FedCluLearn: Federated Continual Learning using
Stream Micro-Cluster Indexing Scheme *

Milena Angelova! (<)), Veselka Boeva!, Shahrooz Abghari!, Selim Ickin?, and
Xiaoyu Lan?

! Blekinge Institute of Technology, Karlskrona, Sweden {milena.angelova,
veselka.boeva,shahrooz.abghari}@bth.se
2 Ericsson AB, Stockholm, Sweden {selim.ickin,xiaoyu.lan}@ericsson.com

Abstract. Artificial Neural Networks (NNs) are unable to learn tasks
continually using a single model, which leads to forgetting old knowledge,
known as catastrophic forgetting. This is one of the shortcomings that
usually plague intelligent systems based on NN models. Federated Learn-
ing (FL) is a decentralized approach to training machine learning mod-
els on multiple local clients without exchanging raw data. A paradigm
that handles model learning in both settings, federated and continual,
is known as Federated Continual Learning (FCL). In this work, we pro-
pose a novel FCL algorithm, called FedCluLearn, which uses a stream
micro-cluster indexing scheme to deal with catastrophic forgetting. Fed-
CluLearn interprets the federated training process as a stream clustering
scenario. It stores statistics, similar to micro-clusters in stream clustering
algorithms, about the learned concepts at the server and updates them
at each training round to reflect the current local updates of the clients.
FedCluLearn uses only active concepts in each training round to build
the global model, meaning it temporarily forgets the knowledge that is
not relevant to the current situation. In addition, the proposed algorithm
is flexible in that it can consider the age of local updates to reflect the
greater importance of more recent data. The proposed FCL approach
has been benchmarked against three baseline algorithms by evaluating
its performance in several control and real-world data experiments.®

Keywords: Federated continual learning - Catastrophic forgetting - Con-
cept drift - Data stream clustering - Time series data

1 Introduction

Federated Continual Learning (FCL) is built upon various decentralized devices,
such as the Internet of Things (IoT) or smartphones, that constantly produce
data to train models. Concept drift is a challenge for these models, as it leads

* This research was funded partly by the Knowledge Foundation, Sweden, through the
Human-Centered Intelligent Realities (HINTS) Profile Project (contract 20220068).

3 The implementation of FedCluLearn and the experimental results are available at
https://github.com/milenaangeloval /FedCluLearn.

2 M. Angelova, V. Boeva et al.

to unpredictable changes in the statistical characteristics of the data over time.
These changes can occur due to factors such as shifting user behavior or exter-
nal circumstances. As a result, models can quickly become outdated when the
data evolves. Therefore, it is crucial to implement methods for detecting and
adapting to these changes. Artificial Neural Network (NN) models can suffer
from a problem called catastrophic forgetting. This problem occurs when the
model forgets information that it has learned in the past. This issue arises when
the model is updated to work with data that has a different distribution than
before. To tackle this problem, the concept of continual learning is introduced.
Continual Learning (CL) aims to create models that can learn new information
while keeping important insights from earlier data. It uses techniques such as
memory replay mechanisms [31,27,25] to remind the model of past data and
regularization techniques [4, 18] to penalize changes that could harm previous
learning. In [23], modular deep learning is considered as a promising solution
to the challenges associated with developing models that specialize in multiple
tasks.

In this study, we propose a novel FCL approach, called FedCluLearn, in-
spired by stream clustering algorithms such as CluStream [2] and ClusTree [15],
to address the challenges of concept drift and catastrophic forgetting. These
algorithms divide the clustering process into an online component that uses
a micro-clustering approach to periodically store detailed summary statistics
and an offline component that uses these summary statistics. In the context of
FCL, the online component stores summary statistics about the locally learned
concepts at each training round, while the offline component uses the stored
information at the server to build the global model for that round. As discussed
in [2], the efficient storage and use of statistical data for processing evolving data
streams is a challenging problem. The authors introduce the concept of a pyrami-
dal time frame combined with a micro-clustering approach. The pyramidal time
frame helps determine the optimal moments for storing snapshots of statistical
information. The micro-clusters maintain statistical information about the data
locality, which defines a temporal extension of the cluster feature vector. Fed-
CluLearn algorithm incorporates the micro-cluster indexing scheme, allowing for
the storage of snapshots of the statistical information about local model updates
during each global training round. In this study, the proposed FedCluLearn and
its variation based on FedProx [17] optimization, called FedCluLearn-Prox, are
studied and evaluated on real-world data. In addition, several control experi-
ments are simulated to explore the algorithms’ ability to deal with catastrophic
forgetting and concept drift. The performance of FedCluLearn and FedCluLearn-
Prox is compared to that of FedAvg [20], FedAtt [6], and FedProx [17].

2 Related work

The main concepts in the CL paradigm include continuously acquiring, updating,
accumulating, and exploiting knowledge [5, 28]. CL algorithms have to deal with
several challenges, such as catastrophic forgetting, data distribution shift, and

FedCluLearn: Federated Continual Learning 3

issues related to imbalanced data and scarcity of labeled data. Catastrophic
forgetting [7] refers to model performance degradation due to changes in data
distribution cornering, e.g., the appearance of a new concept, which can lead
to a downgrade in the model performance over previously learned concepts.
Overall, catastrophic forgetting poses a significant challenge in the context of
CL, which inherently involves learning incrementally from data. Additionally,
there are other important challenges to consider, such as data distribution shifts,
also known as concept drift. CL models must effectively handle such phenomena
to prevent catastrophic forgetting [16]. The recent survey by Wang et al. [2§]
grouped CL methods into five major categories 1) regularization- 2) replay-, 3)
optimization-, 4) representation-, and 5) architecture-based approaches.

Federated Learning (FL) is a distributed ML approach to train models on
multiple local clients without exchanging raw data from client devices to a cen-
tral server [20]. However, most existing solutions ignore the CL of incremental
tasks from streaming data environments. An emerging paradigm that addresses
model learning in both federated and continual learning environments is Feder-
ated Continual Learning (FCL). FCL combines the strengths of both FL and CL
to establish a robust foundation for Edge-Al in dynamic and distributed envi-
ronments [29]. The study [29] surveys FCL methods considering three federated
task characteristics, namely class CL, domain CL, and task CL. While class CL
alms to recognize new classes over time, it struggles with task identification,
especially when combined with FL. Domain CL addresses the issue of dataset
distribution across clients, with each client managing its private dataset as a
separate domain. Concerning task CL, local clients learn various tasks and share
their knowledge to develop a global model, which helps update and distribute
knowledge about diverse tasks among them.

A recent survey on FCL presented in [30] discusses the integration between
FL and CL, in particular via knowledge fusion. The study describes that local
knowledge can be extracted from three main parts: data, models, and outcomes.
Overall, existing knowledge fusion methods are divided into seven classes, where
rehearsal and clustering belong to the data category, all gradients/parameters,
parameter/layer isolation, and dynamic architecture belong to the models, and
prototype and knowledge distillation concern output. The proposed classifica-
tion counsiders FedAvg [20], under all gradients/parameters category, and Fed-
Prox [17] and FedAtt [6] to dynamic architecture. FedAvg [20] aggregates lo-
cal model updates using a simple weighted averaging for building the global
model. FedProx [17] is a generalization and re-parametrization of FedAvg with
the capability to tackle heterogeneity in federated networks belonging to a dy-
namic architecture. FedAtt [6] builds a personalized FL method by incorporating
attention-based grouping to facilitate collaborations among similar clients.

To improve the FL model performance, previous studies such as [10, 21, 11],
leverage clustering to group similar clients. While [10,21]| use clustering ap-
proaches, they assume a fixed number of client groups throughout the training
with no change in clients’ data distribution. The study presented in [11] proposes
grouping clients into clusters in a one-shot manner by measuring the similarity

4 M. Angelova, V. Boeva et al.

degrees among clients based on local models’ weights. However, none of these
works are suitable for the CL framework. The study [13] applies clustering to
group the client models with similar concepts while running concept-matching
algorithms that collaboratively train and update each model with data relevant
to its concept.

According to the classification introduced in [29], the proposed FedCluLearn
can be considered mostly related to the federated domain CL category, while it
fits into the model class according to the classification in [30]. Compared with
the solutions reviewed above, FedCluLearn proposes a new efficient way to deal
with concept drift and catastrophic forgetting by storing and managing statistics
about previously learned local models at the server. This allows FedCluLearn to
make smart use of the stored information by aggregating into the global model
only local updates currently relevant to the situation, and by choosing whether
to use more recent or older clients’ updates.

Researchers have extensively studied concept drift in data stream mining,
proposing various detection and adaptation strategies. According to [9], there are
two types of concept drift virtual and real. While virtual concept drift affects
the input data distribution due to, e.g., imbalanced data, real concept drift
is caused by, e.g., the appearance of new classes, concepts, or tasks, which can
mainly be detected due to the model performance degradation. Agrahari et al. [3]
classify drift detection methods into categories such as statistical significance,
window-based, and model-dependent techniques. Similarly, Iwashita et al. [12]
review approaches based on sliding windows, instance weighting, and classifier
ensembles. Early works by Gama et al. [8] and Wadewale et al. [26] also define
core types of concept drifts as sudden, gradual, incremental, recurring, and blip
or noise where each of them affecting learning systems differently.

In the context of our FCL setting, we define concept drift at local and global
levels. For example, sudden drift can affect one or more clients and potentially
cause the global model’s performance to deteriorate during global rounds. Grad-
ual and incremental drifts can lead to inconsistencies among clients and cause the
model to converge globally more slowly. Recurring drifts highlight the need for
memory-aware strategies at local and global levels, as well as a model that can
adapt to changes. Blips and noise require robust aggregation to prevent global
degradation. Although the proposed FedCluLearn primarily addresses real con-
cept drift, both virtual and real drifts [9] pose challenges for local and global
models during the distributed training process.

3 FedCluLearn algorithm

The main idea of the proposed FCL algorithm, FedCluLearn, is to interpret the
FL training process as a stream clustering scenario. The FedCluLearn consists of
two main phases: Initialization and Iteration. The different steps of these phases
are described below. In addition, their pseudo codes are presented in Algorithm 1.

I FedCluLearn Initialization Phase (see Algorithm 1):

1.1.
1.2

L3.
I/

L5

16.

FedCluLearn: Federated Continual Learning 5

Build the first global NN model by randomly initializing its weights.

Send the global model to the clients to be trained locally and return the
local models’ weights to the server.

Cluster the local models’ weights into k clusters (initially learned concepts).
Compute the statistics of each cluster i, which initially has two feature vec-
tors. One represents the first training round, and the other holds the overall
cluster statistics up to the current training round. Note that a new feature
vector will be created to store the statistics of each next round. The two
types of feature vectors, CF;. (r = 1,2,...) and CF;r, for cluster i are
presented in (1). More details about them are given below.

CFir = [Nir LSW SST! Fir] (1>
CF;r = [n;7 LSt SSiT Fir]

o The feature vector C'F;. created at training round r (r = 1,2,...) for
cluster ¢ contains the following information: (i) number of clients n;,;
(ii) linear sum of clients’ local models’ parameters LS;,; (iii) squared
sum of clients’ local models’ parameters SS;.; (iv) an n dimensional
binary vector Fj, showing which clients are assigned to this cluster at
this training round, where n is the total number of clients.

e The overall cluster feature vector C Fyr for cluster i can be obtained by
Zr:1 CF},. Note that here F;r is an n-dimensional frequency vector
showing clients’ frequency of being assigned to this cluster.

In addition to the feature vectors, a cluster that receives new items during the
current training round is flagged as the one representing an active concept.
The clusters (learned concepts) are organized in a list of pairs. The pair
of cluster ¢, for ¢ € {1,2,...,k}, at the initialization phase contains two
identical cluster feature vectors C'F;; and C F;7. In general, the first compo-
nent of the pair stores the training rounds’ feature vectors, while the second
component contains only the total feature vector.

The global model G, for the current round r is computed by averaging the
recent linear sums of the active clusters {{Lsit}teT} ok where K is the set

1

of clusters marked as active in this training round and 7T is the set of rounds
considered in the global model aggregation. Note that 7 can include all
training rounds or a percentage of the total training rounds. The expression
used to calculate the global model G, is given in (2).

G, = Z Z LSi/nit (2)
€L teET

Note that the formula in (2) can be replaced by another FL aggregation
scheme. This way, as we show in our experiments, the used micro-cluster
indexing scheme can be combined with other FL algorithms.

II. FedCluLearn Iteration Phase (see Algorithm 1):

II.1.

At each training round r, for r = 2,..., the global model G,_; built at the
previous round is sent to the clients to be trained locally, and after that, the
local models’ weights are returned to the server.

6 M. Angelova, V. Boeva et al.

11.2. For each client’s weights, the closest cluster is initially found. The Euclidean
distance, or any other suitable distance measure, can be used to estimate the
similarity between the client’s weights and the mean vector of each cluster.
The mean vector is calculated by using the cluster’s overall feature vector.

11.3. When the nearest cluster is identified, two scenarios are evaluated: either
the cluster is a suitable candidate to incorporate the client’s updates, or the
updates are too distant from this cluster, resulting in the formation of a new
singleton cluster. There are different ways to figure out if the client belongs
to the cluster, see Section 3.1 for more information.

I1.4. The last step is to build the global model by applying (2). Then FedCluLearn
returns to step I1.1. Note that in this step, only active clusters are considered,
meaning that FedCluLearn temporarily forgets the knowledge that is not
relevant to the current situation.

Algorithm 1 FedCluLearn algorithm

1: Input: R: number of global rounds
2: Initialize wq
3: for each round r € R do

4 Send wq for local training
5 if r == 0 then < Initialization Phase
6: clients < Send the clients’ updates to the global server
7 C = {C1,Cs,...C;} < Group the clients in k clusters then
8: for each c € C do
9: cStats < Calculate the LS, SS for cluster ¢
10: listO f Pairs < Represent each ¢ € cStats as pair (CFer, CFr) Eq. (1)
11: end for
12: else
13: for each c € listO f Pairs do < Iteration Phase
14: maxSI < Find the SI score between each client and the current c
15: if maxSI > threshold then
%g: listO f Pairs <— Update the cluster’s statistics for that cluster ¢
: else
18: Create a new cluster ¢;+1 and append it to the listO f Pairs
19: end if
20: end for
21: end if
22: Update the CFr for each cluster ¢ € listO f Pairs
23: Build the G, based on clusters’ statistics from listO f Pairs Eq. (2)
24: Send the G, to all clients for the next training
25: end for

3.1 FedCluLearn design choices

In this section, we discuss the design choices of our FedCluLearn algorithm, first
with respect to what information to store in the cluster feature (CF) vectors
and when. Second, and related to this, is how to decide whether a client’s model
update belongs to its nearest micro-cluster centroid.

FedCluLearn stores a list of CF vectors, one at each training round, and
updates the statistics of the overall CF vector, see (1). The overall CF vector
contains information about: (i) the total number of clients assigned to the cluster;

FedCluLearn: Federated Continual Learning 7

(ii) the linear sum of clients’ model updates; (iii) the squared sum of clients’
model updates; and (iv) the frequency with which the clients are assigned to
that cluster. Information from (i) to (iv) is also stored in each CF vector kept at
each training round and used to update the respective parts of the overall CF
vector. Note that (i) and (ii) of the overall CF vector are used to compute the
cluster centroid, which is needed to identify the closest cluster for each client’s
model updates at each training round. In addition, (i) and (ii) of the list of
CF vectors stored at the training rounds of active clusters are used to compute
the global model, see (2). Note that (iii) of the overall CF vector can be used,
similar to the solution in [2], to define the maximum boundary of the cluster
and determine whether a client update belongs to it. Finally, (iv) can be used to
monitor and analyze clients’ behavior during the federated training process, e.g.,
this can reveal clients with unstable behavior frequently changing their concepts.
In the current study, in step 1.3 k-means [19] is used for the initial grouping
of the local models. Other clustering algorithms can also be applied, e.g., affinity
propagation and Markov clustering [1]. In addition, in step II.3 of FedCluLearn,
we have used the Silhouette Index (SI) [24] to decide whether to assign a client
model update to one of the existing clusters or to create a new cluster. The
SI values vary between -1 and 1. FedCluLearn utilizes a predefined threshold to
assess when the client’s local model updates are similar enough, allowing them to
be included in the statistics of an existing cluster. The threshold can be defined
empirically before the start of the FL training or dynamically at each round.

4 Experimental setup

4.1 Data and implementation

We have used two real-world datasets, 5G network dataset and Air Quality
dataset, in our experiments.

The first is a 5G network dataset [22] collected from three distinct ur-
ban locations in Barcelona, Spain, representing tourist (El Born), entertainment
(Les Corts), and residential (Poble Sec) zones. These sites serve as individual FL
nodes. The datasets preserve user anonymity and contain detailed traces of net-
work usage aggregated over two-minute intervals. The data spans the following
periods:

— ElBorn: 5,421 samples, from 2018-03-28 15:56:00 to 2018-04-04 22:36:00
— LesCorts: 8,615 samples, from 2019-01-12 17:12:00 to 2019-01-24 16:20:00
— PobleSec: 19,909 samples, from 2018-02-05 23:40:00 to 2018-03-05 15:16:00

Each record contains 11 aggregated features and five target variables, in-
cluding uplink and downlink traffic volumes (Up, Down), RNTI (Radio Network
Temporary Identifier) count, and the number of downlink and uplink resource
blocks (RB Down, RB Up). Following the setup in [22], we treat the three nodes
as Non-IID (Non-Independent and Identically Distributed) FL clients due to the
varying sample sizes and distributional differences across sites. In contrast to

8 M. Angelova, V. Boeva et al.

previous work [22], which predicted multiple traffic-related features, we focus on
the RNTT count as the target variable. The data distributions are depicted in

Fig. 1.

— partl
40000

g 20000
<

ki

AN A

0 5000 10000 15000
Instances

(a) PobleSec train
40000

£ 20000
o

oLy A

1000 2000 3000 4000
Instances

(d) PobleSec test

part 2
40000

— part 3

E 20000
r L
J i

0 0 2000 4000

Instances

(b) LesCorts train
40000

6000

£ 20000
o

0

0 500 1000
Instances

(e) LesCorts test

1500

— part4

40000
220000 ’ l ll

1000 2000 3000 4000
Instances

(c¢) ElBorn train
40000

%20000
wika

0 250

0 500 750 1000

Instances

(f) ElBorn test

Fig.1: 5G data distributions of train and test datasets divided into four equal
partitions in experiment B.1.

The second dataset is the Air Quality dataset [32], which contains hourly
measurements of PM2.5 concentrations collected from 12 monitoring stations
across Beijing, China, between March 2013 and February 2017. The data origi-
nates from the Beijing Municipal Environmental Monitoring Center and is com-
plemented with meteorological information from 15 weather stations operated by
the China Meteorological Administration. The meteorological variables include
air temperature, wind speed and direction, atmospheric pressure, relative humid-
ity, and precipitation, with measurements provided at six-hour intervals. These
additional variables are used better to capture the influence of weather condi-
tions on PM2.5 levels and to enable spatial-temporal adjustments of pollution
estimates. In total, each monitoring site provides approximately 35,000 hourly
records over the four years. The full dataset contains 18 features, which combine
air quality indicators and weather-related attributes. The target variable in this
case is PM2.5 concentration, a key indicator of air pollution. Similar to the 5G
dataset, we treat the 12 nodes as Non-IID FL clients due to the varying sample
sizes and distributional differences.

In our implementation, FedCluLearn initializes an NN with input sizes of
10 (5G network) and 9 (Air Quality), two hidden layers (128 and 64 neurons),
leaky ReLU activations, and a scalar output. Only numerical features are used,
with missing values in the Air Quality dataset imputed with zero. Models are
trained locally for three epochs using a batch size of 128 and a learning rate
of 0.0001. Initial client clustering is performed using k-means, with the number
of clusters and client assignments guided by the SI. A fixed SI threshold of 0.5,

FedCluLearn: Federated Continual Learning 9

chosen empirically, is used throughout. Both datasets are split 80/20 for training
and testing and exhibit non-stationary distributions, making them suitable for
evaluating FL robustness under concept drift. Information about pre-processing
details and data distributions is available in our public repository.

4.2 Baseline algorithms

Three baseline FL algorithms are used as benchmarks in our experiments. These
are FedAvg, FedProx, and FedAtt.

Federated Averaging (FedAvg) [20] is a distributed learning algorithm
where multiple clients train local models on their own data without sharing it. A
global model is then created by averaging these local models. However, FedAvg
struggles with catastrophic forgetting as new updates overwrite past knowledge.
Furthermore, it cannot detect and adapt to concept drift, which can lead to a
decline in performance over time.

To improve training stability, Federated Optimization (FedProx) [17]
extends FedAvg by incorporating a proximal term that limits local model up-
dates, ensuring they remain close to the global model. While this helps when
clients have heterogeneous data, FedProx still does not explicitly address con-
cept drift, making it vulnerable to performance degradation and catastrophic
forgetting as data distributions change.

To tackle concept drift more effectively, Federated Attention (FedAtt) [6]
enhances FedAvg by incorporating a mechanism to retain past information ef-
fectively while adapting to sudden changes in data patterns, thereby minimizing
forgetting of older knowledge over time. The used baselines are representative
of widely used FL approaches. Despite their advancements, none of these meth-
ods are explicitly designed for continual learning or concept drift scenarios. We
include them in our evaluation to demonstrate how models lacking explicit mech-
anisms for long-term memory and adaptation can struggle under evolving data
distributions. We do not intend to position FedCluLearn as a direct replacement,
but rather to emphasize the importance of incorporating continual learning prin-
ciples into federated setups.

4.3 Experiments

In this study, we investigate the effectiveness of our FedCluLearn model in miti-
gating catastrophic forgetting and dealing with concept drift in an FCL setting.
The aim is to establish whether the model can retain previously acquired infor-
mation while adapting to newly emerging concepts and to further analyze its
performance in managing data trends over time. We have conducted a series
of control experiments alongside experiments using real-world data. The control
experiments are designed to explore the impact of concept drift and catastrophic
forgetting on the behavior of FedCluLearn under small control scenarios. The
experiments with real-world data can provide insight into the performance of
the model in a real-world context.

10 M. Angelova, V. Boeva et al.

Control experiments are grouped into three categories, representing differ-
ent learning and concept drift scenarios. We have simulated parallel and contin-
ual learning of new concepts, leading to different concept drift scenarios. In the
three experimental setups conducted, see Fig. 2, three clients participated in over
200 global rounds. The data represents three distinct concepts. Every 50 rounds,
the concepts are rotated among the clients. The three control experiments are

A1 c1 @ @ @ @
’ c2 @ (] @ @
c3 @ =Y @ @ @ Concept1
@ Concept 2
@ Concept 3
A2 “ @ @ @ e Al- el
. c2 @ @ @ @ .1-paralle
c3 @ (@) @ @ A.2-continual
A.3 - hybrid
c1 @ @ @ @ C1,C2,C3-clients
A3 |z @ @ @ @
c3 @ @ @ @

0-50 50-100 100-150 150-200 Globalrounds

Fig. 2: Tllustration of the control experiments conducted. They simulate three
different learning and concept drift scenarios: parallel, continual, and hybrid.

described in detail below:

— FExperiment A.1 simulates parallel learning of the three concepts represented
in the clients’ data. Concept drift occurs at the client level, where the same
concept is distributed to all clients during the same training period. The
setup evaluates the model’s ability to handle local concept drift, where each
client receives different data distributions that periodically change over time.
This allows us to analyze the model’s ability to adapt to local variations while
retaining knowledge from previously learned concepts.

— FExperiment A.2 simulates continual learning of the three concepts, the drift
occurs while the global model is being built. All clients receive the same
concept during each interval. Every 50 global rounds, the concept shifts for
all clients, leading to concept drift at the global level. In the last 50 global
rounds, each client receives a different concept. The goal is to evaluate the
model’s ability to handle global concept drift, where all clients experience
identical data distribution changes at the same time.

— Ezxperiment A.3 is a hybrid setup simulating local and global concept drifts.
In the first two shifts (rounds 0 to 49 and 50 to 99), clients receive different
concepts, experiencing local drift. In rounds 100 to 149, all clients learn the
same concept, introducing global drift. A mix of learned local and global
concepts is then introduced in the final phase. The goal is to assess the
model’s ability to simultaneously adapt to both drift types.

FedCluLearn: Federated Continual Learning 11

Experiments with real-world data are performed on two datasets, 5G
and Air Quality, as described below:

— FEzxperiment B.1 simulates an evolving streaming scenario and is carried out
on 5G data. In this scenario, the three clients learn three different concepts,
i.e., ElBorn, LesCorts, and PobleSec, each with a different size. These con-
cepts are divided into four equal partitions, see Fig. 1. Each client receives
different data every 50 rounds.

— FExperiment B.2 is similar to experiment B.1 and simulates a scenario with
Air Quality data. Eleven clients each receive a distinct dataset with an equal
number of instances representing different concepts. As in B.1, the datasets
are divided into five equal partitions, and clients train on a new partition
every 50 rounds.

In both types of experiments, we studied two different versions of our algorithm,
called FedCluLearn and FedCluLearn-Prox, which use two distinct schemes to
build the global model. The first version uses the aggregation formula (2) to
construct the global model at each training round, while the second employs the
optimization proposed in FedProx to address data heterogeneity.

From a convergence perspective, FedCluLearn may struggle in heterogeneous
settings due to client drift. FedCluLearn-Prox addresses this issue by incorpo-
rating FedProx, which stabilizes training by penalizing deviation from the global
model via a proximal term. This has been shown to improve convergence under
Non-IID conditions by mitigating local overfitting [17]. Moreover, the proximal
term retains the local updates near the global optimization trajectory, which
reduces client divergence and accelerates convergence in environments with Non-
IID data distributions. Experimental evidence across multiple FL. benchmarks
supports the effectiveness of this modification, particularly in scenarios with
high statistical heterogeneity [17,14]. These results suggest that the incorpora-
tion of FedProx into FedCluLearn leads to more reliable and faster convergence
in real-world Non-IID environments.

In addition, we conducted an ablation study in which we evaluated different
aging schemes, e.g., from using all local modal updates to building the global
model only from the updates of the last training round. The former reflects
the scenario in which the aging component is omitted, while the latter explores
the removal of the component using previously learned concepts. We have used
Mean Squared Error (MSE) and R-squared (R?) to evaluate the perfor-
mance of the studied algorithms.

5 Experimental results and discussion

5.1 Control experiments

In the three control experiments (A.1, A.2, and A.3), we examine the two ver-
sions of our algorithm mentioned above, FedCluLearn and FedCluLearn-Prox.
In addition, three different data aging schemes of the two versions are evaluated
in the three experiments.

12 M. Angelova, V. Boeva et al.

Fig. 3 shows the performance, evaluated in terms of MSE and R?, of Fed-
CluLearn and FedCluLearn-Prox, which aggregate all local model updates of
the active concepts when building the global model. Their performance is com-
pared to that of the three baseline algorithms. Note that this is an ablation
study scenario in which the aging component is omitted. As we can see in
Ezperiment A.1, FedCluLearn and FedCluLearn-Prox show better robustness
to concept drifts that occur at the local level than FedAvg and FedAtt. Fur-
thermore, the performance of FedCluLearn is comparable to that of FedProx,
while the latter algorithm outperforms FedCluLearn-Prox. In Ezperiment A.2,
FedCluLearn and FedCluLearn-Prox are observed to be much more affected by
global concept drifts than FedAvg and FedProx, but as can be seen in the last
shift, FedCluLearn-Prox remembers the already learned concepts better than
the baseline algorithms. Our observations in Ezperiment A.3 confirm those of
the other two experiments. To understand whether the behavior of FedCluLearn
and FedCluLearn-Prox in Ezperiment A.2 is due to the SI threshold used (0.5),
we also ran this experiment with threshold values of 0.7, 0.8, and 0.9, see Fig. 4.
The two versions of our algorithm show different performance patterns with
respect to different threshold values. In addition, both algorithms show signifi-
cantly better performance at a value of 0.9. This is not surprising and is due to

=== FedCluLearn-Prox === FedProx === FedAtt = FedAvg === FedCluLearn

0 50 100 150 0 50 100 150 0 50 100 150
FL Rounds

(a) A.1 MSE

0 50 100 150 0 50 100 150 0 50 100 150

FL Rounds FL Rounds FL Rounds
(d) A.1 R? (e) A2 R? (f) A.3 R?

Fig. 3: Results of the evaluation of the global models built by FedAvg, FedAtt,
FedProx, FedCluLearn, and FedCluLearn-Prox, in the three experiments A.1,
A.2, and A.3. FedCluLearn and FedCluLearn-Prox aggregate all local model
updates of the active concepts when building the global model in each training
round.

FedCluLearn: Federated Continual Learning 13

the construction of more clusters, i.e., a high discrimination between different
local model updates.

In Fig. 5, we study the FedCluLearn and FedCluLearn-Prox in the three
control setups that utilize local model updates only from the last training round
of the active concepts when building the global model. This is an ablation study
scenario in which the component that uses previously learned concepts has been
excluded. In this setting, FedCluLearn-Prox is shown to best handle local and
global concept drift and forgetting in all three setups compared to the other
evaluated algorithms. FedCluLearn also shows significantly better performance
in the case of Fxperiment A.2 and the third shift of Fzperiment A.3. This is
because, in the case of global concept drift, more recent clients’ model updates
are more beneficial for the global model aggregation to capture the feature of a
newly appeared concept. Furthermore, FedCluLearn-Prox outperforms all other
algorithms in Ezperiment A.1, while FedCluLearn is better than FedAvg and

—0.5--0.7--0.8--0.9

1.2
1
50.8
90.6
2 0.4
0.2
01" : ‘ ‘
0 50 100 150
FL Rounds FL Rounds
(a) MSE curves of FedCluLearn (b) MSE curves of FedCluLearn-Prox

Fig. 4: Results of the evaluation of the global models built by FedCluLearn and
FedCluLearn-Prox in the experiment A.2 with different SI threshold values.

=== FedCluLearn-Prox === FedProx === FedAtt = FedAvg === FedCluLearn

o

0 50 100 150 0 50 100 150

50 100 150
FL Rounds FL Rounds FL Rounds
(a) A.1 MSE (b) A.2 MSE (c) A.3 MSE

Fig.5: Results of the evaluation of the global models built by FedAvg, FedAtt,
FedProx, FedCluLearn, and FedCluLearn-Prox, in the three experiments A.1,
A.2, and A.3. FedCluLearn and FedCluLearn-Prox use only recent (from the
last training round) local model updates of the active concepts when building
the global model in each training round.

14 M. Angelova, V. Boeva et al.

FedAtt in the same setup. This is most likely due to the fact that the performance
of the global models is not negatively affected by the earlier learned immature
client updates. Note that the evaluation with respect to R? shows similar results
and can be seen in our public repository.

Fig. 6 examines the FedCluLearn and FedCluLearn-Prox that aggregate only
half of the local model updates of the active concepts when building the global
model. Interestingly, this leads to an improved performance of FedCluLearn.
Namely, in the current setting, both FedCluLearn and FedCluLearn-Prox outper-
form the baseline algorithms in Ezperiment A.1. In Ezperiment A.2, we observe
the same performance patterns as in the case where all local model updates
are used to build the global model, see Fig. 3. However, the performance of
FedCluLearn is significantly improved in Ezperiment A.3 compared to the two
setups, whose results are shown in Fig. 3 and Fig. 5. We believe this is because
only the most recent, mature local modal updates are used to build the global
models. The evaluation results with respect to MSE are similar and can be seen
in our public repository.

Our main finding from the control experiments is that the performance of
both versions of our algorithm, FedCluLearn and FedCluLearn-Prox, is affected
by the aging scheme used. In other words, they have shown better performance
when the aging scheme included an appropriate number of previously learned
concepts. Therefore, both components explored by our ablation study are impor-
tant for the performance of the algorithms. The effect of the aging scheme on the
performance of the algorithms is examined further in our experiments with real-
world data. In addition to the above findings, FedCluLearn and FedCluLearn-
Prox have shown superior robustness to local concept drift (Experiment A.1),
while FedCluLearn-Prox has clearly demonstrated better memory retention in
global drift scenarios (Experiment A.2). The hybrid experiment (A.3) has con-

=== FedCluLearn-Prox === FedProx === FedAtt = FedAvg === FedCluLearn

50 100 150 0 50 100 150

50 100 150
FL Rounds FL Rounds FL Rounds
(a) A.1 R? (b) A.2 R? (c) A3 R?

Fig. 6: Results of the evaluation of the global models built by FedAvg, FedAtt,
FedProx, FedCluLearn, and FedCluLearn-Prox, in the three experiments A.1,
A.2, and A.3. FedCluLearn and FedCluLearn-Prox aggregate only half of the
last (most recent) local model updates of the active concepts when building the
global model in each training round.

FedCluLearn: Federated Continual Learning 15

firmed these results, reinforcing the effectiveness of FedCluLearn-Prox in dealing
with both types of drift.

5.2 Experiments with real-world data

We report and discuss the results of two experiments conducted on real-world
data below.

In Fig. 7, we compare the performance of FedCluLearn and FedCluLearn-
Prox with that of the three baseline algorithms on 5G data in Fzxperiment
B.1. We also examine how the performance of our algorithms is affected by
the percentage of recent local model updates used to build the global model. In
Fig. 7(b), we evaluate the performance of five versions of FedCluLearn, called
FedCluLearn-total, FedCluLearn-recent, FedCluLearn-75%, FedCluLearn-50%,
and FedCluLearn-25% in terms of MSE. FedCluLearn-total denotes the version
that aggregates all local model updates of the active concepts when building the
global model in each training round. FedCluLearn-recent, FedCluLearn-75%,
FedCluLearn-50%, and FedCluLearn-25% refer to versions that only aggregate
local model updates from the last training round and the respective percentage
(75%, 50%, and 25%) of local model updates of the active concepts when build-
ing the global model. The same comparisons, but for the respective five versions
of FedCluLearn-Prox, are shown in Fig. 7(c). Fig. 7(a) then compares the best
performing versions of FedCluLearn and FedCluLearn-Prox with the three base-
line algorithms. These are FedCluLearn-50% and FedCluLearn-Prox-50%. As we
can observe, FedCluLearn-Prox-50% significantly outperforms FedAvg and Fe-
dAtt, as well as its relative algorithm, FedProx. FedCluLearn-50% also shows
significantly better performance compared to FedAvg, it also outperforms Fe-
dAtt and is very close to the performance of FedProx. It is interesting to note
that the performance signatures of FedCluLearn-recent (see Fig. 7(b)) and Fe-
dAvg (see Fig. 7(a)) have very similar shapes, but the former algorithm shows

1.4 — FedCluLearn-50% — totals recent —50% —25% totals —recent —50% 25%

1 - - FedAvg 1.6{—75% 1.6{—75%
1.2¢ - FedAtt 1.4 1.4
§ 14 -+~ FedProx 51.2 51.2
$0.81% FedCluLearn-Prox-50% o1 E o1
h: [0 (D
| o8 08
=04 " %04
| 0.2 0.2
I I ol
0 50 100 150 0 50 100 150 0 50 100 150
FL Rounds FL Rounds FL Rounds
(a) MSE-Baselines (b) MSE-FedCluLearn (c) MSE-FedCluLearn-Prox

Fig. 7: Results of experiment B.1 with 5G data simulating an evolving stream-
ing scenario. The middle plot compares the performance of the three versions
of FedCluLearn. The same comparison is shown in the right plot, but for
FedCluLEarn-Prox. In the left plot, the best performing versions of FedCluLearn
and FedCluLearn-Prox are compared to the three baseline algorithms.

16 M. Angelova, V. Boeva et al.

1.6 - - FedAvg X — totals recent —50% —25% totals —recent 50% 25%
+ FedAtt —75% —75%
1.4 / 1.6 1
-- FedProx .
s 129 fedCluLearn-25% 5 1.4
o 1 FedCluLearn-Prox-25% = 1.2
w 0.8 H o 1
1) 0.8
)|
= 0.6 206
0.4 A 0.4
0.2 0.2
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
FL Rounds FL Rounds FL Rounds
(a) MSE-Baselines (b) MSE-FedCluLearn (¢) MSE-FedCluLearn-Prox

Fig. 8: Results of experiment B.2 with Air Quality data simulating an evolving
streaming scenario. The middle plot compares the performance of the five ver-
sions of FedCluLearn. The same comparisons are shown in the right plot, but for
FedCluLearn-Prox. In the left plot, the best performing versions of FedCluLearn
and FedCluLearn-Prox are compared to the three baseline algorithms.

better performance. We believe that this is due to the fact that FedCluLearn uses
only local model updates from the currently active concepts to build the global
model. A similar trend is observed for FedCluLearn-Prox-recent and FedProx
(see Fig. 7(c) and Fig. 7(a)).

In Fig. 8, we compare the performance of FedCluLearn and FedCluLearn-
Prox with the three baseline algorithms on the Air Quality data in Ezperi-
ment B.2. Similar to FEzperiment B.1, we examine the five different versions
of each of the two algorithms. In this experiment, the best performing versions
of FedCluLearn and FedCluLearn-Prox are FedCluLearn-25% and FedCluLearn-
Prox-25%. In Fig. 8(a), FedCluLearn-25% and FedCluLearn-Prox-25% have very
similar performance that is better than that of FedAvg and FedAtt and compa-
rable to that of FedProx in most data batches. In addition, both versions of our
algorithm handle data drift in the last batch better than the three baselines.

In summary, FedCluLearn has consistently shown better performance than
FedAvg and FedAtt, while FedCluLearn-Prox has outperformed the three base-
lines and FedCluLearn in most experiments. However, both models are sensitive
to aging schemes, with suboptimal strategies that compromise global drift adap-
tation. FedCluLearn-Prox-percentage-50% has shown the best overall perfor-
mance, significantly outperforming FedAvg, FedAtt, and FedProx. Meanwhile,
FedCluLearn-25% and FedCluLearn-Prox-25% have emerged as the best per-
forming variants, confirming that the optimal aging scheme is data dependent.

The five versions of FedCluLearn and FedCluLearn-Prox are also evaluated
with respect to R? in Ezperiments B.1 and B.2. The results are similar to those
reported under MSE and can be seen in our public repository.

6 Conclusion and future work

In this study, we have proposed a novel Federated Continual Learning (FCL)
algorithm, called FedCluLearn, which interprets the federated training process

FedCluLearn: Federated Continual Learning 17

as a stream clustering scenario. It uses the stream micro-cluster indexing scheme
to store statistics about local model updates to deal with catastrophic forgetting
and concept drift. Additionally, FedCluLearn considers the recency of stored
local model updates to determine how many to use in building the global model
during each training round.

Two versions of the proposed FCL approach, FedCluLearn and FedCluLearn-
Prox, have been evaluated in several control and real-world data experiments,
studying various ablation scenarios using different aging schemes and comparing
their performance with three baselines, FedAvg, FedProx, and FedAtt. The ex-
perimental results have shown that a balanced use of older local model updates
can lead to robust handling of concept drift and catastrophic forgetting by both
models. FedCluLearn has consistently shown better performance than FedAvg
and FedAtt, while FedCluLearn-Prox has outperformed all three baselines, and
FedCluLearn in most cases studied.

Future research will focus on dynamic aging schemes that adapt to evolving
data distributions to enhance performance in global drift scenarios. To improve
algorithm efficiency, we plan to organize cluster statistics on the server using a
tree structure like B-trees or R-trees. Additionally, we aim to extend this work
to larger, real-world federated environments with more heterogeneous clients to
gain insights into FedCluLearn’s scalability and applicability. We acknowledge
that the current evaluation of the proposed FedCluLearn is primarily based on
empirical evidence. Incorporating statistically significant tests is a crucial next
step in strengthening the validity of our findings. We also intend to compare
FedCluLearn with continual learning methods adapted for FL, in order to provide
a more contextualized view of its performance in lifelong learning settings.

References

1. Aggarwal, C.C., Reddy, C.K.: Data Clustering: Algorithms and Applications. Chap-
man & Hall/CRC, 1st edn. (2013)

2. Aggarwal, C.C., et al.: A framework for clustering evolving data streams. In: Freytag,
J.C., et al. (eds.) Proc. VLDB Conf., pp. 81-92. Morgan Kaufmann (2003)

3. Agrahari, S., Singh, A.K.: Concept drift detection in data stream mining: A liter-
ature review. Journal of King Saud University-Computer and Information Sciences
34(10), 9523-9540 (2022)

4. Benzing, F.: Unifying importance based regularisation methods for continual learn-
ing. In: Int. Conference on AI and Statistics. pp. 2372-2396. PMLR (2022)

5. De Lange, M., et al.: A continual learning survey: Defying forgetting in classification
tasks. IEEE trans. on patt. anal. and mach. intell. 44(7), 3366-3385 (2021)

6. Estiri, A.H., Maheswaran, M.: Attentive federated learning for concept drift in dis-
tributed 5g edge networks. ArXiv abs/2111.07457 (2021)

7. French, R.M.: Catastrophic forgetting in connectionist networks. Trends in cognitive
sciences 3(4), 128-135 (1999)

8. Gama, J.a., Zliobaitundefined, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A
survey on concept drift adaptation. ACM Comput. Surv. 46(4) (2014)

9. Gepperth, A., Hammer, B.: Incremental learning algorithms and applications. In:
European symposium on artificial neural networks (ESANN) (2016)

18 M. Angelova, V. Boeva et al.

10. Ghosh, A., et al.: An efficient framework for clustered federated learning. Advances
in neural information processing systems 33, 19586-19597 (2020)

11. Islam, M.S., et al.: Fedclust: Tackling data heterogeneity in federated learning
through weight-driven client clustering. In: Proc. of ICPP’24. pp. 474-483 (2024)
12. Iwashita, A.S., Papa, J.P.: An overview on concept drift learning. IEEE access 7,

1532-1547 (2018)

13. Jiang, X., Borcea, C.: Concept matching: clustering-based federated continual
learning. arXiv preprint arXiv:2311.06921 (2023)

14. Karimireddy, S., Kale, et al. SCAFFOLD: Stochastic Controlled Averaging for
Federated Learning. Proceedings Of The 37th International Conference On Machine
Learning. 119 pp. 5132-5143 (2020,7,13)

15. Kranen, P., et al.: The clustree: indexing micro-clusters for anytime stream mining.
Knowledge and Information Systems 29, 249-272 (2011)

16. Lesort, T., et al.: Continual learning for robotics: Definition, framework, learning
strategies, opportunities and challenges. Information fusion 58, 52-68 (2020)

17. Li, T., et al.: Federated optimization in heterogeneous networks. Proceedings of
Machine learning and systems 2, 429-450 (2020)

18. Lin, G., Chu, H., Lai, H.: Towards better plasticity-stability trade-off in incremental
learning: A simple linear connector. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. pp. 89-98 (2022)

19. MacQueen, J.: Some methods for classification and analysis of multivariate observa-
tions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, Volume 1: Statistics. vol. 5, pp. 281-298 (1967)

20. McMahan, B., et al.: Communication-efficient learning of deep networks from de-
centralized data. In: Proc. of the 20th AISTATS (2017)

21. Ouyang, X., et al.: Clusterfl: A clustering-based federated learning system for hu-
man activity recognition. ACM Trans. on Sensor Networks 19(1), 1-32 (2022)

22. Perifanis, V., et al.: Towards energy-aware federated traffic prediction for cellular
networks. In: 2023 8th Int. Conf. on FMEC. pp. 93-100 (2023)

23. Pfeiffer, J., et al.: Modular deep learning. ArXiv abs/2302.11529 (2023)

24. Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. Journal of Comp. and Applied Mathematics 20, 53-65 (1987)
25. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative

replay. Advances in neural information processing systems 30 (2017)

26. Wadewale, K., Desai, S.: Survey on method of drift detection and classification for
time varying data set (2015)

27. Wang, L., et al.: Memory replay with data compression for continual learning.
arXiv preprint arXiv:2202.06592 (2022)

28. Wang, L., et al.: A comprehensive survey of continual learning: Theory, method
and application. IEEE Trans. on Pattern Analysis and Machine Intelligence (2024)

29. Wang, Z., et al.: Federated continual learning for edge-ai: A comprehensive survey.
arXiv preprint arXiv:2411.13740 (2024)

30. Yang, X., et al.: Federated continual learning via knowledge fusion: A survey. IEEE
Transactions on Knowledge and Data Engineering 36(8), 3832-3850 (2024)

31. Yoon, J., Madaan, D., Yang, E., Hwang, S.J.: Online coreset selection for rehearsal-
based continual learning. arXiv preprint arXiv:2106.01085 (2021)

32. Zhang, S., et al.: Cautionary tales on air-quality improvement in beijing. Proc. of
the Royal Society A: Mathematical, Physical and Engineering Sciences 473 (2017)

