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Abstract. Temporal graph learning has applications in recommenda-
tion systems, traffic forecasting, and social network analysis. Although
multiple architectures have been introduced, progress in positional en-
coding for temporal graphs remains limited. Extending static Laplacian
eigenvector approaches to temporal graphs through the supra-Laplacian
has shown promise, but also poses key challenges: high eigendecomposi-
tion costs, limited theoretical understanding, and ambiguity about when
and how to apply these encodings. In this paper, we address these issues
by (1) offering a theoretical framework that connects supra-Laplacian
encodings to per-time-slice encodings, highlighting the benefits of lever-
aging additional temporal connectivity, (2) introducing novel methods to
reduce the computational overhead, achieving up to 56x faster runtimes
while scaling to graphs with 50,000 active nodes, and (3) conducting
an extensive experimental study to identify which models, tasks, and
datasets benefit most from these encodings. Our findings reveal that
while positional encodings can significantly boost performance in cer-
tain scenarios, their effectiveness varies across different models. The sup-
plementary materials and code are available at https://github.com/
YanivDorGalron/SLPE.
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1 Introduction

Temporal Graph Neural Networks (TGNNs) have emerged as a state-of-the-art
paradigm for learning on dynamic graphs [29/T73834I3013I36/TT]. By simulta-
neously capturing evolving temporal dynamics and underlying graph structure,
TGNNs have achieved remarkable performance across applications like tempo-
ral link prediction [27U7/45], node classification [35], edge classification [24] or
temporal clustering [22].

Positional Encoding (PE) techniques, fundamental to the success of Trans-
former architectures [37/T0/4], enhance representational capacity by embedding
crucial positional information within sequential and temporal data. In static
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graph contexts, positional encodings — particularly the Laplacian Positional En-
coding (LPE) [2l5] derived from the spectral decomposition of the graph Lapla-
cian — have demonstrated significant benefits in injecting structural information
and in consistently elevating overall performance across node classification, link
prediction and other graph learning tasks [6/5120].

Despite their potential benefits, positional encodings for temporal graphs re-
main largely underexplored. A recent advancement has been the adaptation of
LPEs for TGNNs through the novel application of supra-Laplacian eigenvectors
[14]. The supra-Laplacian [I8/43J2TJ9I33] extends traditional graph Laplacian
frameworks by incorporating temporal connectivity between time steps, thereby
elegantly capturing both intra-layer structural and inter-layer temporal dynam-
ics. This approach enriches positional encodings with temporal information and
has empirically demonstrated improved downstream performance.

However, the adoption of supra-Laplacian based PEs (SLPEs) presents sev-
eral substantial challenges that warrant a thorough study. First, the theoretical
underpinnings and properties of these novel encodings—and their specific rele-
vance to temporal graph learning—remain insufficiently characterized, hamper-
ing our understanding of their effectiveness. Second, computing the eigendecom-
position of the supra-Laplacian introduces considerable computational overhead
due to the increased dimensionality from temporal connections. Third, while ini-
tial research [14] demonstrated promising results with specific transformer-based
TGNN architecture and datasets, the generalizability of SLPEs across diverse
architectural frameworks and learning tasks remains an open question.

Main Contributions. This paper systematically addresses the three aforemen-
tioned gaps to advance both the theoretical and practical understanding of
Laplacian-based PEs for TGNNs:

1. We develop a theoretical analysis of supra-Laplacian PEs (SLPEs) as com-
pared to single-layer Laplacian PEs (LPEs), and discuss the increased ex-
pressive power given by the supra-graph representation.

2. We introduce a computationally efficient framework for calculating SLPEs
through approximate eigenvector computation, shown in Figure [I]

3. We present extensive empirical evaluations across multiple Laplacian-based
PEs, feature initializations, and architectural paradigms (message-passing-
and transformer-based TGNNs), culminating in actionable practical guide-
lines.

2 Related Work

We now provide an overview of relevant topics to our work, namely TGNNs and
the use of Laplacian Positional Encodings in graph learning.

Temporal Graph Neural Networks. TGNNs operate on both Continuous-Time
Dynamic Graphs (CTDGs) [29IT1734] and Discrete-Time Dynamic Graphs
(DTDGS) [32/41], with efforts to bridge the two domains [34/12]. For DTDGs,
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Fig.1: An overview of our proposed fast SLPEs computation procedure. The
SLPEs are generated via iterative solvers applied on the supra-Laplacian. Those
start with random initialization and apply iterative refinement toward smooth
PEs that act as the node representations.

early methods like EGCN [25] use a Recurrent Neural Networks approach to
apply a Graph Convolutional Network (GCN) over time. HTGN [42] leverages
hyperbolic geometry to model complex, hierarchical structures in evolving net-
works. For CTDGs, pioneering methods like DyRep [36] and JODIE [17] process
timestamped edge streams, while TGAT [40] focuses on inductive representation
learning. Temporal Graph Networks (TGNs) [29] generalize these approaches,
encompassing DyRep, JODIE, and TGAT as special cases. In the context of
PEs, [34] incorporated relative PEs into CTDGs by counting node appearances
on temporal walks and [39] constructed PEs for CTDGs by leveraging the Pois-
son point process to efficiently estimate personalized interaction intensity.

Laplacian-Based Positional Encodings. Graph Laplacian eigenvectors [2] have
gained widespread adoption as effective graph embedding tools. In static graph
neural networks, these embeddings encode crucial structural information that
demonstrably enhances GNN expressive power [52823]. The recent work in [6]
revealed that approximate eigenvectors—as well as their computation trajecto-
ries—can match or surpass the performance of exact eigenvectors. Meanwhile,
[20] developed novel neural architectures invariant to inherent eigenvector sym-
metries, specifically sign flips and more general basis transformations. Impor-
tant theoretical challenges were addressed by [I3], which investigated the non-
uniqueness and instability issues where minor perturbations to the Laplacian
can produce substantially different eigenspaces. Building on these advances, [14]
recently extended Laplacian PEs to the temporal graphs for TGNNs, by incor-
porating the supra-Laplacian into an innovative transformer-based architecture.
A theoretical analysis of the supra-Laplacian for applications to graph learning
is, however, still missing, as well as their practical effectiveness on other known
message-passing-based TGNNs.
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3 Supra-Laplacian PEs in Temporal Graphs

In this section, we first introduce the notation used in the paper, and then define
the supra-Laplacian and SLPEs that were proposed in the recent work [I4] to
extend Graph Transformers to DTDGs. We consider SLPEs for MPNNs as well.

Notations and Definitions. We follow the setup of [15] where temporal graphs
are represented as a sequence of snapshots G = {Gy,...,Gr}. Each snapshot
Gy = (W, &) contains nodes V; and edges & at time step t. Nodes v; € V;
possess feature vectors h,, € R% while edges (us,v;) € & may have associated
features w, € R%. Collectively, input node features are denoted as H, € RIV¢Ixd,
In addition, we denote by P; € RIV¢[x¢ the PEs at time ¢. As is standard [5/6],
the PEs are combined with input node features to form an initial representation
H, = [H,||P,] € RV*[x(@+¢) where || denotes channel-wise concatenation.

Supra-Laplacian and -Adjacency. The supra-Laplacian [I843I2T9I33] leverages
the multi-layer structure of temporal graphs by constructing a block matrix rep-
resentation of the graph sequence. For a temporal graph G, the supra-Laplacian
matrix Lgypra € RTIVIXTIV] ig defined as:

Lsupra = Dsupra - Asupraa (1)

where Agypra is the supra-adjacency matrix, Dgypra is the corresponding degree
matrix, and |V| = max;=1, 7 |V|. The supra-adjacency matrix is constructed
by placing the adjacency matrices A; of each snapshot G; along the diagonal
and adding inter-layer edges to model temporal dependencies, defined as:

A; By --- Bir
B Ay - Bor
T (2)

Asupra = : : ) :
Br1 Bra -+ Ar

where A; € RIVIXIVI is the adjacency matrix of snapshot Gy, and B;; € RIVIXIVI
represents the inter-layer edges modeling temporal dependencies between snap-
shots G; and G;. Here, we set B;; to be the identity matrix I when |i — j| =1,
i.e., the snapshots are connected to their immediate previous and next layers.
This choice restricts interactions to the same node across adjacent time steps.
We note that it limits the model’s ability to capture complex temporal patterns—
such as seasonal cycles or delayed cross-node effects (e.g., a traffic jam at one
node influencing another later). Future work could explore richer B;; matrices

to better model such dynamics.
To work with evolving graphs, one can use a subset of the most recent snap-

shots of G where the window size represents the number of consecutive time
steps or graph snapshots. For simplicity, we consider the window to be of size T
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Fig.2: Examples of adjacency matrices. Left: an adjacency matrix of a single
snapshot with a global node connected only to the active nodes. Middle: the
Supra-Adjacency matrix of shape [V|T x|V|T (middle). Right: the reduced Supra-
Adjacency that contains only active nodes per snapshot.

Supra-Laplacian PEs (SLPEs). These PEs were firstly introduced in [I4] where,
for a node v at time t, they are derived from the eigenvectors of Lgypra corre-
sponding to the smallest eigenvalues. Let X € RTIVIX¥ be the matrix of eigen-
vectors corresponding to the k smallest eigenvalues of Lgypra. The SLPEs Py (v)
for node v at time t is given by:

P(v) = X(t—1)[V|4v,k5 (3)

where X(;_1)|y|4v,:x extracts the k-dimensional embedding corresponding to
node v at time t. This encoding captures both the structural and temporal prop-
erties of the graph by leveraging the spectral properties of the supra-Laplacian.
Furthermore, alongside these eigenvectors, the corresponding smallest eigenval-
ues of Lgypra can also be concatenated to add further spectral information about
the dynamic graph.

To enhance SLPEs, the work in [I4] proposed two key modifications: (1)
Global Node Integration: Each layer is augmented with a global node connected
to all active nodes within that layer to better capture layer-wide activity and
context (these nodes are considered part of |V|); (2) Isolated Node Removal:
Unconnected nodes are removed from the supra-adjacency matrix to eliminate
the noise possibly introduced by considering uninformative eigenvectors.

4 Theoretical Understanding of Supra-Laplacian PEs

In this section, we enhance the theoretical understanding of SLPEs. First, we
show how SLPEs inherently balance intra-layer structure preservation with inter-
layer consistency through their smoothness. Second, we analyze the expressive-
ness advantages of the supra-adjacency matrix over layer-wise methods.
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Fig. 3: Comparison of eigenvector smoothness in multilayer single path graphs.
Left: Eigenvectors computed independently per layer, showing inconsistent sign
assignments. Right: Eigenvector computed via the supra-Laplacian yield tempo-
rally smooth transitions. Graphs are single-path chains over time, highlighting
the benefits of temporal regularization introduced by inter-layer edges.

4.1 Time and Space Smoothness with SLPEs

We now show that computing the d lowest supra-Laplacian eigenvectors is equiv-
alent to minimizing an objective function that balances the preservation of layer-
specific structure while promoting smooth transitions across layers via a penalty
term. The proof of the proposition below appears in Appendix

Proposition 1. (Supra-Laplacian PEs Smoothness). Let G = {G1,Ga,...,Gr}
be a multilayer graph with T layers, where each layer Gy is represented by its
adjacency matrix Ay, the degree matriz Dy, and the Laplacian matriz Ly. In
addition, 1 > 0 is a parameter that controls the weight of inter-layer connections.
Then the eigenvectors of the supra-Laplacian matriz associated with G are the
vectors X1 € RIVIXK that minimize the following objective function:

T T
2
o (x0T Lx0) S xo
t=1 t=2

subject to XTX =1, where X is the concatenation of all matrices X and ||||
1s the Frobenius norm.

The minimization in Equation shows that by using the supra-Laplacian
eigenvectors, we achieve a balance between two key terms:

1. Intra-layer smoothness: The local connectivity structure of each layer Gy
is preserved through the Laplacian quadratic form: tr (X(t)TLtX(t)). Mini-
mizing it makes the eigenvectors smooth according to the Laplacian L.

. 2 .
2. Inter-layer consistency: The penalty terms p HX(t) — X1 ||F, in contrast,
enforces smooth transitions between eigenvectors of adjacent layers.

The inter-layer consistency promoted by the smoothness term not only ensures
the smoothness of inter-layer transitions but also encourages consistent sign as-
signments for eigenvectors, as can be seen in Figure [3] This is in contrast to
independently computed eigenvectors for each layer, where consecutive eigen-
decompositions can lead to sign differences in each realization.
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4.2 The Expressiveness Benefits of Using the Supra-Adjacency

Here, we shed light on the usefulness of considering the (multi-layer) supra-
adjacency matrix rather than a single layer-wise approach. A key tool in our
analysis is the Supra-Weisfeiler-Lehman (Supra-WL) test, which we define to
extend the classical WL isomorphism test to snapshot-based temporal graphs
represented as supra-graphs. Supra-WL operates by iteratively refining node
colors in the supra-graph: (i) it starts by assigning a constant color ¢ to each
node in the supra-graph G(7), or one which uniquely encodes node features, if
available; (ii) it refines these colors by injectively hashing the current color, the
colors of its temporal neighbors, as well as the multiset of colors of its spatial
neighbors within the same layer G(t):

i =HAsH (€, ¢y Ol A(CY, v l(uv 1) € GOY)  (5)

v
where, for t = 0 and ¢ = 7 we have Cl(}l}_l = 1(2-4-1 = ¢. The test is applied
in parallel to two temporal graphs; it terminates when the multisets of node
colors for the two supra-graphs diverge, indicating non-isomorphism. If the colors
stabilize without divergence, the test is inconclusive.

To understand the importance of the information contained in the supra-
adjacency, we compare the Supra-WL to Layer-WL, a simple extension of WL
to snapshot-based temporal graphs. Layer-WL runs 1-WL color refinement steps
independently on each graph snapshot G(t), comparing the overall multisets
of node colors thereon. We now present a critical distinction between the two
algorithms, shedding light on the enhanced capabilities of the Supra-WL test
and, by extension, models considering supra-adjacency information.

Proposition 2. (Supra-WL C Layer-WL). Supra-WL is strictly more powerful
than Layer-WL in distinguishing non-isomorphic DTDG .

The proof of this proposition is deferred to Appendix[C.2} and involves exhibiting
a pair on non-isomorphic DTDGs that are distinguished by Supra-WL but not
by Layer-WL, reported in Fig 4 This example emphasizes how treating layers
as interconnected rather than independent is essential for capturing structural
differences in temporal or multi-layer graphs that would otherwise go unnoticed.

5 Efficient Computation of Supra-Laplacian PEs

Focusing on enhancing the efficiency of eigendecompositions for the scalable
computation of (S)LPEs, we propose and evaluate several strategies centered
around iterative eigendecomposition and trajectory-based analysis. The overview
of the proposed procedure is illustrated in Fig[I]

First, we propose exploring the use of the Lanczos method [19], an itera-
tive algorithm designed for large, sparse, symmetric matrices like graph Lapla-
cians. It constructs a Krylov subspace and diagonalizes a smaller tridiagonal
matrix, achieving exact solutions with sufficient iterations. Second, questioning
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Fig.4: Left: The Supra-WL test distinguishes two non-isomorphic temporal
graphs by leveraging inter-layer edges, shown as vertical connections between
time steps. Right: Layer-WL fails to distinguish the graphs as it considers only
intra-layer structures.

the necessity of exact eigendecomposition, we propose to utilize solutions derived
from the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG)
method [I6]. LOBPCG is another iterative algorithm specifically engineered to
efficiently compute a limited number of extreme eigenvalues and eigenvectors.
LOBPCG offers memory efficiency, particularly when only a subset of eigenvec-
tors is required.

Furthermore, to leverage the information computed during iterative eigende-
composition solvers, we introduce a trajectory-based approach. Inspired by the
work of [6] on static graphs, we extend this technique to temporal graphs. This
approach recognizes that intermediate results from iterative solvers can be valu-
able and proposes to concatenate these intermediate results rather than solely
relying on the achieved approximated solution. To address the inherent sign am-
biguity of eigenvectors, for each eigenvector, we randomly choose a sign (41 or
-1) as was done in [5] and consistently apply this sign across all iterations of its
trajectory. Specifically, at each iteration k of the eigendecomposition algorithm,
let U®) € R™** be the matrix of eigenvectors and A*¥) be the corresponding
eigenvalues. Our trajectory-based approach constructs concatenated representa-
tions as follows: Uy = [UM, UR .. U] Ay = [AD, AR AT,
Here, K represents the total number of iterations, determined by either con-
vergence criteria or a predefined early stopping point. This concatenated form
aims to capture the evolution of eigenvectors and eigenvalues across iterations,
potentially providing a richer representation of the temporal graph dynamics.

6 Experiments

In this section, we present a detailed evaluation of Laplacian-based PE variants
for temporal graphs with various architectures. Our experiments aim to assess
the impact of these approaches on downstream performance across diverse real-
world datasets and feature configurations. In particular, our focus is on com-
paring standard graph representations, such as single snapshot-based graphs,
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with supra-graph representations, which combine multiple snapshots into a sin-
gle supra-graph. Additionally, we investigate the effects of using iterative and
approximate solvers for eigendecomposition in these models. We aim to address
the following questions:

1. Do Laplacian-based PEs enhance the performance of TGNNs, in general?
2. Which Laplacian-based PE scheme is best suited for TGNNs?

3. How do node features impact the performance of the Laplacian-based PEs?
4. What are the computational benefits of approzimate Laplacian-based PEs?

Full details on experiments and additional results are provided in Appendix

6.1 Experimental Setup

We evaluate four temporal graph models: EGCN [25], GRUGCN [31], HTGN [42],
and SLATE [14]. Further details about these models are provided in Appendix
In our implementation of SLATE, we separated the SLPE component from the
architecture, which allowed us to investigate various alternative PEs. Addition-
ally, we performed a detailed time analysis comparing the full eigendecomposi-
tion, the Lanczos method (which we ran until convergence), and the LOBPCG
method for computing the first 8 eigenvectors on both synthetic and real-world
datasets. An overview of the proposed procedure is illustrated in Figure

Node features. We process the datasets under various feature configurations. We
start with one-hot encodings, a widely used approach in the literature [25/15],
that assigns a unique identifier to each node in the observed snapshot. How-
ever, we argue that this method may not be realistic for dynamic graphs where
the number of nodes can grow unpredictably over time. Additionally, one-hot
encodings may be suboptimal in the presence of nodes with few interactions,
as the parameters associated with such nodes could remain undertrained and
lead to poorer generalization performance. Accordingly, we explore two addi-
tional feature encodings and their interplay with PEs. First, we experiment with
uninformative, constant (zero) features, simulating the absence of node-specific
information. Second, we study the impact of random node features. Although
lacking any temporal and structural inductive bias, random features can, in
principle, allow the model to identify nodes throughout its computations [IJ.

Laplacian-based PE variants. As a baseline, we report results without PEs (No
PEs). In other cases, we compare several variants involving different PEs: SLPE
and LPE, and different types of approximation: Exact eigenvalue computation
(E), Inexact computation (I), and using the computation trajectory (T), as
explained in Section [5} We use the widely adopted Lanczos method for (E),
appropriately run until convergence. LOBPCG is employed for (I). As for (T),
we employ the full intermediate trajectory generated by the latter. We note that
the modification to the graph mentioned in Section [3| and illustrated in Figure
are also done to the standard Laplacian prior to PE computation.
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Table 1: AUC performances of models across datasets and configurations for
one-hot features. The top three models are highlighted by First, Second, Third.

Dataset Variant ~EGCN GRUGCN HTGN SLATE

CanParl No PEs 85.56+0.27 67.10+1.54 87.59+0.69 56.22+1.31
SLPE-E 83.53+1.59 72.92+1.90 89.4740.29 59.3210.63
LPE-E 85.41+1.44 74.92+0.74 89.62+0.16 59.99+£1.07
SLPE-I 83.45+1.59 72.71+1.41 89.26+0.55 57.424+0.97
LPE-I  84.184+1.06 71.53+0.73 89.61+0.19 56.96+0.69
SLPE-T 82.46+1.12 65.544+1.81 88.90+0.77 58.71+1.44
LPE-T 81.724+0.89 67.11+1.79 88.98£0.31 55.04+1.28

as733  No PEs 92.474+0.04 94.96+0.35 98.75+0.03 99.85+0.01
SLPE-E 93.54+0.87 95.46+1.59 98.2840.33 99.8140.02
LPE-E  94.0040.88 96.934+0.13 98.10+0.19 99.84+0.01
SLPE-I 93.99+1.37 95.074+0.69 97.814+0.21 99.8440.01
LPE-I  93.524+0.65 96.13+1.11 97.61+0.34 99.80+0.01
SLPE-T 93.1940.89 96.75+0.11 91.62+0.75 99.8140.02
LPE-T 92.034+0.20 96.791+0.40 86.92+1.43 99.81+0.01

dblp No PEs 83.8840.53 84.60+0.92 89.26+0.17 89.43£0.42
SLPE-E 87.1040.23 86.93+0.96 88.67+0.55 89.68+0.56
LPE-E 82.574+0.60 86.89+0.70 88.74+0.15 89.25+0.28
SLPE-I 86.66+0.34 86.931+0.46 88.774+0.12 89.384+0.42
LPE-I  83.9040.48 87.04+0.98 88.52+0.36 89.40£0.19
SLPE-T 85.57+0.38 86.2940.78 88.59+0.31 89.51+0.30
LPE-T 80.671+0.60 86.70+0.62 88.08+0.37 89.46+0.34

enronl0 No PEs 90.12+0.69 92.47+0.36 94.17£0.17 95.664-0.45
SLPE-E 91.544+0.69 93.514+0.27 94.4910.08 95.6040.27
LPE-E  90.484+0.64 93.34+0.83 94.37+0.24 95.49+0.33
SLPE-I 91.40+0.75 93.63+0.13 94.451+0.54 95.4940.31
LPE-I  89.8940.31 93.45+0.48 94.37+0.20 95.49+0.16
SLPE-T 89.89+1.27 92.62+1.01 92.9940.52 95.4140.30
LPE-T 88.13£0.97 92.90+0.59 93.36£0.30 95.43+0.16

Datasets, task, and performance metric. The mentioned models are tested on the
real-world datasets: CanParl, as733, dblp, and enronl0 [44/42]. Each represents
dynamic graphs derived from snapshot-based observations (see Appendix |A| for
more details). The task is (dynamic) link prediction in all cases. Performance
is measured using the Area Under the Curve (AUC) metric, reported as the
mean and standard deviation over five runs. The top three performing configu-
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Fig.5: Time (ms) performance comparison of Full Eigendecomposition, Lanczos,
and LOBPCG methods on a real-world dataset presented by a Supra-Graph
(left) and a single-layer-graph (right).

rations for each model-dataset pair are highlighted as First, Second, and Third,
respectively, based on the mean test AUC score.

6.2 Results and Discussion

In this section we will presents the performance evaluation of various TGNN ar-
chitectures across different datasets and PE schemes, focusing on the impact of
Laplacian-based PEs and node feature configurations. We compare the effective-
ness of one-hot, constant-zero, and random node features, with detailed results
reported in Table[I] and additional results in Table [3] and Table [] in Appendix
[D2] Additionally, summarized performance metrics and comparisons across ar-
chitectures and PE variants are provided in Table[2land Table[3] We now address
key questions regarding the efficacy of Laplacian-based PEs, the best-suited PE
variants, the role of node features, and the computational efficiency.

Laplacian-based PEs & TGNNs (Q1). From Table[1] Table [3]and Table[d] we ob-
serve that in = 70.8% of the overall number of cases, using Laplacian-based PEs
led to the top-scoring results (First), and that in =~ 64.5% of the experiments,
all the top-three ranking models employ Laplacian-based PEs. Quantitatively,
Tablef]in Appendix [D.2]reports statistics on the absolute performance improve-
ments induced by Laplacian-based PEs for each architecture. In all cases, except
for HTGN, we observe positive median performance improvements, with the
largest impact attained on SLATE (16.63%) and EGCN (8.20%). Importantly,
we also observe how PEs are most useful when employing constant-zero node
features, where they scored First in 13/16 cases, as shown in Table [3| As for the
other feature configurations, they ranked First in 11/16 cases (one-hot) and 8/16
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Table 2: Average AUC (%) performance  Table 3: Average AUC (%)
per feature and model when Laplacian-based  performances across Laplacian-
PFEs are used along with the difference be- based PEs and feature inits.
tween the max and min performance of dif-
ferent features for each model (A).

Variant one-hot random constant

No PEs 87.63 78.00 68.75

one-hot 87.87  86.75  91.73 85.66 88.00 LPE-I 8821 80.96 85.0
random 81.72 80.89 88.59 77.63 8221 LPE-T 8645 7879 84.16

constant 87.16  84.74  89.48 80.55 85.48 SLPE-E 88.74 83.57 86.83
SLPE-I 88.52 85.14 87.23
A 6.15 5.86 314 803 579 oo gra7 8133 8394

cases (random). From Table |§| in Appendix we note, more specifically, pos-
itive median AUC improvements are more pronounced in the case of constant
features, where even HTGN seems to generally benefit from PEs. Quantitative
improvements are also recorded, on average, for EGCN and GRUGCN across
all feature variants, as well as SLATE when not using one-hot features. We con-
clude that Laplacian-based PEs are generally useful in improving generalization
performance, and they are more consistent when the model is not provided with
node-identifying information.

Best Suited Laplacian-based PE variant for TGNNs (Q2). First, we compare
SLPE variants to LPE variants. We found SLPE to perform better in 64.6% of
considered cases, with an aggregated average improvement of 1.09% across mod-
els and datasets, as shown in Table @] The improvement is more consistent, in
particular in EGCN and SLATE, where the average absolute improvements are,
resp., 3.91% and 0.66%. Notably, GRUGCN shows a small preference toward
LPEs with an average performance difference of 0.30%. Next, we compare Exact
variants with their Inexact counterparts. Overall, the former ones outperform the
latter in 62.5% of cases, but the improvement is less pronounced in this case. As
can be observed in Table [} the distribution of performance differences is more
dispersed, with median values close to zero in the case of HTGN and SLATE and
only slightly in favor of Exact variants for EGCN and GRUGCN. These find-
ings indicate that the faster Inexact variants have strong potential to be used
in the development of more efficient processing pipelines. Finally, we compare
variants overall, commenting on aggregated per-variant average performances
as reported in Table [5] Across settings, SLPE-I leads with an average AUC of
86.96%, followed by SLPE-E with 86.38%, further confirming the suitability of
approximate, iterative eigensolvers. Additional results separating different mod-
els, variants. and features can be seen in Table [f]

Impact of features when coupled with Laplacian-based PEs (Q3). Refer to Table
for detailed per-model averages. When PEs are used, one-hot features outperform
others with an aggregated average AUC of 88.00%. They excel across models
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Table 4: AUC (%) Average and median perfor- Table 5: Average AUC (%)
mance differences between E and I variants per per variant across all mod-
model and between SLPE and LPE variants. els, datasets and features.
Model E-1I SLPE - LPE Variant Average AUC
Diffs Avg Med [Q1, Q3] Avg Med [Q1, Q3] SLPE-I 86.96

SLPE-E 86.38

EGCN 0.36 0.17 [-0.68, 0.57] 3.91 2.27 [0.70, 4.86]

[_
GRUGCN 125 0.15 [0.11, 1.43] -0.30 -0.01 [-116, 069 D" SZ%
HTGN  0.003002 [0.08, 0.43] 008 0.04 [0.21,028] ¢ il = 5572
SLATE  0.21 008 [-0.32, 0.36] 066 046 [0.02,3.77) 0Pl 859
Mean Diff 0.46 0.04 1.09 0.69 No PEs 78.13

1054 | —®— Full Decomposition
—e— LOBPCG
Lanczos Method

500 2,500 11,000 50,000
Active Nodes

Fig.6: Comparison of runtime (ms, log scale) for computing the first 8 eigen-
vectors of Barabasi—Albert graphs using Full Eigendecomposition, Lanczos, and
LOBPCG. LOBPCG and Lanczos scale substantially better than Full Decom-
position, with LOBPCG exhibiting the most consistent performance across in-
creasing numbers of active nodes.

(e.g., 91.73% for HTGN) and rank as the top performers in 18-23 cases per
model. We argue that while one-hot encodings yield higher-performing models,
those may be less practical for real-world scenarios where the number of nodes is
unknown. Other features trail behind in both performance and frequency, with
an average AUC of 85.48% for constant (zero) features and 82.21% for random
features. A complementary angle to this discussion is offered by Table[3] where we
report the average performance across models and datasets for each PE variant
and feature choice. In agreement with our discussion in regards to Q1, we observe
that PEs are most beneficial when using constant features. In addition to this,
we note how the choice of PE variant is less impactful for one-hot features, while
it leads to more result variability in the case of constant and random features.
This effect is particularly pronounced in the latter case. In both settings, SLPEs
achieve the best performance on average.
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Computational Benefits of approximate Laplacian-based PEs (Q4). Our time
measurements, depicted in Figure [5} show that LOBPCG is the fastest method
for calculating the approximate Laplacian, consistently outperforming both Lanc-
zos and Full Eigendecomposition in in experiments on regular and Supra-graphs.
In an effort to extend our time comparisons to even larger graphs, we synthesized
random Barabési—Albert graphs with up to 50,000 active nodes, and timed the
different methods thereon — see Figure[0] for results. We observe that LOBPCG
achieves a maximum speed-up of 56 times over Lanczos, with its efficiency ad-
vantage growing significantly as the effective size of the graph increases.

Table 6: Average AUC (%) performance across datasets. The top two scores for
each model and feature combination are highlighted by First and Second.

Model Variant one-hot randn zeros Model Variant one-hot randn zeros
EGCN No PEs 88.01 81.43 50.0 HTGN No PEs 92.44 91.08 85.37
LPE-E 88.12 80.59 85.36 LPE-E  92.71 89.39 89.55
LPE-I 87.87 73.74 85.2 LPE-I 92.53 89.2 88.99
LPE-T 85.64 80.05 86.1 LPE-T 89.34 87.52 89.82
SLPE-E 88.93 83.27 88.79 SLPE-E 92.73 88.94 89.28
SLPE-I 88.88 87.62 89.55 SLPE-I 92,57 89.52 89.76
SLPE-T 87.78 85.08 87.92 SLPE-T 90.52 86.99 89.44
GRUGCN No PEs 84.78 79.68 84.14 SLATE No PEs 85.29 59.81 55.49
LPE-E 88.02 83.68 88.96 LPE-E 86.14 80.2 81.83
LPE-I 87.04 80.4 84.56 LPE-I 85.41 80.49 81.23
LPE-T 85.88 79.14 80.83 LPE-T 84.94 68.44 79.87
SLPE-E 87.2 80.64 85.4 SLPE-E 86.1 81.44 83.86
SLPE-I 87.08 81.17 86.16 SLPE-I 85.53 82.25 83.43
SLPE-T 85.3 80.31 82.54 SLPE-T 85.86 72.96 73.05

Results Summary. In summary, our experiments demonstrate that integrating
both LPEs and SLPEs into TGNNs generally enhances performance, especially
when node features provide less discriminative information. When the node set is
known in advance, one-hot features lead to the best performance, while constant
features remain a solid alternative when coupled with Laplacian-based PEs, espe-
cially SLPEs. Specifically, regarding the choice of PEs: the SLPEs variants gen-
erally outperform LPEs except in the case of HTGN. Most notably, the SLPE-I
variant emerges as a robust default, balancing high accuracy (86.96% average)
with computational efficiency. Finally, our evaluation of eigenvector solvers re-
veals that approximate methods such as LOBPCG offer significant speed-ups,
making them more suitable for large-scale graphs.
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7 Conclusions

In this paper, we have thoroughly reviewed Laplacian-based PEs within the
framework of TGNNs, providing a comprehensive understanding of their role
and limitations. Our theoretical analysis of SLPEs reveals significant insights
into their expressive power and connection to single-layer Laplacian PEs. In
addition, we have demonstrated the practical implications of various PEs, pro-
viding actionable guidelines for practitioners seeking to optimize TGNN per-
formance. Our findings highlight the benefits of incorporating Laplacian-based
PEs and their interplay with node feature initialization schemes, underscoring
how faster, approximate eigendecompositions can maintain a compelling tradeoff
between run-time and model performance. We believe this work opens up inter-
esting future research directions. These include exploring the study of further,
more efficient eigensolvers for large graphs and the use of SLPEs in CTDGs.
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