
200 -0.06 -0.24 -0.26 -0.44 0.02 -0.02 -0.01 -0.10 0.05 0.02 0.00 -0.06

m
ed

iu
m

25 0.35 -1.28 -5.12 -7.99 0.36 0.07 -0.49 -2.11 0.57 0.48 0.35 -1.15
50 -0.48 -1.61 -1.84 -3.64 0.21 -0.16 -0.01 -1.14 0.33 0.02 0.14 -0.70

100 -0.58 -0.78 -0.68 -1.13 -0.04 -0.12 -0.10 -0.37 0.03 0.01 -0.04 -0.19
200 -0.34 -0.29 -0.17 -0.37 -0.04 -0.01 -0.01 -0.13 0.01 0.02 -0.01 -0.08

h
ig
h

25 -3.62 -6.61 -9.15 -11.78 -0.58 -0.78 -0.97 -2.18 0.04 -0.08 -0.09 -1.34
50 -2.03 -2.24 -1.64 -2.46 -0.33 -0.32 -0.20 -0.59 -0.08 -0.16 -0.14 -0.26

100 -0.63 -0.68 -0.44 -0.55 -0.05 -0.11 -0.13 0.06 0.01 -0.03 -0.08 0.08
200 -0.23 -0.15 -0.08 -0.13 0.01 -0.01 -0.01 0.07 0.01 -0.00 -0.01 0.08

ex
tr
em

e 25 -4.90 -7.69 -9.42 -10.60 -0.73 -0.91 -1.16 -1.92 -0.05 -0.20 -0.42 -1.23
50 -1.75 -1.89 -1.32 -1.87 -0.31 -0.29 -0.31 -0.29 -0.15 -0.21 -0.19 -0.04

100 -0.43 -0.49 -0.33 -0.30 -0.08 -0.09 -0.09 0.12 -0.03 -0.03 -0.07 0.17
200 -0.17 -0.09 -0.05 -0.05 -0.01 -0.01 -0.00 0.11 -0.00 -0.00 -0.01 0.12

Second, the extent of correction typically decreases with increasing training
size: With more training data, overshrinkage decreases, and so does the achiev-
ableMSE reduction, because the CV-determined shrinkage will already be closer
to the truly optimal one. However, the correction is not necessarily bene�cial
with (too) small training set sizes together with weaker correlations.

Third, although overshrinkage typically decreases with increasing correla-
tions, the magnitude of correction increases with ρ, so the determination of
correction factors appears to be increasingly precise with stronger correlations.

Nevertheless, when relating the MSE to the number of folds used for the
shrinkage tuning, LOO clearly dominates � in 69 of the 80 evaluated scenarios,
the lowest mean MSE is achieved with corrected or uncorrected LOO. For the
remaining scenarios (mainly belonging to ∆σ2 ∈ {tiny, low} together with n =
25 or ρ = weak, for which assigning EW is suggested), uncorrected 2-fold CV

performs slightly better (i.e., on average around 0.56% lower MSE ) than LOO.

However, LOO can be computationally burdensome for large training sets,
and in case of ∆σ2 ∈ {medium, high, extreme} and at least n = 100 training
observations, the MSE obtained with shrinkage levels that are determined on
less folds (and additionally corrected if suggested by Table 3) is just slightly
higher (on average 0.20% for K = 2 and 0.06% with K = 5) than with LOO.
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The �nal section draws conclusions based on the analytical insights as well as
the evaluation of shrinkage corrections and provides an outlook on future work.

8 Conclusions and Future Work

After discussing shrinkage biases for various data and CV-related characteristics
as well as evaluating the introduced bias prediction model regarding its ability
to correct shrinkage biases, the following conclusions are drawn.

First, for comparable predictive abilities of forecasters, it seems reasonable
to assign EW, as learning weights and tuning (and correcting) shrinkage levels
introduces uncertainties that outweigh the bene�ts of estimating weights.

Second, contrary to the general suggestion of 5- or 10-fold CV, practitioners
should rather choose (corrected) LOO for weight shrinkage tuning: In scenarios
with distinguishable forecaster variances, shrinkage levels tuned by LOO typi-
cally dominate the ones tuned on less folds, as taking away larger data parts can
seriously a�ect the estimation of OW. Therefore, LOO is suggested for shrinkage
tuning, with an additional correction in case of large spread in predictive ability.

However, if less CV-folds are chosen, e.g. due to the computational e�ort of
LOO, the shrinkage should be corrected for distinguishable forecast abilities.

Third, researchers and applicants of any domain should be aware of estima-
tion and tuning biases resulting from machine learning-based approaches and
thus, use methods to detect and correct these tuning errors.

Future work will analyze additional data properties and develop advanced
shrinkage corrections, as variance and correlation structures of empirical datasets
do not necessarily follow easily identi�able patterns. The corrections will be com-
pared to established combination techniques on synthetic or real-world datasets.

In addition, other machine learning techniques such as bootstrap aggregating
(bagging) will be examined for biases in shrinkage tuning and their correction.

Disclosure of Interests. The author has no competing interests to declare that are

relevant to the content of this article.
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