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Abstract. Instance-based models offer natural interpretability by mak-
ing decisions based on concrete examples. However, their transparency
is often hindered by the use of complex similarity measures, which are
difficult to interpret, especially in high-dimensional datasets. To address
this issue, this paper presents a meta-learning framework that enhances
the interpretability of instance-based models by replacing traditional,
complex pairwise distance functions with interpretable pairwise distance
trees. These trees are designed to prioritize simplicity and transparency
while preserving the model’s effectiveness. By offering a clear decision-
making process, the framework makes the instance selection more un-
derstandable. Also, the framework mitigates the computational burden
of instance-based models, which typically require calculating all pairwise
distances. Leveraging the generalization capabilities of pairwise distance
trees and employing sampling strategies to select representative subsets,
the method significantly reduces computational complexity. Our experi-
ments demonstrate that the proposed approach improves computational
efficiency with only a modest trade-off in accuracy while substantially
enhancing the interpretability of the learned distance measure.

Keywords: Pairwise Learning - Interpretable Distance - Meta-learning.

1 Introduction

Instance-based models, such as k-Nearest Neighbors, have long been valued for
their intuitive approach: they make predictions by comparing new instances to
stored examples from training data [1,32]. This case-based reasoning, rooted in
how humans naturally use past experiences to understand new situations, offers
inherent interpretability by relying on concrete examples [31]. Instance-based
models rely on pairwise comparison: each new instance is evaluated against
stored examples using a distance measure. However, while the decision mech-
anism is typically transparent, e.g., majority voting over nearest neighbors,
the process by which these neighbors are determined is tied to the underlying
distance measure, which often remains opaque, especially in high-dimensional
spaces where is complex to determine the contribution of single features.
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Fig. 1: Comparison between traditional KNN using Euclidean distance, and KNN
using PDT distance, i.e., PDTF with KNN at inference time.

In contrast to traditional instance-based methods, Pairwise Difference Learn-
ing (PDL) and Pairwise Similarity Learning (PSL), have emerged as techniques
that leverage pairwise relationships by operating directly on input pairs. PDL
shifts the focus from mapping individual inputs directly to outputs toward learn-
ing (regression) functions that predict the difference between outcomes for pairs
of instances [35,38]. The core idea is to approximate the difference function,
enabling predictions for a new test instance by averaging the predicted differ-
ences relative to the outcomes of the training data. In contrast, PSL emphasizes
learning similarity functions that assign higher scores to pairs of samples from
the same class than to those from different classes [13,25|. Both methods are
particularly valuable in data-scarce scenarios, such as rare disease diagnosis or
novel phenomenon detection, where traditional data-intensive approaches may
falter. However, both frameworks have limited interpretability, as they generally
depend on complex or high-dimensional transformations.

Motivated by the need for both robust pairwise modeling and interpretable
instance-based decision-making, we introduce the Pairwise Distance Tree Frame-
work (PDTF), an interpretable meta-learning approach that enhances instance-
based models by replacing stpdtandard, opaque distance functions with a shal-
low, interpretable decision tree, namely the Pairwise Distance Tree (PDT). By op-
erating on pairwise representations of the input data, PDTF unifies the strengths
of PDL and PSL while providing a clear explanation of why two instances are
considered (dis)similar. The PDT learns a mapping from a joint representation
of instances to their corresponding distance, with its decision rules explicitly
revealing which features drive the similarity judgment. To further boost inter-
pretability, we also introduce forced split conditions, ensuring that the same
features and the same thresholds are used when comparing both elements of a
pair. In Figure 1, we compare the decision-making process of a “traditional” KNN
using Euclidean distance with that of KNN using the PDT approximated distance.
Given the same neighborhood with & = 3, Euclidean distance requires mathe-
matical calculus that hardly explain why the blue, yellow and green points are
included while the red point is excluded, especially in high-dimensional spaces. In
contrast, PDTF offers an explanation in a logical form for neighborhood selection
that users can easily understand without intricate mathematical reasoning.
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Our contribution is threefold. First, we model the distance function as an in-
terpretable decision tree, offering full visibility into the instance-based reasoning
process. Second, we integrate pairwise difference and similarity-based instance
selection within a unified framework that emphasizes transparency. Third, we
address the computational challenges inherent in pairwise methods through effi-
cient instance sampling strategies. Experiments on tabular benchmark datasets
reveal that a joint feature representation based solely on pointwise differences
yields the best performance for PDT distance approximation, while the combined
representation of pointwise differences and input features excels in the classifica-
tion tasks. Moreover, an intelligent sampling strategy, using roughly 20% of the
dataset, reduces training time without significantly compromising performance.
Also, enforcing split constraints enhances interpretability without compromising
performance by reducing the cognitive burden of interpreting rules. Since the
splits are restricted to the same feature, or both the same feature and threshold,
the resulting rules is simpler to understand.

The rest of the paper is organized as follows. In Section 2 we review related
work covering case-based reasoning and similarity learning. Section 3 describes
the details of the PDTF, including the pairwise training set preparation, tree
structure, and forced split constraints. Section 4 presents the experimental re-
sults, and Section 5 concludes with a discussion of future research directions.

2 Related Work

Case-based reasoning relies on the idea that human cognition often uses stored
examples of past experiences to interpret new situations [33]. Decisions are made
by retrieving and comparing instances from memory, an inherently interpretable
process, as users can trace decisions to concrete examples [22]. Its transparency
has driven applications in healthcare [3], financial risk [24], and image analy-
sis [18], where understanding decision rationale is as vital as the decision itself.

Building on these insights, metric learning, deep metric learning and Pairwise
Similarity Learning (PSL) methods have been developed to capture the intrin-
sic relationships between data points. Metric learning seeks to learn a proper
distance function that satisfies non-negativity and triangle inequality properties
and respects semantic simi larity by reducing intra-class distances and enlarging
inter-class distances [39]. However, in high-dimensional settings, such learned
metrics can become less interpretable as the individual contributions of features
are obscured by the complexity of the transformation. Deep metric learning ex-
tends these ideas using neural networks to learn non-linear embeddings that
have achieved state-of-the-art performance in tasks such as face recognition and
image retrieval [21,23,40]. However, despite their success, the non-linear trans-
formation involved lead to opaque learned metrics. In contrast, PSL focuses on
learning a similarity function that assigns higher scores to positive pairs than
to negative pairs, thereby dropping the requirement of learning a proper dis-
tance metric. PSL methods are categorized into proxy-based and proxy-free ap-
proaches [37]. Proxy-based methods use representative vectors (proxies) for each
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class to compute similarity, improving convergence but reducing transparency
by adding an abstraction layer. Proxy-free methods, in contrast, work directly
on data pairs or triplets, providing a more intuitive and transparent view of
the data’s structure. Nevertheless, even these approaches struggle with inter-
pretability in high-dimensional settings, where hyperparameter sensitivity (e.g.,
in triplet loss formulations) and the complexity of learned representations can
obscure the underlying feature contributions.

A fundamental contribution towards this line of research is the Pairwise Dif-
ference Learning (PDL) [35]. Rather than mapping individual inputs directly to
outputs, the PDL framework shifts the paradigm by learning a function that
predicts as a regressor the difference between outcomes for pairs of instances.
Predictions are obtained for a given test instance by pairing it with all train-
ing examples, computing the corresponding outcome differences, and averaging
these values. This meta-learning approach is applied across various fields, includ-
ing image processing 20|, drug activity ranking [36], and quantum mechanical
reaction modeling [9]. The first extension of PDL to classification is introduced
in [2] where the classification problem is reformulated as a binary task: a paired
dataset is constructed, and a binary classifier is trained on joint feature repre-
sentations to predict whether a pair of instances belongs to the same class. For
new test samples, pairwise predictions are aggregated to estimate class posterior
probabilities, harnessing the robustness and natural uncertainty quantification
of pairwise comparisons. Although relatively recent, there is emerging interest
in combining ideas from PSL and PDL. In [11], for example, the authors ad-
dress the authorship analysis problem by representing a feature vector as an
unordered pair of documents. Here, the value of a feature is computed as the
absolute difference in the relative frequencies of that feature across the two doc-
uments. Similar to the formulation in [2], the class label indicates whether the
two documents belong to the same author.

Traditional case-based reasoning and modern pairwise learning methods en-
hance predictive performance but lack transparency in their distance functions.
To address this, we unify the strengths of PSL and PDL with a focus on inter-
pretability. We reformulate the pairwise learning task as a regression problem,
mapping input pairs to distance values. This distance function is modeled with a
shallow regression tree, which approximates the original distance while providing
explicit decision rules which offer clear decision paths, improving transparency
and enabling human understanding of how distances are determined.

3 Pairwise Distance Tree Framework

We present here the Pairwise Distance Tree Framework (PDTF), an interpretable
meta-learning framework designed to improve the transparency of instance-based
models. PDTF first transforms training instances into pairs with computed dis-
tances, then trains a shallow regressor tree to approximate these distances. Fi-
nally, the learned function replaces the standard distance to guide neighbor
selection. In the following, we first formalize the problem setting and then we
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present our framework. Without loss of generality, we focus on classification
tasks, leaving the exploration of other problem domains to future work.

3.1 Problem Setting

Given a set of instances represented as real-valued m-dimensional feature vec-
tors® in R™ and a set of class labels C' = {1,...,c}, we assume the existence of
an unknown ground-truth function g : R™ — C mapping each vector in R™ to
one of the ¢ classes in C. In case-based reasoning, given a training set (X,Y’) with
X ={x1,...,2,} of n instances, Y = {y1,...,yn} denoting the corresponding
class labels with y; € C, and a pairwise distance function d : R”™ x R™ — R,
the objective is to learn an instance-based model implemented through function
f:R™ — (C, which aims to approximate the unknown ground-truth function g.
Instance-based models explicitly store a set of the training data (X,Y), referred
to as the memory, which is used during inference. These models define a selection
policy s based on d such that, at inference time, given a memory (X,Y) and a
query instance z, the selection policy is applied to identify a subset of cases

(Xs,Ys) = sq(x,(X,Y)) where X, C X and Y, CY.

This subset typically consists of the closest examples, commonly referred to as
neighbors [16,34] or pivots [4,8], which are then used to make a prediction. In
essence, the selection policy is a similarity-based mechanism that identifies a set
of k neighbors of the query instance x. Once the relevant instances are selected,
an inference policy ¢ is applied, usually a majority vote over the class labels of
the selected instances (X, Ys). Thus, the instance-based model f is defined as:

f(x) = o({ (i, 1) | (i,93) € sa(z, (X, Y))})

Common hyper-parameters of the selection policy s include a similarity thresh-
old, which determines whether an instance is selected w.r.t. the distances calcu-
lated, or a value k representing the number of most similar instances to retrieve.

Typical instance-based models include k-Nearest Neighbor (KNN) [16,34], and
more broadly, most case-based reasoners [30]. They are considered interpretable
in terms of similarity, as they rely on a set of previously observed “cases” that
serve as evidence during inference. This inherent interpretability holds as long
as the following conditions are met: (i) the inference policy ¢ uses the selected
evidence in an interpretable manner, (ii) the selection policy s transparently
identifies relevant instances from memory, and (44) the pairwise distance func-
tion d is interpretable. Regarding () and (i), most instance-based models, such
as those applying a majority vote and selecting the k most similar instances to
a query instance z, are generally considered interpretable. However, full inter-
pretability hinges on the notion of similarity itself, which depends on the distance

3 For the sake of simplicity, we consistently treat data instances as real-valued vectors.
Any transformation employed in the experiments is specified when needed.
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function d. Specifically, an instance-based model can be deemed entirely human-
interpretable only if the distance function: (a) is transparent, and (b) relies on
a limited number of features to compare instances and establish similarity. For
example, consider a classification task on a tabular dataset with m = 100 fea-
tures, where the KNN model uses the Euclidean distance as d. While the decision
process over the neighborhood of k instances is interpretable, a user may strug-
gle to fully understand why certain instances are included in the neighborhood
while others are not, due to the high dimensionality, without replicating the
mathematical calculations to compute the distance.

3.2 Pairwise Distance Tree

To overcome the aforementioned limitations, we implement the distance function
d with a shallow Pairwise Distance Tree (PDT) that allows to express the reasons
why two instances are similar or dissimilar only considering a limited number of
features and expressing the reasons for the distance in a logical form.

We opt for implementing the distance function d with a tree-based model be-
cause decision trees are interpretable predictive models [17,19] representing their
decisions through a structure composed of nodes and branches [7,34]. Indeed,
a decision tree routes instances within their structure, each node testing a split
condition on feature a w.r.t. threshold 7, e.g., 2(*) < 7, and routing instances
towards its children, all the way down to the leaf nodes. Thus, decision trees are
inherently transparent because the complete tree can be inspected, allowing a
human analyst to follow the sequence of splits. Each instance traces a path inside
the tree, effectively providing a decision rule describing the decision process of
the tree on the said instance. The complexity [28] of decision trees is typically
calculated as the total number of nodes and leaves, tree depth, and number of
attributes used. The simpler the tree, the more concise and interpretable the
decision rules [10,14, 15]. Tree induction algorithms typically implement a top-
down greedy search through the space of possible splits. CART (7], ID3 [26], and
its successor C4.5 [27] are the most famous induction strategies.

Pairwise Training Set Preparation. Given a training set (X,Y) and a
distance function d, we transform (X,Y’) into a paired dataset (Z, D) where

Z =A{zij = ((vi,x5) | v,z € X} D ={dij = d(zi,z;) | (vi,25) € Z}

where z;; is formed by using the feature vectors z; and z;. In particular, we
consider the three following alternatives to implement the transformation (:

— (a) the concatenation of the feature vectors z;; = (o (i, ;) = [, 2],

— () the pointwise difference of the feature vectors z;; = (g(z;, ;) = |x; — x|
that is a formulation shown to positively impact performance [35], and

— () the combination of o and 5, i.e., z;; = (y (24, x;) = [zi, x5, |T; — ;]

We underline that, since we want to reflect symmetry in our framework, we
add both (z;,z;) and (z;,2;) to the paired dataset. Also, in order to take into
account cases in which the distance is zero (d;; = 0), we consider in Z also cases
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in which ¢ = j, ie., (%;,2;). Thus, the maximum number of pairs in Z, i.e.,
the maximum cardinality of |Z| is n? where |X| = n. Therefore, our proposal is
named Pairwise Distance Tree, as it takes as input the domain (Z, D) formed by
pairing the original training iances and using their distance as target variable.

Also, to address the complexity associated with pair creation, we present a
set of sampling strategies to consider a subset of training instances X € X with
|X| =7 < n in order to reduce the number of pairs in Z:

— random (RS): selects uniformly at random 7 instances among those in (X, Y');

— center-based clustering (CS): executes a k-Means clustering algorithm for
each target label among those in (X,Y) by setting k = [n/c| and selects for
each cluster the closest instance to the centroid.

Pairwise Tree Structure. The Pairwise Distance Tree is implemented as
a decision tree regressor 7 that maps the joint representation z;; to an approx-
imation of the distance d(z;,z;), i.e., d(x;, ;) = r(x;,2;). The goal is to learn
a decision tree regressor r such that the prediction of r(z;,x;) closely match
the true distance d(x;,x;). This is achieved by minimizing regression loss over
all pairs. Therefore in PDT, each decision path provides a clear, step-by-step
explanation of how the model evaluates pairwise distances.

In this context the structure of the tree regressor r is crucial. By design-
ing r as a shallow decision tree, we ensure that its decision-making process is
interpretable, thereby allowing us to inspect and understand the logic adopted
to approximate the distance between a pair of instances. We underline that,
adopting a shallow regression tree, each leaf is returning as distance the average
distance among a consistent group of similar pairs that the training procedure
routed in that leaf. Thus, if a PDT has [ leaves, e.g. [ = 16 leaves, it means
that, at inference time only [ values can be returned by r(z;,z;). This behavior,
on the one hand, is a strong limitation w.r.t. the calculus of traditional distance
functions because the approximation applied by the PDT practically applies a dis-
cretization to the original pairwise distances, on the other hand, is well-aligned
with the human way of estimating the similarity between objects as we simply
say they are very different, they are different, similar or very similar.

Split Constraints. To further boost the interpretability of PDT, when the
feature selected for the best split belongs to the feature vectors (x;,z;) in the
training set preparation a and -y, we impose two forced split conditions which
we refer to as the same-feature, and the same-feature, same-threshold splits.

Under the same-feature split (PDT-F), if a parent node (which is not itself
forced) splits on a specific feature a from one element of the pair x;, i.e., xgu) <,
then, the corresponding children nodes are forced to split on the same feature a
from the other element of the pair x;, without any constraint on the threshold,

ie., o:;a) < 7/, allowing the tree only to select the threshold 7/. This constraint
ensures that both components of the pair are evaluated along the same dimen-
sion. The key point is that the decision process explicitly links the two splits
by enforcing the use of the second feature on both records. On the other hand,
the same-feature, same-threshold split (PDT-T) requires that the children nodes
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Fig.2: pairwise Distance Tree Framework (PDTF). At inference time, given a
query instance z, the model selects relevant neighbors from the memory (X,Y")
by evaluating r(x,x;) and applies an inference policy ¢, i.e., majority voting, to
produce a final prediction. Each prediction can be inspected, since the distance
function employed for neighborhood selection is fully interpretable.

not only uses the same feature a as the parent, but also applies the exact same
threshold 7, thereby creating a strict alignment between the decision paths for
both elements. Thus, if the parent node perform the split xl(a) < 7, the chil-
dren nodes are constrained to perform splits xga) < 7. This constraint further
enhances the consistency in the splits across two elements of each pair. The in-
tuition behind these forced split conditions w.r.t. the plain PDT (PDT-P) is that
interpretability is enhanced when the decision process consistently evaluates the
same features, and, in the strictest case, uses identical thresholds across both
elements of a pair. When the splits are aligned, a human reviewer can clearly
identify which features are driving the decision and understand how differences
between the records are being measured.

3.3 Pairwise Distance Tree Framework

Given a training set (X,Y) and a distance function d, the PDTF learns an
instance-based model f by adopting a PDT regressor r to approximate d. In
summary, PDTF consists of three main steps illustrated also in Figure 2:

1. Pairwise Training Set Preparation: transform the dataset (X,Y) (ora a sub-
set of it) into the paired dataset (Z, D) using the joint representation z;; and
the distance d;; of a sample pair (x;,x;), in blue in Figure 2.

2. Pairwise Distance Tree Training: train PDT regressor r by minimizing a
regression loss over all the selected pairs, thereby learning an interpretable
mapping from z;; to d;;, in green in Figure 2.
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3. Interpretable Approzimated Distance Integration: replace d in the instance-
based model f with the interpretable approximated distance function r to
select the cases to take the decision w.r.t. a query instance z, i.e., (X, Ys) =
sr(z,(X,Y)) where for a query instance z and any training sample z;, the
approximated distance is computed as r(z, z;), in purple in Figure 2.

This decoupled structure is critical because the regression training phase
leverages only a subset X C X of input pairs to learn the distance function,
while the full training set (X,Y) is retained as the input for the instance-based
model f. This design allows us to efficiently learn a robust, interpretable dis-
tance function without sacrificing the comprehensive information provided by
the complete dataset during inference. However, we signal to the reader that
the learned nature of our interpretable distance function does not theoretically
guarantee that all traditional metric properties, such as symmetry, are strictly
met. However, by including both orderings of instance pairs (x;, z;) and (z;, z;),
whether ¢ = j or ¢ # j, in the paired training set, we empirically achieve ap-
prozimated symmetry*. Thus, at inference time, the computed distance for a
query instance x and any training sample x; is robust to the ordering of inputs,
meaning that r(z, z;) ~ r(z;, x).

In addition, we underline that, compared to the PDL classifier [2], our pro-
posal is able to capture a much finer and detailed abstraction of the notion of
distance between pair of instance while simultaneously sufficiently abstracting
from the original distance function. Furthermore, due to the sampling strategies
used to construct the pairwise distance tree training set, PDTF is computationally
more efficient than the PDL classifier. Given n = |X]|, the training complexity of
PDTF, like that of PDL, is primarily determined by the calculation of the pair-
wise distance matrix, which requires O(n?) operations. Indeed, the complexity
of training the pPDT itself is O(m - nlog? n) for balanced trees. When employing
a sampling strategy, the complexity of PDTF depends on the sampling strategy
and on the reduced dataset size n, where 1 < n, further improving compu-
tational efficiency. In particular, when using random sampling strategies, the
overall training complexity is O(72), omitting the dataset dimensionality m for
simplicity. On the other hand, when adopting the center-based clustering sam-
pling strategy, the complexity depends on the clustering algorithm employed.
If, as in our case, k-Means is used with ¥ = [f/c], and considering that the
complexity of k-Means can be approximated as O(k - n), the overall training
complexity becomes O(7i - n). At prediction time, the complexity of PDTF for a
single query instance is O(n - logn), which is more efficient than the O(n - m)
complexity of the traditional KNN classifier or the PDL classifier when logn < m.

4 Approximated symmetry means that training PDT on both orderings of instance pairs
(zi,z;) and (zj,z;), achieves prediction vectors with very high cosine similarity.
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4 Experiments

We evaluate the performance of PDTF®, on tabular benchmark datasets and
compare it with state-of-the-art competitors in the classification task.

Experimental Setting. We consider KNN, PIVOTTREE (PT) [8], and eBALL [5]
as baseline instance-based models, all using the Euclidean distance as d. Next,
we evaluate PDTF against these baselines by integrating such classifiers in the
framework, namely PDT-KNN, PDT-PT, and PDT-eBALL using PDT as distance
function d. Additionally, we compare PDTF with the pairwise distance classifier
PDL [2] to provide a comprehensive performance assessment. Specifically, we con-
sider KNN using Euclidean distance with PDL, namely PDL-KNN. For KNN® we
use k = 5, for PT7 we use mazdepth = 5, and for eBALL® we use € equals to the
10" percentile of all pairwise distances.

We measure the classification performance using the Accuracy and the weigh-
ted Fl-score [34]. We assess the effectiveness of the PDT as a regressor by re-
porting the R? and RMSE score [34], which quantifies its ability to approximate
true pairwise distances. For each experiment, an 80/20 train/test split is applied.
Results are reported on the test set. Finally, we evaluate the computational ef-
ficiency by measuring both training and prediction times, reported in seconds.

As datasets, we use two sets of tabular benchmark datasets. First, for the
sensitivity analysis, we follow the OpenML-CC18 [6] selection constraints and
select 9 relatively small datasets from OpenML®. These datasets are employed
in other papers of PSL and PDL [2], making them particularly suitable for our
approach. Next, for comparisons against competitors, we rely on 11 datasets from
OpenML and other repositories'?, e.g. spambase (UCI), compas (ProPublica).

Python implementation available at: https://github.com/fismimosa/PDT.
KNN as implemented in sklearn: https://tinyurl.com/sklearn-knn.
PIVOTTREE as implemented in: https://github.com/msetzu/pivottree.
€BALL as implemented in: https://tinyurl.com/epsball.
The small datasets are: iris, seeds, glass, algerian forest fires (fire), vertebra column
(verteb), ecoli, low resolution spectrometer (Irs), breast cancer (breast).
0 The large datasets are: steel plates fault (steel), read safety (road), bank marketing
(bank), pol, covertype (cover), house 16H (house), eye movements (eye), sylvine
(sylvine), magic telescope (magic), compas, spambase (spam).

© 0 N o v
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Table 2: Mean and std.dev of R? and RMSE for PDT as distance regressor among
the small datasets, with n=n, i.e., without sampling strategy, and mazdepth=8,
with different pairwise training set preparation («, 3, ) and different split con-

straints (P, F, T). Best in bold, second best in italic.
R? RMSE

PDT
p F T \ p F T

a | .660£.138 .652+.137 .631+.133 | 1.53 £ .845 1.55+.870 1.60=£ .890
B 1.909 £+ .056 .909 + .056 .909 + .056|.830 + .575.830 + .575.830 £ .575
v 1.907 £ .059 .907 £ .059 .907 £ .059 |.836 £ .580 .837 £ .581 .837 £ .581

Table 3: Mean and std.dev of Accuracy and of weighted F1-score for PDTF using
KNN as classifier among small datasets, with n=n, i.e., without sampling strat-
egy, and mazrdepth=8, with different pairwise training set preparation («a, 3, 7)
and different split constraints (P, F, T). Best in bold, second best in italic.

Accuracy Fl-score
PDT
P F T ‘ P F T

a | 700 £.098 .697 £.128 .662+ .183 | .654 +.126 .656 £.161 .607 £ .210
B 1.808 £ 133 .808 £ .133 .808 £ .133|.799 £ .143 .799 + .143 .799 £ .143
v |.809 £+ .133 .809 £ .133 .809 £ .133|.800 + .144 .800 + .144 .800 + .144

Detailed summaries of each dataset, including the number of records, features
(after removing the categorical'! ones), and classes, are provided in Table 1.

Sensitivity Analysis. We analyze here how the hyper-parameters of PDTF
influence both the quality of distance approximation and the classification per-
formance. Table 2 presents the mean and std. dev. of the R? and RMSE score
for PDT, which assesses its effectiveness as a distance approximation using a re-
gression evaluation measure, while Table 3 shows the Accuracy and weighted
F1-score for PDTF with KNN across the small datasets using KNN as classifier.
In this initial analysis, we examine the impact of different pairwise training set
preparations («, 3, ) and split constraints (P, F, T) while fixing n = n, i.e.,
without applying any sampling strategy, and setting maxdepth=8, a relatively
compact tree that balances interpretability and performance.

The results highlight the importance of the pairing procedure in PDTF. Sim-
ply using concatenation («) leads to higher RMSE error and lower performance
for R?, Accuracy and Fl-score. However, adding pointwise feature difference
(8) or combining it with concatenation () significantly improves distance ap-
proximation and classification performance when used in KNN. The performance
difference between v and S is minimal. Analysis of the tree structures in the ~y

1 The pDTF framework remains fully applicable to mixed-type data, computing the
target PDT mixed-distance for each pair by combining a numerical metric on contin-
uous attributes with a categorical metric on nominal attributes.
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Fig.3: Errorbars for PDT-yT with varying n and mazdepth using the random
and center-based clustering sampling strategies over the small datasets.

setting shows that pointwise features are preferred over concatenated ones, ex-
plaining why split constraints impact only o and «. In the « setting, increasing
split constraints degrades all metrics, suggesting a trade-off between distance
approximation and interpretability. Based on these results, PDT-yT is recom-
mended as the default configuration. This setup benefits from including both
feature types, allowing the model to optimally adapt by selecting the most in-
formative features during training. Also, PDT-T shows strong generalization and
offers the highest interpretability.

Next, we studied the impact of the mazimum depth of PDT by varying it
in {2 | i € Z,1 < i < 6}, and the impact of the random sampling (RS) and
center-based clustering sampling (cs) by varying 7 € {n-i% | i € Z,0 < i <
10} U{n-10i% | i € Z,0 < i < 10}, with each experiment repeated ten times to
compute mean performances and standard deviations.

The results, illustrated in the errorbars'? of Figure 3, show that using ap-
proximately 20% of the training dataset (7 & 20% - n) for creating the pairwise
training set leads to a performance plateau for both B2, RMSE, and F1, regard-
less of the sampling strategy, except for the smallest tree depth. In this case, F'1

12 For the sake of comprehensibility we reduced the std to 0.5 of its value.
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Table 4: Mean and std.dev of weighted F1-score, Accuracy, Training Time, and
Prediction Time expressed in seconds over all datasets. The best and second best

are highlighted in bold and italics, respectively, by column.

model d F1l-score Accuracy Train Time Pred Time
EUC .868 + .118 .877 + .099 0.0001 + 0.0 0.0001 + 0.0

«ny  PPTs .790 £ .130 799 £.117 0471 4+0.446  0.016 £ 0.015
PDT16 .838 +.098 .8424+.091  3.040 £2.640 0.051 £ 0.045

PDL  .845 £ .096 .863 + .078 0.344 £0.657 39.30 £ 69.99

—

'c;u EUC  .828 +.126 .840 +£.108  0.067 £ 0.032 0.002 £ 0.000
@ pr pPDTg .814+.091 .8214+.084  9.380£7.510 0.063 £ 0.040
PDTi6 .819 4+.091 .8254+.008 16.780+ 14.46 0.115+0.077
EUC  .833 £.009 842 4+.008  0.01 £ 0.005 0.041 £ 0.027

€BALL PDTg .673+.204 710+ .162  0.665 £ 0.608  0.232 £+ 0.150
PDT16 .691 +.149 730+ .125 1.206 £+ 1.257  0.545 £ 0.508

EUC .753 +.124 .756 + .125 0.0001 + 0.0 0.002 + 0.0

KNN PDTg .597+.119 .608 +£.118  3.860 £2.030 0.232 £+ 0.089
PDT16 .670+£.112 677+ .113  31.470 +16.220 0.546 4+ 0.140

go EUC  .704+.124 7154122 1.444 4+ 1.453  0.005 + 0.0
® pT PDTg 713 +.128 719 + .127 445.37+450.76 0.654 +0.197
PDTi6 .713 4+ .132 718 +£.131  841.45+742.11 1.400 £ 0.261

EUC  .709 £ .137 JT174+.134 0 0.2831 £ 0.286  0.03 £ 0.019

€BALL PDTg 467 £ .170 .537 £ .117 20.322+7.372 2.571+1.321
PDT16 .606 £+ .123 .631 +.105 39.544 £+ 12.632 10.691 +6.313

slightly decreases as more data is used. Higher tree depths generally reduce per-
formance variability. While random and center-based sampling strategies yield
similar R?> and RMSE values, random sampling results in better overall F1
when integrated with KNN. Increasing tree depth beyond 16 does not provide
significant performance gains, making mazdepth = 16 a good trade-off between
performance and interpretability. A shallower tree with mazdepth = 8 maintains
similar regression performance with minimal weighted F1l-score loss. Training
and prediction times increase with larger datasets and deeper trees, but trees
with depth 16 are faster than those with depths of 32 or 64, and depth 8 is
the fastest. Based on these findings, we recommend the PDT-T variant with
i = 20%n and mazdepth = 16 as the baseline configuration, providing a bal-
anced approach to performance, efficiency, and interpretability. Reducing tree
depth to 8 improves efficiency with only a slight performance trade-off.

Competitor Analysis. In Table 4 we analyze the performance of PDTF
against competing methods on both the small and large datasets. Specifically,
we compare the standard Euclidean distance function and PDL against two vari-
ants of PDT with maximum depths of 8 and 16 (PDTg and PDT;¢), as suggested by
our earlier discussion on tree depth. For a comprehensive evaluation, we adopt
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Table 5: Mean and std.dev of R? and RMSE for KNN model with PDT suggested
depths on small and large datasets. Best by dataset size highlighted in bold.

d R? RMSE
PDTs 0.764 +0.214 1.559 + 1.432

small
PDTi6 0.775 +£ 0.217 1.530 + 1.439
1 PDTg 0.601 £ 0.307 2.642 4+ 2.985
arge
& PDT16 0.670 + 0.320 2.455 + 3.023
F1 Accuracy
10 9 8 7 6 5 4 3 2 1 10 9 8 7 6 5 4 3 2 1
Lol o b by b bty ol Lol ol ol A |
eBALL-PDT-8 22222 [ 24444 NN €BALL-PDT-§ 229 21667 KN
€BALL-PDT-16 87778 L 34448 pp) KNN €BALL-PDT-16 8224 L3111 pp|-KNN
KNN-PDT-8 85556 38889 KNN-PDT-16 KNN-PDT-§ —&7778 427178 KNN-PDT-16
PT-PDT-16 —>7222 43333 eBALL PT-PDT-16 —3:2444 43333 eBALL
PT-PDT.8 5389 52022 pr PT-PDT.g 54444 50000 pr
Train Time Pred time
0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 1
P I ' | | P I P P |
PT-PDT-16 2009 19040 KNN PDL-KNN 20009 19990 KNN
PT—PDT—S 9.000 2.0000 EBALL EBALL—PDT—IG 9.000f 22222 PT
KNN-PDT-16 20000 (36667 pp|-KNN €BALL-PDT-§ 80000 33333 KNN-PDT-8
eBALL-PDT-16 —&8889 | L 36667 pT PT-PDT-16 87778 4555 KNN-PDT-16
€BALL-PDT-g —2:4444 23333 KNN-PDT-8 PT-PDT-8 —2:4444 46667 eBALL

Fig. 4: Comparison of model’s rank for the various evaluation measures against
each other with the Nemenyi test. Groups of classifiers that are not significantly
different at 95% significance level are connected. Best ranks on the right.

the aforementioned instance-based models: KNN, PT, and eBALL!3. We report
results for PDT variants using a fixed random subset for approximation, with
n &= 20%n for all datasets except spambase and compas, where 71 =~ 5%n. The
comparison of the ranks of all methods tested on the small datasets'? is visually
represented through the critical difference plots in Figure 4. Methods that are
statistically equivalent, according to the post-hoc Nemenyi test, are connected
by black lines. Lower rank values correspond to better-performing models, with
the best ranks displayed on the right (see [12] for details).

Results on the small datasets show that PDT achieves F1 and Accuracy
scores comparable to its competitors, though slightly lower. However, these dif-
ferences are not statistically significant, as illustrated in Figure 4. In terms of
runtime, PDT outperforms PDL significantly, both during inference and in terms
of training and prediction time, while offering full interpretability. We also note
that the expected runtime of PDT is lower than that of KNN at prediction time
when logn < m, but deviations from theoretical expectations are observed due
to the current implementation. While we acknowledge that empirical time mea-

13 The eBALL strategy is solely used to select memory instances based on different
distance metrics, while the final classification is performed using KNN with k& = 5.
4 Similar results are obtained for large datasets but not reported due to lack of space.
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g g g & 9 ] g &
— o . = (5] 5 ]
= 2 & § £ 5 £ & 5 & | z2|3
g = = o g @ % 2 2 o 2 =
o g g g =1 2 5 3 3 b .'% ©
g g £ £ 5 & & 5 E: 5
g e
z | 3.84 398 544 329 3.09 1084 430 4.52 658 216 | - |

T 3.34 3.44 399 297 3.67 2.41 3.66 3.83 4.59 236 1.90
PDT 2 3.02  3.07 349 1.68 2.52 2.12 2.96 3.08 3.43 1.94 | 3.63
T3 3.19 3.33 3.60 293 3.49 1.69 2.97 3.27 3.27 252 | 3.63

T 4.04 4.05 544 276 2.84 1048 2,56 2.54 3.15 0.64 | 4.64
EUC 2 3.34 3.44 3,99 297 3.67 2.41 3.66 3.83 4.59 2.36 | 8.90
T3 291 3.10 3.25 4.06 3.92 4.14 2.10 230 2.32 1.61 | 8.99

ZEE|EEE|R

A
]

IF worst_perimeter_diff
AND mean_concavity_diff <

1.48 AND worst_perimeter_diff <= 0.71
1.12 AND mean_area_diff > 0.45 THEN 1.91

IF worst_perimeter_diff <= 1.48 AND worst_perimeter_diff > 0.71
AND mean_concave_points_diff <= 1.48 AND mean_area_diff > 0.99 THEN 3.63

Fig.5: Classification example for the instance x w.r.t 3NN using PDT and EU-
CLIDEAN distances. Predicted class is Malignant. PDT rules are under the table.

surements may be affected by implementation-specific factors, we have retained
them as an integral component of our evaluation, since they highlight practical
considerations that are essential for understanding PDTF’s overall behavior. Fu-
ture work will focus on improving the implementation of PDTF to better align
with theoretical complexity. Additionally, PDL results for the large datasets are
excluded, as even the smallest large dataset failed to produce results within a
24-hour runtime, a limitation shared with PT. For the large datasets, KNN with
Euclidean distance remains the best performer across all metrics. However, we
note that PDT-PT with maxdepth = 8 outperforms PT with the standard Eu-
clidean distance and PDT-KNN. This combination provides the dual advantage
of an intelligent pivot selection process coupled with the use of an interpretable
distance function to make the final decision. For eBALL, the performance of PDT
always deteriorates compared to EUC. Finally, Table 5 reports the R and RMSE
regression metrics for PDTg and PDTy¢ paired with KNN. These results echo the
trend from Table 4: larger datasets present a uniformly harder task than smaller
ones, regardless of the model, and this increased difficulty is reflected in the
regression metrics where applicable. Consequently, the drops in Fl-score and
Accuracy observed can be attributed to the regressor tree’s reduced ability to
approximate distances accurately under these more challenging conditions.

Explanatory Example. Figure 5 presents an example of KNN with k£ = 3
on the breast cancer dataset to classify cells as Benign or Malignant, using
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both Euclidean distance and PDT!S. The first row displays the query instance
x. The subsequent six rows list the three nearest neighbors selected by KNN for
both distance measures. The distances are shown in the penultimate column,
and the classes are shown in the last column. The key advantage of PDT over
Euclidean distance is that with pPDT, it is possible to inspect the decision rules
under the table, which logically justify the calculated distances. As shown by our
experimental evaluation, the approximation error of the learned PDT is accept-
ably small in its traded off for a fully transparent-by-design model structure.
In contrast, post-hoc explainability techniques are applied only after training
and can themselves introduce artifacts into the explanation [29]. PDTF avoids
these pitfalls and yields rule-based explanations that directly justify pairwise
similarity decisions, rather than merely attributing feature importance to a fi-
nal classification outcome. Additionally, the rule-based explanations are concise
and involve only the subset of features that actually contribute to the com-
puted distance, rather than requiring inspection of all features. Finally, while
Euclidean distance is often considered intuitive, its interpretability becomes less
clear as the number of features increases. For example, consider two records
x and z; described by 10 attributes a; to ajg. Suppose their pairwise differ-
ences are: z[a1] — z1[a1] = 0.50, z[az] — z1[az] = 0.54, z[as] — z1[as] = 1.45,
.ty Z[arg] — z1]a19] = —0.20. The Euclidean distance in this case is the square
root of the sum of all squared differences, resulting in a single value that blends
together contributions from all features. While each individual difference is easy
to interpret, the final distance value 1/(0.50)2 + (0.54)2 + - -+ + (—0.20)2 does
not directly reveal which attributes were most responsible for the similarity or
dissimilarity between the records. This makes it difficult to extract a simple,
human-understandable explanation for why x is considered close to x.

5 Conclusion

We have presented Pairwise Distance Tree Framework (PDTF), an interpretable
meta-learning approach designed to enhance transparency in instance-based
models. It replaces traditional complex distance functions with a shallow PDT
regressor, which learns a mapping from instance pairs to their respective dis-
tances. By combining the strengths of Pairwise Distance Learning (PDL) and
Proxy-based Similarity Learning (PSL), PDTF offers both efficient instance se-
lection and clear, traceable decision rules. Experimental results on benchmark
datasets show that PDTF strikes a strong balance between predictive perfor-
mance, computational efficiency, and interpretability. It outperforms traditional
methods, especially when intelligent sampling is used, reducing training time
without compromising accuracy. Enforcing forced split constraints further en-
hances interpretability, though it may slightly impact performance. PDTF is
highly customizable, with adjustable PDT depth, making it adaptable to different

15 Due to space limitations, this example is restricted to the 10 most important
features of the dataset, as shown at this sklearn link: https://tinyurl.com/
breast-features.
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applications. Future work will focus on jointly optimizing distance metrics and
instance selection, and on evaluating the method’s robustness in zero-shot clas-
sification. We also plan to extend PDTF to other modalities, such as images and
time series, by leveraging inherently interpretable features. Doing so presents its
own challenges and will require a dedicated study, since feature interpretabil-
ity in these domains remains sparsely addressed. We also plan to optimize the
PDTF implementation to bridge the gap between empirical computational times
and theoretical expectations. Finally, we would like to conduct an extrinsic in-
terpretability evaluation of PDTF usage through a human decision-making task
driven by its explanations. Overall, PDTF lays the foundation for developing
transparent and efficient instance-based models across diverse domains.
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