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Abstract. In machine learning and deep learning, uncertainty quan-
tification helps to accurately assess a model’s confidence in its predic-
tions, enabling the rejection of uncertain outcomes in safety-critical ap-
plications. However, in scenarios involving Al-assisted decision-making,
proposing multiple plausible decisions can be more beneficial than either
not making any decisions or risking incorrect ones. Set-valued classifica-
tion is a relaxation of standard multiclass classification where, in cases of
uncertainty, the classifier returns a set of potential labels instead of a sin-
gle label. Current methods for set-valued classification often suffer from
high computational complexity or fail to adequately quantify uncertainty.
In this paper, we introduce a novel, computationally efficient approach
to set-valued classification leveraging evidential deep learning and sub-
jective logic, explicitly providing a measure of classification uncertainty.
Our method employs a dual-head architecture: one head conducts mul-
ticlass evidential classification, while the other suggests candidate label
sets when uncertainty is high. The proposed approach has linear worst-
case computational complexity with respect to the number of classes.
Extensive evaluation on several benchmark datasets demonstrates that
our method showcases comparable performance to baseline set-valued
methods, while being up to 23 times faster at inference on the bench-
mark datasets.

Keywords: set-valued classification - evidential deep learning - subjec-
tive logic - utility maximization - uncertainty quantification.

1 Introduction

Artificial Intelligence (AI) has experienced a rapid surge in recent years, driven
by advancements in deep learning, large-scale data availability, and increased
computational power. From healthcare diagnostics to financial forecasting and
autonomous systems, Al is increasingly used for both autonomous and assisted
decision-making. Nevertheless, it has been shown that deep neural networks can
produce incorrect output with high confidence [II], which can be catastrophic in
safety-critical areas. To alleviate this issue, different uncertainty quantification
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(UQ) techniques have been suggested [I] to understand the true confidence of
the models and reject the decision of the model in case of high uncertainty.

Most of the UQ techniques for classification tasks operate in precise classifi-
cation settinﬂ where the model can either make a single prediction, or refuse
to make a prediction under high uncertainty. However, in many applications
of deep learning models for assisted decision-making, where a human expert
makes the final decision, it would be more beneficial to suggest a reduced set
of decision options with lower uncertainty rather than completely rejecting un-
certain predictions. Set-valued or imprecise classification [5] tries to address this
issue by suggesting a set of possible outputs in uncertain situations. [7] has re-
cently demonstrated through trials that set-valued predictions enhance human
decision-making and increase accuracy compared to no assistance or top-k pre-
dictions (suggesting the most probable k options).

Recent work [24129I15] concentrates on using Dempster-Shafer (DS) theory
of belief functions [8I22] to model uncertainty and imprecision in deep learning
models. DS theory is a mathematical framework for reasoning under uncertainty,
generalizing probability theory by allowing belief assignment to sets of possibil-
ities rather than single events. However, considering all possible subsets of the
power set of the label space can be computationally expensive and infeasible for
large label spaces [19]. [19] proposes efficient set-valued classification algorithm,
with K log K time complexity, where K is the number of classes. However, the
method takes conditional class probabilities as a measure of uncertainty, which
may not be accurate in practice [I1].

In this work, we propose a novel set-valued evidential classification method,
EM-SEC, which uses a multi-head architecture to efficiently model set-valued
predictions. The first multiclass head is used to perform evidential multiclass
classification, where it uses subjective logic (SL) [I4] to get beliefs for each class
as well as the total uncertainty. The second head is used to suggest one set-valued
candidate set, which is obtained by evidential multi-label classification. Finally,
subjective logic is used to allocate some belief mass from the uncertainty mass
of the first head to the candidate set. At inference time, the model takes the
prediction with highest belief mass, which can be either a singleton class or a
set of classes. Our contributions hence are the following:

— We propose EM-SEC (Efficient Multi-head Set-valued Evidential Classi-
fication), a novel set-valued classification approach that scales linearly with
the number of classes, hence being up to 23 times faster in our experiments
compared with baseline methods.

— EM-SEC provides the uncertainty of the decision for both: single class and
set-valued predictions. The uncertainty value can be used to avoid making
uncertain decisions in safety-critical areas.

— We show that EM-SEC achieves comparable results with the baseline models
on CIFAR-10 and CIFAR-100 datasets [17].

3 Precise classification refers to returning only one class, in contrast to imprecise clas-
sification, which returns multiple classes, often referred to as set-valued or imprecise
classification
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— The code of EM-SEC is open and experiments are reproducible at
https://github.com /bezirganyan /em _sec.

2 Related Work

Set-valued classification aims to minimize both the error rate and the expected
size of the prediction set. A common approach is Top-K classification, which
outputs a fixed number of labels per sample. However, choosing an optimal K is
difficult, as different samples require different set sizes: high-confidence samples
need fewer labels, while ambiguous ones benefit from larger sets.

Another approach is to use thresholding on the output probabilities of a
multiclass classifier, where the classes with probabilities above a certain threshold
are selected. However, a fixed threshold may not be optimal for all samples, and
the set size can vary considerable by slight changes in the threshold [I9]. Similar
to EM-SEC, [I0] propose a two-headed architecture, where the second (multi-
label) head is trained on pseudo-labels derived from the softmax scores of the
first head. These pseudo-positives are selected to maintain a batch-wise average
set size of K. At test time, only the output of the multi-label head is used.
However, this approach does not account for model uncertainty. In contrast,
EM-SEC performs per-sample evidential fusion: if the Dirichlet evidence from
the single-label head is sufficiently confident, it outputs a single class; otherwise,
it defers to the evidential multi-label head’s candidate set, while also providing
a measure of uncertainty.

Conformal Prediction (CP) [26l23] is another popular framework for set-
valued classification. CP is a distribution-free framework that provides a predic-
tion set (or region in the case of regression) that is guaranteed to contain the
true label with a certain probability. The theoretical guarantees and the sim-
plicity of the framework make it a popular choice for set-valued classification.
However, while these guarantees hold on the error rate, the expected set size is
not guaranteed to be minimized, and the set size can be quite large for some
datasets [19127]. Conformal Prediction with strong coverage guarantees (full con-
formal prediction) can also be quite expensive and infeasible for big datasets,
while optimized variants (e.g., split conformal prediction) have weaker coverage
guarantees [4].

Another direction, to which this paper belongs to, stems from decision the-
ory, and tries to combine the error-rate minimization and set-size minimization
objectives into a single utility function. [I9] proposed an efficient set-valued
classification, that relies on the conditional class probabilities and tries to find
the subset of classes that maximizes the expected utility. This method is com-
putationally efficient, but assumes that the uncertainty is quantified by class-
conditional probabilities. It was shown [IT] that standard deep learning models
can be overconfident and poorly calibrated, which also motivates our use of evi-
dential neural networks in this work. The efficient set-valued classifier proposed
by [19] also sorts the classes by their conditional probabilities at inference time,
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which, while can be negligible for small label spaces, can be computationally
expensive for large label spaces.

Approaches based on Dempster-Shafer (DS) theory [8I22] offer an alterna-
tive framework for set-valued classification by directly addressing the inherent
uncertainty in the data through belief assignments. In these methods, classifiers
generate belief masses over subsets of the label space, following the principles
laid out in DS theory. By assigning non-zero mass to composite hypotheses, DS-
based methods enable the classifier to express uncertainty with a finer granular-
ity than traditional probability estimates. [9] introduced an approach to neural
network classification that integrates evidential reasoning. In this method, the
similarity between an input pattern and a limited set of prototypes is evaluated,
with each prototype contributing evidence about class membership in the form
of belief functions. These individual pieces of evidence are then combined using
Dempster’s rule of combination to reach a final decision. Initially, the method
could make only singleton predictions, or refuse to make a prediction under high
uncertainty (classification with rejection). Later, [I8] extended this approach
to set-valued classification by allowing the classifier to output multiple classes.
[24] integrated the set-valued classification framework for deep convolutional
neural networks, showcasing their capabilities on complex data. Nevertheless,
both [I8/24] require computation of the extended utility matrices with shapes
(2¥ — 1 x k). Although this matrix can be precomputed, in our experiments we
observed that for k > 20, the matrices already did not fit in the memory. More-
over, besides the memory limitation, the approach also requires k(2¥ — 1 — k)
computations, which is infeasible for large label spaces. To solve that issue, [18]
suggested to only consider 2-element sets, and the full set. This, however, limits
the expressiveness of the model and still requires O(k*) computations. In [24],
the authors propose identifying, for each class, the two (or more) most similar
classes and restricting the utility computation to these class pairs. While this
approach can help reduce computational complexity, its performance heavily de-
pends on the dataset’s inherent structure (e.g one class can have many similar
classes), and it may still limit the overall expressiveness of the model.

[13] proposed an imprecise re-labeling procedure that revises the training
data by replacing precise class labels with subsets of candidate classes for sam-
ples located in overlapping or isolated regions, and then uses DS theory for
learning and reasoning. However, the reasoning step of this approach can still be
computationally expensive for large label spaces. The re-labeling step also de-
pends on prediction methods to provide reliable posterior probabilities; if these
estimates are poor, the subsequent imprecise labels may not accurately capture
the underlying uncertainty. The work of [15] is also notable for combining eviden-
tial neural networks with conformal prediction to provide set-valued predictions
with guaranteed error rates.

In this paper, however, our work mostly falls in the domains of evidential
set-valued classifiers [918]24], and utility function maximization [T9JI8I24]. In
our approach, we reduce the exponential computational complexity required by
evidential classifiers, by considering only one additional set, suggested by a sec-
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ond candidate proposal head. This allows us to scale linearly with the number
of classes. The use of evidential neural network also enables us more accurate
uncertainty quantification compared to standard deep learning models.

Similar to the work discussed in the previous paragraphs [I1824], we pro-
pose an evidential classification algorithm. However, instead of learning proto-
types and fusing them using Dempster’s rule, our architecture directly learns the
parameters of the Dirichlet distribution, as introduced in [21]. The Dirichlet dis-
tribution models a distribution over class probabilities while also capturing the
uncertainty in predictions. Following [21]], we leverage subjective logic to reason
about uncertainty. The next section provides a detailed discussion of subjective
logic and evidential deep learning as used in this work.

3 Preliminaries

In this section, we provide background on Subjective Logic and precise evidential
deep learning algorithms, as they form the foundation of our methodology.

3.1 Subjective Logic

Subjective Logic (SL) [I4] is an extension of DS theory that provides an intuitive
framework for modeling uncertain and imprecise information. SL defines the
domain X as the set of all possible states (or classes), analogous to the frame
of discernment in DS theory. Additionally, SL defines the hyperdomain Z(X) as
the reduced superset of X, which is the set of all non-empty proper subsets of
X, excluding the full set X itself.

In SL, beliefs about states in domain X or hyperdomain Z(X) are represented
using belief masses. The belief mass distribution b x assigns belief masses to the
possible values of random variable X, where X can be a state in the domain
or a set of states in the hyperdomain. The belief mass on the whole domain is
denoted as the uncertainty mass u. The additivity property of belief masses is
defined as )y, bx(X) +ux =1, where 7 € {X, Z(X)}.

A subjective opinion in SL is defined as a triplet wy = (bx,ux,ax), where
b x is the belief mass vector, ux is the uncertainty mass, and ax is the vector of
base rates. Base rates are the prior probabilities of the states in the domain X or
hyperdomain % (X). The opinions are called multinomial opinions if X € X and
hypernomial opinions if X € Z(X). In other words, a multinomial opinion asigns
belief masses to precise singleton states, while a hypernomial opinion assigns be-
lief masses to sets of states. Belief mass assigned to a composite value represents
vagueness and is referred as vague belief mass. A special case of multinomial
opinion is when the opinion is about a binary state, which is called a binomial
opinion and is represented as wx = (bx,dx,ax,ux), where bx is the belief
mass, dx is the disbelief mass, ax is the base rate, and ux is the uncertainty
mass.

Subjective logic also provides a convenient bijective mapping between multi-
nomial opinions and Dirichlet distributions [I4]. Dirichlet distribution with pa-
rameters @ = (aq, ..., k) is a probability distribution over the K-simplex, and
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is defined as:

1 K ap—1
Dir(p | @) = { Blay L= Pk forp € S (1)
0, otherwise

where B(«) is the multivariate beta function, and Sk is the K-simplex. The
Dirichlet distribution is convenient for modeling multinomial opinions, as the
parameters a can be interpreted as the number of observations of each class.
The bijective mapping between multinomial opinions and Dirichlet distributions
is given by:

€ ap —1 K

= = = _ 2
bk S g , U Sa ()

where S = Zle ay is called the Dirichlet strength, and e = ay — 1 is the
supporting evidence for class k. To be able to represent hypernomial opinions
using Dirichlet distributions, [I4] suggests to use the hyper-Dirichlet distribution,
which is a generalization of the Dirichlet distribution to the hyperdomain. The
hyper-Dirichlet distribution is defined similarly to the Dirichlet distribution,
but with an additional artificial assumption that the states in hyperdomain are
mutually exclusive (i.e. Yo,y € Z(X),z Ny = 0).

3.2 Evidential Deep Learning using Subjective Logic

Subjective logic has been used in deep learning to model uncertainty and impre-
cision in classification tasks. [2I] proposed an evidential deep learning framework
that uses subjective logic to model uncertainty in deep neural networks. In this
framework, the output logits of the neural network are transformed into evi-
dences with some monotonically increasing and non-negative activation function
(e.g., softplus, exponent, ReLU, etc.). Then, the evidences are transformed into
the parameters of a Dirichlet distribution, with aj = e + 1 for each class k. The
network is trained using the adapted cross-entropy loss, which is defined as:

K K oanp—1
Lace (an) - / |J; —Ynk IOank I_Ikél(f;n:)dpn
P (3)
=) Yk (Y (Sn) — ¢ (ank)) .

k=1

where 9 is the digamma function, S,, = Zszl ank is the Dirichlet strength, and
Ynk 1S the one-hot encoded target label for sample n. An additional Kullback-
Leibler divergence term is added between incorrect class probabilities and the
uniform distribution to encourage the network to output high uncertainty for



EM-SEC: Efficient Multi-head Set-valued Evidential Classification 7

incorrect predictions. The KL divergence term is defined as:

Lyt (an) =KL [D (pn I dn) HD(pn | 1)}

F(Z?:l &nk) K X
Ok — 1 nk) — Qnk |
T T, T () +;( ’ )[w( . wkzzl ]
()

where &, =y, + (1 — y,) ® e, are the Dirichlet parameters after removing the
misleading evidence, and the I" is the gamma function. The total loss is defined
as L = Lgee + 0t LK, where 4]0, 1] is an annealing coefficient.

= log

4 Owur Methodology

In this paper, we propose a novel approach for Evidential Set-Valued Classifi-
cation based on Subjective Logic. As discussed in previous section, set-valued
classification, especially the ones utilizing DS theory or utility functions often
face the problem of handling the exponentially growing number of possible sub-
sets of the frame of discernment. Similarly, in subjective logic, the cardinal-
ity of the hyperdomain grows exponentially with the number of states and is
equal to 25 — 2. Modeling these sets with a neural network becomes infeasi-
ble quickly, especially for large K. To address this issue, we propose a novel
approach, which suggests assigned belief masses on a reduced hyperset con-
sisting of K + 1 elements. We propose to use a 2-head approach, where the
first head, called the multinomial head, is responsible for providing precise
multinomial evidences eq,es,...,ex, and the second head, called the candi-
date proposal head, is responsible for proposing candidate sets of classes and
providing the evidence ec. More formally, instead of modeling the evidence of
the hyperset ey = {e1,€2,...,€x,€K41,---,€2x_2)}, we model the evidence of
eq = {e1,ea,...,ex,ec}, where e, k € {1,..., K} are the evidences for the
singleton classes predicted from the multinomial head, and e¢ is the evidence
on a set of classes C C & predicted from the candidate proposal head. Finally,
the outputs of the two heads are combined using subjective logic to obtain the
set-valued predictions together with the uncertainty estimates. The combina-
tion strategy ensures that the model provides set-valued predictions when the
uncertainty is high, and singleton predictions when the uncertainty is low.

4.1 Multinomial Head

This head is a standard evidential multi-class classifier, which outputs a multino-
mial opinion for each class. The output of this head are evidences ey, es, ..., ek,
which are obtained by applying an activation function with non-negative out-
puts, such as exponential function or softplus function, to the logits of the model.
The evidences then can be converted either to multinomial opinions, or to the
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Fig. 1. Pipeline of the proposed approach. (1) Extracted features are fed into multi-
nomial and candidate proposal heads. (2) The candidate proposal head’s outputs
determine the candidate set using belief and disbelief masses, followed by binomial
co-multiplication to compute belief and uncertainty masses. The disbelief masses are
merged with the uncertainty mass. (3) The final hypernomial output is obtained by
scaling and fitting these masses into the multinomial head’s uncertainty. In the figure
b(-) represents the belief mass on the specific class.

parameters of Dirichlet distribution. For notation convenience, we note the sub-
jective multinomial opinion representation as: was(bas, an, unr), where

€L 1 1

bk S amk K UM SE er1 (5)

As we can see, the multinomial head does not provide any set-valued predic-
tions, but unlike standard softmax based classifiers, it provides the uncertainty
in the form of uncertainty mass. Traditionally, the uncertainty mass is used to
reject the prediction of the model in case of high uncertainty. However, instead
of rejecting predictions due to high uncertainty, our approach proposes making
multiple plausible predictions.

4.2 Candidate Proposal Head

The candidate proposal head is responsible for proposing candidate sets of
classes. This task can be framed similarly to multi-label classification, where
the model is trained to predict the likelihood of each class being associated with
the input sample, allowing for the possibility of multiple classes being selected
simultaneously. However, unlike multilabel classification, the ground truth in-
cludes only one positive label. Training with single positive and k — 1 negative
classes penalizes the model for predicting any class other than the ground truth,
restricting or preventing multiple predictions. To address this issue, we follow
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the approach proposed by [6], where the authors propose to reduce the penalty
of false positives by down-weighting the terms in the loss function corresponding
to the negative classes. To achieve this they propose the weak assume negative
(WAN) loss defined as:

K
Lovan (Pr yn) = — % 2 L1108 (onr)
K= (6)
gy, 21710g (1= par)]
where K is the number of classes, p,, are the conditional class probabilities of
the probabilistic classifier, y, is the ground truth, 1;; is the indicator function,
and v = ﬁ is the down-weighting factor.

This approach, while suiting to our candidate proposing task, does not quan-
tify the uncertainties in the candidate set, and will also not allow us to obtain a
joint belief mass for the proposed set. To address this issue, we will make use of
evidential multi-label classification [30], which is a generalization of evidential
multi-class classification to multi-label setting. The evidential multi-label classi-
fier puts a prior Beta (au,k, Bni) on the presence of each class k in the candidate
set. The parameters of the Beta distribution are obtained by a neural network
predicting two evidence parameters e, and e, for each class. The evidences
are then converted to the parameters of the Beta distribution «,; and £, by
adding one to each evidence. The model is learned by optimizing the Beta loss
defined as:

ﬁn(e /BCE ynkv pnk) Beta (pnk, Ank, ﬁnk) dpnk
k=1

K

Z ynk ank + ﬁnk) - (ank))
k=1

+ (1 = ynk) (¢ (nk + Brk) — ¥ (Bni))]

where K is the number of classes, BCE (+) is the binary cross entropy loss, ()
is the digamma function. The parameters a.,; and S, can also be converted
to subjective binomial opinions w(bnk, dnk, Gnk, Unk ), which we will use later for
joint belief mass calculation. We can integrate the weak assume negative loss
and the Beta loss to obtain the weak assume negative evidential (WANE) loss:

K

Lowans (O, B Yn) = Y Wnk (W (g + Bak) — ¢ (k)
=1 (8)

+ Y (1 - ynk) W (ank + ﬁnk) - w (ﬁnk))} .

To control how generous or strict the models shall be in terms of set-sizes,
we propose two strategies. First, we introduce penalties prediction set-sizes, to
directly control how big the prediction is allowed to be. Second, we employ learn-
able down-weighting factors that allow the model to infer class-specific prefer-
ences for set size strictness directly from the data.
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4.3 Constraint-based WANE Optimization

An important aspect of the candidate proposal head is that it should propose
a set of classes, where the cardinality of the set is higher than one: |C| > 1. To
achieve this, we can define a penalty term in the loss function, which penalizes
the model for |C| < 1. The penalty term can be defined as:

K
Lpa(p) = A-min (0, > Lpisos — 2) 7 (9)
k=1

where ) is the penalty coefficient. However, the indicator function is not a dif-
ferentiable function, hence we perform a smooth relaxation of the penalty term
by using an estimated soft cardinality. For predicted conditional probabilities
p = [p1,.-.,pL], we define the estimated (soft) cardinality s as:

K

s=> a(n—05)), (10)

k=1

where o(+) is the sigmoid function and 7 is the steepness parameter. Then, the
relaxed penalty term will become:

ro(p) = A-min((s—Q),O). (11)

The resulting loss function in its current form constrains the candidate set’s
cardinality from below, but it does not regulate its average size. Following [6],
the original formulation sets v = ﬁ, which reduces the penalty on all negative
classes in the loss. Although this allows the model to propose multiple classes,
it inadvertently encourages high-cardinality outputs. Instead, our objective is
to design a loss function that imposes higher penalties for false positives from
classes not relevant to the input, while applying lower penalties for false negatives
in the relevant classes. To address this issue, we propose a cardinality-based loss
term that directly controls the average size of the candidate set. Our approach
leverages a differentiable approximation of the set’s cardinality from Equation
We then augment the original loss (e.g. the WANE loss defined in Eq.
with a penalty term that directly discourages excessively large candidate sets:

Lcard = ’}/h(S), (12)

where v > 0 is a hyperparameter, and the penalty function h(s) is chosen to be
monotonically increasing in s. Inspired by decision-theoretic utility functions, a

reasonable choice is g
1+
h(s)=1— ———

(s) s+ 32’

with beta (distinct from parameters of the Beta distribution) controlling the
tolerance for larger candidate sets. Lower 3 values enforce stricter cardinality
control, while higher 8 values allow for larger sets.

(13)
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In our proposed training regime, the overall loss is defined as
ﬁconst - L:WANE + £;2 + ‘ccarda (14)

which ensures that the model is penalized not only for misclassifications but also
for deviating from the desired candidate set size. We train the model with Lwang
and L, for a number of epochs to obtain reliable conditional class probabilities,
and the cardinality penalty is introduced gradually (via an annealing coefficient
7 € [0,1]) so that the loss function adapts smoothly to the new objective.

4.4 Alternative Learnable-Factor Based WANE Optimization

In the previous sub-section, we introduced two penalty terms to enforce a min-
imum cardinality for the predicted set and to penalize excessively large sets.
However, this soft-thresholding approach introduces several challenges. First,
the soft estimate of the set size, computed using sigmoid activations, is only an
approximation of the true cardinality. When the predicted probabilities are close
to the 0.5, the estimated size can deviate significantly from the actual number
of selected elements. Second, using steep sigmoid functions to approximate hard
thresholds can lead to optimization issues such as vanishing or unstable gradi-
ents. Third, the gradients induced by the WANE loss and the cardinality-based
penalties may conflict, potentially pulling the model in opposing directions and
hindering effective learning. Finally, the penalties are not class-dependent, mean-
ing the model applies the same set-size constraints uniformly across all classes.
This prevents the model from adapting its prediction behavior based on class-
specific characteristics, such as semantic similarity or varying levels of ambiguity
between classes. To address this issue we propose an alternative optimization idea
based on learnable, class-specific down-weighting factors.

As discussed before, the down-weighting factor v in equation [§]is controlling
how strong the penalization for false positives shall be. While the authors [6]
choose v = ﬁ, it puts a uniform penalty for false positives on all classes.
Nevertheless, based on the semantics of classes and the uncertainties, it may
be more acceptable to have false positives for some classes than the others. For
example, for an image of a dog, it is more acceptable to have the class wolf as a
false positive, than the class car. To achieve this, we propose to have a matrix
of down-weighting factors I" = [v;;] € [0, 1]5*K where each 7;x represents the
down-weighting factor for penalization of a sample belonging to class j with a
false positive in class k. The WANE loss wit learnable factors then will be:

K
Lowans—1 (O B Yn) = Y [Ynk (1 (ank + Buk) = ¢ ()

k=1

+ 950 (1 = ynk) (¥ (nk + Buk) — % (Bur))]

where j is the index of the correct ground truth class, such that y,; = 1.
To obtain the matrix I' = [y;;], we introduce a learnable real-valued pa-
rameter matrix Z = [z;;] € RE*X. Each element ~,;; is then computed as

(15)
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vjk = 0(zjk), where o(-) denotes the sigmoid function. This ensures that all
down-weighting factors 7, lie in the range [0, 1], while allowing the model to
learn them in a fully differentiable manner.

However, since the down-weighting parameters are now learnable, the opti-
mal values for minimizing the WANE-LF loss could trivially become v, = 0,
effectively ignoring false positive penalties. To prevent I" from collapsing to zero,
we introduce a regularization term to the loss function:

N
1 .
L= Lowane-rr+ e, (16)
n=1
where z = % Zi{(j:l zjj is the average of the elements of the Z matrix, and

A > 0 is a hyperparameter that controls the strength of the regularization. By
adjusting the value of A\, we can effectively control how tolerant the model is to
larger predicted label sets. Lower values of A encourage the model to assign lower
down-weighting factors «;, thereby reducing the penalty for false positives and
promoting broader predictions. Conversely, higher values of A result in stricter
penalization, favoring more conservative and precise label sets.

In contrast to the optimization strategy proposed in the previous section, the
learnable discounting factors introduce a quadratic number of parameters with
respect to the number of classes. However, these factors are required only during
training and are not used at inference time, which ensures that the inference
complexity remains linear.

4.5 Combining the Heads

The outputs of the two heads are combined using subjective logic. The out-
put of the multinomial head is a set of multinomial evidences, which can be
converted to subjective multinomial opinions. The output of the candidate pro-
posal head is a set of positive and negative evidences, which can be converted
to subjective binomial opinions about each class. More formally, the output of
the multinomial head can be represented as wys(b, a,u), and the output of the
candidate proposal head can be represented as the set {wp}, k € {1,..., K},
where wy, = w(by, di, ag, u). We want to combine the evidences in such a way,
that the model provides set-valued prediction only on very hard samples, where
providing a precise prediction would have high risk of being incorrect. Conve-
niently, in most evidential deep learning approaches, the loss function is designed
to assign higher uncertainty masses to incorrect classifications. This is achieved
by decreasing the Kullback-Leibler (KL) divergence between the incorrect pre-
dictions and the uniform distribution [2I]. Hence, the uncertainty value of the
multinomial head is a good measure to assess the complexity of the sample. It
then follows that to reduce the classification error, we want to make set-valued
predictions when the uncertainty mass is high. To achieve this, we will move
some of the uncertainty mass from the multinomial head as a belief mass to the
candidate proposal head.
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First, let us recall that in the candidate proposal head, we have belief, dis-
belief and uncertainty masses for each of the classes, but not for the selected
candidate set. To obtain these masses for the candidate set, we will make use of
the binomial co-multiplication operation from subjective logic.

Definition 1 (Subjective Binomial Co-multiplication [14]). Let X = {z,z}
andY = {y,y} be two domains. Let wy = w(by, dy, Gz, Uz) and wy = w(by, dy, ay, uy)
be two independent subjective binomial opinions on x and y respectively. The bi-
nomial co-multiplication w; U w, provides the subjective binomial opinion on
disjunction x vV y = {(zy), (27), (Ty)} and is defined as:

bavy = be + by — buby,
ay(l—ay)dzuy+(l—ag)ayuzd
) da:\/y = da:dq/ + = ya;ﬁ»al,lyfawa: Y= y7
Wrvy - AydpUytaztgd (17>
U = u,u, + 2 y y
xVy x Yy aztay—agay °’

Azvy = Og + Gy — AzQy.

Since our candidate proposal head is designed similar to multi-label classifica-
tion, we can follow the binary relevance approach [28] of assuming independence
between the candidates, and apply the binomial co-multiplication operation to
obtain the subjective binomial opinion on the candidate set. To achieve this,
first we form the candidate set by selecting all the classes where the belief mass
is greater than the disbelief mass: C = {i|b; > d;}. Then we apply the binomial
co-multiplication operation to obtain the joint belief mass be with:

be=1-]]Q-0b:). (18)
iec

The proof of Equation [18| can be found in the our GitHub repository. To simplify
the computations we will join the disbelief mass and the uncertainty mass into
a single uncertainty mass, which can be obtained with: u¢ = 1 — be, due to
the additivity property of belief masses. Having the subjective binomial opinion
on the candidate set, we can now combine it with the subjective multinomial
opinion from the multinomial head. To do that, we need to scale the belief
and uncertainty masses of the candidate to fit into the uncertainty mass of the
multinomial opinion. The scaled belief and uncertainty masses of the candidate
set can be obtained with:

c=bec-un  up =uc-um  ac =Y a, (19)
ieC
where wu); is the uncertainty mass from the multinomial opinion. Finally, the
combined hyper-opinion wgy (by,ay,uy) can be formed, where:

by = {bai,bumz, - buk,be}, am = {ami,ame, ..., amk,act, ug =ug.
(20)
During the decision making stage, a singleton class can be selected if the belief
bas; is greater than the other belief masses, and the proposed candidate set can
be selected if the belief b}, is greater than the other belief masses.
All operations described here have worst case O(k) time complexity, which
means our approach scales linearly with the number of classes.
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Fig. 2. Inference time (log-log scale) on 10,000 samples for varying class counts. DS is
only reported for 10 and 20 classes due to scalability issues. EM-SEC is 2-23x faster
than SVP and DS. Multiclass evidential runtime is shown for reference, but not as a
baseline, since t does not perform set-valued classification.

5 Experiments

We conduct extensive experiments to evaluate the performance of our proposed
method. As baselines, we use the evidential classifier by [24], referred to as DS
(Dempster-Shafer-based Classifier), and the efficient set-valued classifier SVP
by [19]. We denote with EM-SEC the model with WANE loss (Eq.[8), while EM-
SEC-LF is the model with WANE-LF loss (Eq. . These baselines demonstrate
that EM-SEC(-LF) is both faster than other evidential set-valued classifiers and
competitive with the highly efficient SVP.

For evaluation, we use CIFAR-10 and CIFAR-100 [I7] due to their widespread
use in image classification benchmarks. Since the original DS implementation was
in TensorFlow, we adapted it to PyTorch for compatibility. The SVP implemen-
tation was in C++, which posed an unfair advantage. To ensure a fair compar-
ison, we used a Large Language Model (ChatGPT 03-mini-high) to translate it
into Python and verified that key components fully utilized PyTorch vectorized
operations. We used ResNet-18 [12] architecture as encoders for all baselines.

Scalability Analysis First, we will try to understand how the proposed ap-
proach scales to classification tasks with higher number of classes. To have a
controlled experimental setting, we will take random 32 x 32 images, and try
to classify them into 10 - 500,000 classes, and log the inference time for 10000
samples. For the DS approach, the extended utility matrix did not fit in GPU
memory for K > 20. Hence, we will not provide the results for DS for classes
higher than 20. As we can see in Figure |2}, the proposed EM-SE(ﬂ ap-
proach is consistently faster (from 2 up to 23 times) than the other
baseline set-valued classifiers. Specifically, for 500,000 classes the in-
ference takes around 4 seconds for EM-SEC and 97 seconds for SVP.

4 EM-SEC and EM-SEC-LF have identical inference times due to shared architecture.
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Fig. 3. Uncertainties of the multinomial head (left) and after fusing with candidate
proposal head (right) on CIFAR-100 dataset. The AUC score of misclassification de-
tection based on uncertainties is also provided. The average set size is 1.69. In the
multinomial head incorrectly classified samples have very high uncertainty and cor-
rectly classified ones have low uncertainty. After fusing with candidate proposal head,
most of the incorrect classification uncertainty mass is moved to correct classification.

Uncertainty Analysis Here, we empirically motivate our approach by analyz-
ing uncertainties before and after EM-SEC set-valued classification. As shown
in Figure [3] in standard evidential multiclass classification (multinomial head),
incorrectly classified samples exhibit high uncertainty, with an area-under-the-
curve (AUC) value of 0.86. With EM-SEC, we identify these high-uncertainty
points and instead predict multiple possible labels. As illustrated in Figure [3]
EM-SEC redistributes most of the uncertainty mass from misclassified samples
to correctly classified points with low uncertainty. We also observe a secondary
spike in uncertainty after fusion, which can serve as a reject option, enabling the
model to further reduce incorrect classifications. Notably, with a misclassifi-
cation detection AUC score of 0.98, our approach effectively eliminates
the risk of incorrect predictions on this dataset while maintaining an
average of just 1.69 predictions per set.

Aleatoric vs Epistemic Uncertainty
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Fig. 4. Aleatoric vs Epistemic uncertainties of multinominal head on CIFAR-100
dataset. The disentanglement is performed following the formulas from [25].
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Fig. 5. F Utility for various beta values. EM-SEC represents the the model with
WANE loss (Eq. [8), while EM-SEC-LF is the model with WANE-LF loss (Eq. [15).

Another important consideration is the type of uncertainty used to deter-
mine when to provide set-valued decisions. In the uncertainty quantification
(UQ) literature, two main types of uncertainty are typically defined: epistemic
and aleatoric [I6]. Epistemic uncertainty arises from a lack of knowledge in
the model, whereas aleatoric uncertainty reflects inherent noise in the data. In
subjective logic, the uncertainty mass is more closely related to epistemic un-
certainty. Compared to the baseline methods, EM-SEC efficiently es-
timates the epistemic, and if needed aleatoric uncertainties. Ideally,
set-valued predictions are suited for high aleatoric uncertainty, while no decision
shall be made under high epistemic uncertainty. However, as shown by [20], these
two often correlate strongly. Our results in Figure [4] confirm this, so we do not
distinguish between them in our approach.

Utility-based comparison In this section, we compare model performances
using the Fz measure (Fjs(s) = iigz ). Higher g values are more tolerant to larger
set sizes, whereas lower values impose stricter penalties. A high Fjg score at low
[ values indicates accurate predictions with minimal expected set sizes. For SVP
and EM-SEC, the 8 parameter was chosen corresponding to the evaluation Fg-
score. For DS method, the v parameter was chosen as 0.9, since it provided the
best results in the paper. Finally, for EM-SEC-LF the A parameter was tuned for
each Fg measure (See the supplementary material in GitHub for more details).

As shown in Figure [5] on the CIFAR-10 dataset, EM-SEC achieves utility
values comparable to the DS method for 8 = 1, but the performance worsens
with higher values of 5. This suggests that EM-SEC provides better predictions
with lower set-size budget. In contrast, EM-SEC-LF, which incorporates learn-
able down-weighting factors, reaches performance on par with SVP, indicating
its effectiveness in adapting to class-specific uncertainties. On the more challeng-
ing CIFAR-100 dataset, EM-SEC underperforms for lower 8 values but shows
improved results as [ increases, gradually approaching the performance of SVP.
EM-SEC-LF significantly narrows the performance gap with SVP across all
values, with a similar upward trend as [ increases. We were unable to evaluate
the DS on CIFAR-100 due to to out-of-memory issues.
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6 Conclusion

In this paper, we introduced the efficient evidential set-valued classification ap-
proach, EM-SEC, that leverages subjective logic and evidential deep learning
to quantify prediction uncertainty and generate set-valued outputs when uncer-
tainty is high. Our experiments demonstrate that EM-SEC scales efficiently to
datasets with a large number of classes in terms of inference time and provides
reliable uncertainty estimates that can filter out unreliable predictions.

Given the promising performance of EM-SEC in the unimodal case, we aim
to extend it to a multimodal setting, where conflicting information across modal-
ities introduces additional uncertainty and increased computational complexity.
While [2] address modality conflict by reallocating conflict mass to uncertainty
through evidential fusion, we propose an alternative approach: redirecting the
conflict mass toward composite classes. We also plan to evaluate the effective-
ness of this strategy using multimodal extensions of CIFAR, such as the LUMA
dataset [3].
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