
Optimizing the Optimal Weighted Average:
Efficient Distributed Sparse Classification

Fred Lu1,2,∗�, Ryan R. Curtin1,∗, Edward Raff1,2, Francis Ferraro2, and
James Holt3

1 Booz Allen Hamilton, Fred_Lu@bah.com, Curtin_Ryan@bah.com
2 University of Maryland, Baltimore County

3 Laboratory for Physical Sciences

Abstract. While distributed training is often viewed as a solution to
optimizing linear models on increasingly large datasets, inter-machine
communication costs of popular distributed approaches can dominate as
data dimensionality increases. Recent work on non-interactive algorithms
shows that approximate solutions for linear models can be obtained ef-
ficiently with only a single round of communication among machines.
However, this approximation often degenerates as the number of ma-
chines increases. In this paper, building on the recent optimal weighted
average method, we introduce a new technique, ACOWA, that allows an
extra round of communication to achieve noticeably better approxima-
tion quality with minor runtime increases. Results show that for sparse
distributed logistic regression, ACOWA obtains solutions that are more
faithful to the empirical risk minimizer and attain substantially higher
accuracy than other distributed algorithms. We also introduce isoeffi-
ciency analysis to distributed logistic regression and show that ACOWA
maintains favorable scaling with respect to data size and processor count
relative to prior distributed algorithms.

1 Introduction

Statistical and machine learning research trends have had one important under-
lying trend for the past few decades: practitioners want to train models on larger
and larger datasets [22, 15]. Massive-scale datasets present significant computa-
tional issues, regardless of the complexity of the models being used. Even training
linear models is a challenge when the datasets get large and high-dimensional. As
an example, consider a logistic regression model, which may be penalized with
either the L1-regularizer for sparsity, the L2-regularizer to prevent overfitting,
or both (the ‘elastic net’ [47]). Given a dataset X with n points in d dimensions,
and labels Y with value −1 or 1, we want to find

ŵ := argmin
w

Lw(X ) + λ1∥w∥1 + λ2∥w∥22 (1)

* These authors contributed equally to this work
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where Lw(X ) is the logistic regression objective:

Lw(X ) :=
∑

(xi,yi)∈(X ,Y)

ln
Ä
1 + e−yiw

⊤xi

ä
(2)

Solving this problem on moderately-sized datasets is fast and easy [7], but on
datasets with millions or more of samples or features (or both!), this is compu-
tationally challenging. Having observed this, we wish to accelerate the training
of linear models on large-scale data. Here we will consider the logistic regression
objective, but our approach can be easily adapted for more general models.

Importance of sparse linear modeling. Despite flourishing attention to-
wards complex machine learning models, generalized linear models have real-
world impact in both applied and scientific settings to this day. They have
attractive properties for downstream inference and are very effective in high-
dimensional problems with limited samples [42, 25]. Furthermore, research in
linear models continues to improve our understanding of machine learning [20,
40]. As we will show, our work offers practical and theoretical scalability contri-
butions toward distributed linear modeling.

Sparse linear models have particular value because they encompass methods
which simultaneously perform feature selection and model fitting [16], includ-
ing the Lasso and other L1-regularized linear models [10]. There are relatively
few methods which can do both in a statistically principled manner. Even in
more complex models such as neural networks, recent work on sparsity lever-
ages fundamental principles from sparse linear models [23]. Sparse models have
significant advantages for explainability and computational efficiency.

Early singlethreaded attempts. We are far from the first to consider ac-
celerating the training of logistic regression models. For smaller datasets, the
problem has been intensively studied [16]. There is extra difficulty when consid-
ering the L1 penalty (λ1 > 0), as this causes Lw(X ) to be non-differentiable and
thus simple gradient descent techniques cannot be applied. Instead, algorithms
such as FISTA and FASTA [12], based on proximal gradient descent, are often
used. Proximal Newton techniques, using coordinate descent to solve the inner
step, are highly popular, with the GLMNET [10] and newGLMNET [41] algo-
rithms offering fast convergence. newGLMNET is specifically tuned for expensive
objective functions such as logistic regression, and through the LIBLINEAR li-
brary [9] has become likely the most widely-used solver in practice.

Multithreaded single-system approaches. As the number of cores on
processors has increased, interest in single-system parallelism has also. In this
vein, LIBLINEAR-MP [45] is a modified multi-core newGLMNET implementa-
tion. Hogwild [31] and the more recent SAUS [29] use lock-free parallelism to
prevent conflicts during gradient updates.

Iterative distributed approaches. However, even with a multithreaded
approach, very large datasets may be larger than the memory of a single system,
and thus a distributed approach is required. The use of distributed algorithms to
train logistic regression models has been studied extensively [13, 26, 44]. In typi-
cal approaches, the dataset X is partitioned across p nodes, and then the model
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“One-shot” methods are fast but can’t
correct errors that hurt accuracy.

“Iterative” methods take too many iterations
to converge to an acceptable solution.

Our ACOWA shares just enough information to reliably converge
to a better solution, in a fixed number of steps.
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Fig. 1. Vertical dashed lines show synchronization points between threads and boxes
indicate different compute nodes. Approaches for many-core and distributed training
of models with an L1 penalty are either one-shot (left), or iterative (right), neither
of which produce satisfying solutions of high accuracy in a limited time frame. Our
ACOWA strikes a careful balance of sharing information, such that a more accurate
solution can be obtained with just two rounds of communication.

is learned iteratively. The simplest approach is to partition by data points; this
partitioning strategy has been paired with distributed Newton methods [35, 44]
and also ADMM [3]. Block coordinate descent methods which split over features
have also been shown to work [38, 32]. A large disadvantage of these techniques
is that they involve significant communication overhead: at every iteration, the
gradients from each machine must be sent back to the main node. These com-
munication costs become very painful with increased problem dimensionality.

A number of approaches have been developed to reduce communication costs.
The CoCoA [19, 36] and ProxCoCoA+ [37] frameworks are two notable exam-
ples. ProxCoCoA+ uses the dual of the logistic regression objective function,
partitioning the data by dimension instead of points. In each iteration, each
worker solves a local quadratic approximation of the objective, communicat-
ing its solution back to the main node for aggregation. The DANE and CSL
frameworks [35, 39] first find single-partition solutions independently, which are
averaged as an initial estimator. Global gradients are then collected and com-
bined with local higher-order derivatives on each partition to solve a surrogate
likelihood function that has bounded loss with respect to the true likelihood.
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Non-interactive algorithms. Still, even with efforts to reduce the amount
of communication, the iterative nature of all the previous algorithms presents a
problematic overhead when the number of iterations is large. Hence, there has
recently been increased interest in non-interactive or one-shot algorithms [28,
43], which use only a single round of communication. These methods tend to
be extremely fast, but produce models with a larger amount of approximation.
The recent optimal weighted average (OWA) approach is a compelling example
of a non-interactive algorithm [18]. In the OWA approach, data is partitioned
along samples; each worker trains a model independently on its data partition
and returns its trained model weights to the main node; then, the final model is
a learned linear combination of each partition’s model.

Our contribution: ACOWA. We have observed the compelling speedups
of non-interactive algorithms, but found ourselves disappointed by the approxi-
mation quality—especially as the number of partitions p grows large, and as the
dataset becomes sparse. Aiming to trade a small amount of speed for a much
better approximation, we relax the one-shot requirement, and use two rounds of
communication. Starting from OWA [18], we introduce ACOWA with a number
of novel improvements:

1. We augment each partition’s data with summary information from other par-
titions, reducing the variance of each partition’s model.

2. We allow a second round of weighted distributed learning. This improves
approximation quality by ensuring that ACOWA selects only features that
have support across many partitions’ models.

3. We introduce the study of isoefficiency (a measure of communication effi-
ciency) to distributed logistic regression. We then show that ACOWA has
isoefficiency comparable to the original OWA, and thus retains its favorable
scaling properties.

4. Our experimental results demonstrate the significant quality increases that
ACOWA yields, on a variety of datasets, with only a modest additional run-
time cost. Our ablation studies show that all of our proposed improvements
are mutually beneficial.

The differences between ACOWA and other approaches is shown in Figure 1.
A publicly-available implementation of our algorithm can be found online at
https://github.com/FutureComputing4AI/Acowa.

2 Problems with OWA

Before describing OWA in detail, we first consider the simplest one-shot ap-
proach: naive averaging. In both approaches, the dataset (X ,Y) is split into
p equal-sized partitions (Xi,Yi). For naive averaging, each worker i learns a
model ŵi independently on its partition, and then all models are collected on
the main worker and averaged: ŵna := (1/p)

∑
i∈[p] ŵi. Naive averaging is trivial

to implement, only involves one round of communication, and gives reasonable
approximate solutions to the true ŵ. While naive averaging has been shown to
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(a) newsgroups dataset (11k × 54k).
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(b) ember-100k dataset (600k × 100k).

Fig. 2. Accuracy on held-out test sets for different numbers of partitions p, when spar-
sity is fixed. The quality of the naive averaging and OWA models degrade significantly
as p increases. ACOWA improves accuracy across all levels of p > 1.

be asymptotically optimal for nearly unbiased linear models, in high-dimensional
models higher-order loss terms cause increasing error [33]. Specifically, naive ag-
gregates show greater error as the number of partitions p grows, likely due to
increasing bias of the subsampled estimators.

OWA [18] works similarly to naive averaging, but has an improved merge step
that results in an optimal rate of decay for approximation and generalization
error of O(

√
d/n). To reduce the bias of ŵna, OWA instead learns a weighted

linear combination of each ŵi: after each ŵi is computed and returned to the
main node, a small subsample XC ⊆ X and YC ⊆ Y is computed. This sample
can be as small as pn/d points, which in most settings is substantially smaller
than n. Then, the optimal weighted average is defined as ŵowa := Ŵ v̂, where
Ŵ := [ŵ1, . . . , ŵp]. For logistic regression, v̂ ∈ Rp is the linear combination of
models found by solving the optimization

min
v

∑
(xi,yi)∈(Xc,Yc)

ln
Ä
1 + e−yi(Ŵv)⊤xi

ä
+ λcv∥v∥22 (3)

Here, the original penalty is replaced with an L2 penalty for v. This term can
be taken as a surrogate for the ‘true’ penalty term λ1∥Ŵv∥1 + λ2∥Ŵv∥22, and it
is suggested that λcv be set by cross-validation. Because XC and YC are small
subsets, the cost of cross-validation is generally small as compared to the cost of
training each ŵi. Adapting the OWA strategy to other statistical problems just
involves reworking the original objective function to learn v instead of Ŵv.

While the OWA estimator ŵowa tends to improve over the naive average ŵna,
in practice the accuracy of the resulting model also degrades significantly when
the number of partitions p becomes large. This may be due to the need for a
subsample for the second optimization, which remains biased. In addition, the
variance of the OWA estimator increases. Fig. 2 shows a representative example.
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3 First Improvement: Centroid Augmentation

The increasing variance of OWA as p increases is a result of degradation in each
ŵi: the smaller Xi is, the more likely ŵi is to be further from the true ŵ. We now
leverage theory on coresets: subsamples of data with bounded loss approximation
error to the original dataset [27].

As a first line of reasoning, view Xi as a uniform subsample of X : as |Xi|
shrinks, Xi behaves as an ϵ-coreset whose bound on the relative error increases
quadratically [7]. That is, let Lw(X ) be the full objective minimized in Eq. 1,
evaluated over X . Then for any w, we have that |Lw(Xi)−Lw(X )| ≤ ϵ ·Lw(X ).

Secondly, consider that a coreset of a high-dimensional sparse dataset may
contain features that are entirely zero-valued. These ‘dead’ features are then
effectively ignored by any model on that coreset. In either viewpoint, Xi may not
contain enough information to produce an accurate approximation of ŵ. Thus,
consider a scheme where we augment Xi with centroids of other partitions:

X (aug)
i := Xi ∪

( ⋃
j∈[p]\{i}

µ+
j ∪ µ−

j

)
(4)

with positive and negative centroids µ+ and µ− defined as

µ+
j :=

1

|X+
j |

∑
xk∈X+

j

xk, µ−
j :=

1

|X−
j |

∑
xk∈X−

j

xk (5)

where X+
j is the subset of Xj with positive labels in Yj , and correspondingly for

X−
j . The weight of any point in Xi is taken as 1, and the weight of any µ+

j or µ−
j

is |X+
j | or |X−

j |, respectively. (This is trivially adaptable to the multiclass case.)
The idea of centroid augmentation is theoretically justifiable; it can be shown

that augmenting Xi with 2p centroids is guaranteed to produce a better approx-
imation to ŵ than increasing the size of Xi by sampling 2p additional points
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Fig. 3. Model loss values for newsgroups dataset with 128 partitions, augmented with
centroids of other partitions vs. random samples. Lower loss is better. Centroid aug-
mentation produces models with lower loss as regularization increases. (Too much reg-
ularization causes underfitting.)
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from X . See the supplementary material for details. To experimentally observe
and confirm the theoretical result, we swept λ across a range of values for the
newsgroups dataset, comparing the loss of the best models obtained when using
partitions of the newsgroups dataset augmented with centroids, and augmented
with random samples. The result is shown in Figure 3, confirming the result
holds as regularization increases.

4 Second Improvement: Feature Weighting

When X is high-dimensional and sparse, not only do we have the problem of
‘dead features’ as previously discussed, but we also may have the situation where
individual features are significantly over- or under-represented in any Xi. This
can also cause greater variance in the performance of OWA, as seen in Fig. 2.
This phenomenon is amplified because L1-regularized logistic regression (and
elastic net) is not guaranteed to be consistent or possess the oracle property [46].
Even in low dimensions, L1-regularized LASSO-type procedures are known to be
inconsistent in variable selection [11, 24]. Thus, if an Xi over- or under-represents
a feature of X , the effects on variable selection can be even worse.

Zou [46] proposed a solution for the consistency of the simple linear regres-
sion Lasso estimator with the adaptive Lasso, which makes variable selection
consistent by applying weights to each feature. This was then extended to the
case of L1-regularized logistic regression with the ‘iterated Lasso’ [17], where a
first model is trained on the data, and then its weights are used to weight each
feature for a second round of learning. The iterated Lasso is selection-consistent
and possesses the oracle property under a few general assumptions on the data.

The strategy of the iterated Lasso is straightforward to adapt to the dis-
tributed case: we relax the one-round communication constraint and allow an
additional round of feature-weighted learning, using weights from the first round
of learning. Given first-round models ŵi, we can compute the percentage of mod-
els ŵi that used a particular feature j: Pj := (1/p)

∑
i∈[p] 1(ŵij ̸= 0).Then, we

can define the weight for feature j as αj := 1+βPj where β is a tunable param-
eter that controls the severity of the feature weighting. Then, separately in each
partition, we solve an adaptive feature-weighted second round optimization:

ŵfw := argmin
w∈Rd

n∑
i=1

ℓ(yi, x
⊤
i w) + λ1

∑
j∈[d]

α−1
j |wj |+ λ2

∑
j∈[d]

(α−1
j wj)

2. (6)

Note that this problem is equivalent to scaling each dimension j of X by αj with
a rescaled penalty parameter λfw := λd/(

∑
i∈[d] α

−1
i ). This use of a weighted sec-

ond round is another improvement over standard OWA, and in our experiments,
it improves stability by acting as a soft feature-selection step. This matches our
expectation: the iterated Lasso can be understood as doing the same thing.
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Algorithm 1 ACOWA.
1: Input: X ∈ Rn×d, Y ∈ {−1, 1}n, regularization penalty λ, p processors, β
2: Output: learned model ŵacowa

3: split (X ,Y) into p partitions and distribute to p workers
4: for i ∈ [p] in parallel do
5: compute µ+

i and µ−
i using Eq. 5

6: end for
7: distribute all µ+

i and µ−
i to all p workers

8: for i ∈ [p] in parallel do
9: learn ŵi using local optimizer on X aug

i (Eq. 4)
10: end for
11: compute αj for all j ∈ [d]
12: for i ∈ [p] in parallel do
13: learn ŵfw

i (Eq. 6) using local optimizer on X aug
i

14: end for
15: form (XC ,YC) as a sample of size max(n/p, pn/d) from (X ,Y)
16: compute ŵacowa as the solution to Eq. 3 with Ŵ = {ŵfw

1 , . . . , ŵfw
p }

5 ACOWA

With these two major improvements over OWA, we can now introduce ACOWA,
shown in Algorithm 1. ACOWA uses centroid augmentation, described earlier,
for the first distributed round of learning, and then computes feature weights as
described in the previous section for a second distributed round of learning. Then,
the standard OWA merge step (Eq. 3) is applied. We highlight two additional
improvements:

Larger merge set. OWA’s merge step uses a dataset XC , of size pn/d.
For high-dimensional problems, this set can be extremely small, causing high
variance in ŵowa. Thus, it makes sense to increase the subsample size. Given
that data is already distributed across partitions, we can simply use the main
node’s partition (with size n/p) as the second round. This significantly reduces
the variance of ŵowa with negligible runtime cost (see supplementary material).

Better optimizer. Our implementation (described further in the Experi-
ments section) uses newGLMNET as provided by LIBLINEAR [9]. We found
that relaxing the optimizer by reducing the number of inner coordinate descent
iterations to 50 and the number of outer Newton iterations to 20 gives good
speedup without loss in accuracy. Since the first round of learning can intu-
itively be understood as a ‘soft’ feature selection step, it is not necessary to run
the first round of optimization to full convergence.

Extensions. In our exposition, for the sake of simplicity, we have specifically
considered the regularized logistic regression problem, and our theoretical results
have been restricted to that problem. However, ACOWA is a general algorithm,
and as such it is straightforward to substitute any other type of linear model
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(such as, e.g., the linear SVM). Theoretical results for centroid augmentation
still apply, by adapting Lemma 2 in the supplementary material to the objective
function of interest. Theoretical scaling results (in the next section) apply so
long as the individual solvers for each partition scale similarly to newGLMNET
(if not, the results can be adapted).

6 Scalability Analysis: Isoefficiency

Background. We next aim to characterize the computational scalability of
ACOWA. Here, we introduce and discuss a classic parallel performance metric
known as isoefficiency [14]. Isoefficiency measures how a distributed algorithm
scales as the number of processors and the dataset size is increased, while taking
into account communication costs, synchronization, and other overheads. To our
knowledge, this is the first isoefficiency analysis of distributed logistic regression.

Although isoefficiency is not often studied in a machine learning context,
we highlight that it is in fact well suited to analysis of distributed learning
algorithms, as it is a principled way to quantify the marginal shrinkage of im-
provement as the number of processors p is increased. Intuitively, increasing p
from 10 to 20 on a task should greatly improve runtime. But while further in-
creasing p to 40 may still reduce runtime, it would likely be to a smaller extent
than would be expected by simple mathematical analysis. This is because com-
munication overhead rises with the number of partitions, which outweighs the
speedup due to parallelism. A parallel algorithm which is more isoefficient than
another will better utilize parallelism with fewer communication costs, and thus
will scale better with the number of processors. This will be formalized in the fol-
lowing exposition. Due to space constraints, all proofs are in the supplementary
materials.

Suppose we have a parallel computing system with p processors and dataset
size z (to be defined later). We let T1(z) be the serial solve time of logistic
regression and Tp(z) be the solve time using p processors. Generally, increasing p
causes a boost in relative speed Sp(z) = T1(z)/Tp(z) compared to serial, but also
incurs increasing overhead T0(z), which is defined as T0 := pTp−T1. (We suppress
the dependence on z when convenient.) We notice here that by definition, the
overhead represents an excess cost invoked by the parallel algorithm compared
to serial, which is not limited to work but can also include idle time. In an
algorithm and system with no overhead, then pTp = T1, and Sp = p. In reality,
for a given z, when p is increased linearly, Sp tends to grow sublinearly: if we
define efficiency as Ep(z) = Sp(z)/p, then Ep decreases as p increases.

However, the more interesting and actionable quantity to a practitioner is the
rate at which p must increase to retain the same efficiency Ep as the problem
size z increases. This rate is formalized as the isoefficiency function and is the
target of our analysis. The smaller this isoefficiency function, the more scalable
the algorithm. For instance, an isoefficiency function of z = Θ(p) implies that
when p is doubled, the overall runtime and efficiency can be maintained if z is
also doubled. Such a fortunate situation cannot generally be expected, though;
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a linear isoefficiency function implies an embarrassingly parallel problem with
no communication overhead, which of course is not going to be the case for any
distributed machine learning algorithm.

Computing the isoefficiency. The next step is to properly define the data
size z. In our case, if we define z as the number of nonzero entries in X , the serial
newGLMNET solver runs linearly in z, as shown in Lemma 3 in the supplemen-
tary material. Conveniently, the linear scaling of the serial solver simplifies the
next calculation.

Obtaining the isoefficiency function is equivalent to finding the function f
describing z ∝ f(p) so that Ep(z) is constant. Solving for Ep, we get

E =
S

p
=

T1

pTp
=

T1

T0 + T1
=

1

1 + T0/T1
∝ 1

1 + T0/z
(7)

since T1 ∝ z. From this we see that for Ep to remain constant, we require that
z ∝ T0. Further substituting in the definition of T0, we see that the isoefficiency
reduces to computing z as a function of p in the equation z ∝ pTp − T1.

Results for distributed logistic regression. Because z can scale in var-
ious ways with the underlying dataset dimensions, the relative growth rates of
samples n and features d can affect an algorithm’s scaling. We keep in mind
two regimes: (1) bounded d where z ∝ n, and (2) z ∝ nd. (1) implies we get
more samples, while in (2) we get more samples and features, with the same
underlying sparsity ratio. After distributed training, we define the support set
S to be the union of all non-zero features across the partitions, and let s = |S|.
Our first result concerns naive averaging.

Theorem 1. Given distributed sparse logistic regression with sparsity level s,
naive averaging has isoefficiency function z = Θ(sp log p). If we suppose that (1)
d is constant, or (2) d(z) → D for bounded D, then z = Θ(p log p). Alternately,
if n and d grow at the same rate such that z ∝ nd, then the isoefficiency function
is z = Θ(p2 log2 p).

Moving on to consider OWA, we find that the behavior not only depends on
growth rates of the dataset, as in naive averaging, but also on certain parameters
involved in the algorithm. In particular, the second round on the subsampled
set of size nc can pose a challenge to scalability if nc grows on par with z, due
to the overhead of solving the objective while the other processors are idle. In
practice, nc can be kept small as z grows without loss in accuracy.

Theorem 2. Consider OWA with subsampled second round dataset XC with nc

rows. If the growth rate of nc is such that nc ∝ zα for some 0 < α < 1, then
OWA has isoefficiency function z = Θ(max{p2, p2/(1−α)}). When n ∝ z, we
have nc ∝ nα. When n ∝

√
z, we have nc ∝ n2α.

As a practical example, suppose a user observes a 5× speedup running OWA
with p processors on 104 data points compared to serial newGLMNET. Using
2p processors, they would need roughly 108 samples to maintain a 5× speedup.
We finally show that despite its additional round of computation, ACOWA has
the same scalability as OWA.
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Fig. 4. Number of nonzeros vs. test set accuracy in the single-node parallel setting.
ACOWA has consistently better performance than other distributed methods, espe-
cially for sparser solutions on newsgroups. It generally also performs the best on ama-
zon7 across a range of sparsities, compared to the second best method (CSL).

Theorem 3. Consider the ACOWA algorithm with subsampled second round
dataset XC with nc rows. If the growth rate of nc is such that nc ∝ zα for some
0 < α < 1, then ACOWA has isoefficiency function z = Θ(max{p2, p2/(1−α)}).

7 Experiments

We conducted thorough experiments to compare the performance and runtime
of ACOWA with competitive baselines: standard OWA [18], naive averaging,
ProxCoCoA+ [37], CSL [21], and DANE [35].

We implemented ACOWA, OWA, naive averaging, and debiased averaging
in C++ with OpenMP and MPI using the Armadillo linear algebra library [34],
the ensmallen optimization library [5], and adapted parts of the mlpack machine
learning library [6]. Our OWA implementation is tuned to allow a higher opti-
mizer tolerance and a larger merge set size (like ACOWA). CSL and DANE were
implemented similarly, using ŵowa as the initial solution and OWL-QN [2] from
libLBFGS (see https://github.com/chokkan/liblbfgs) as the per-iteration
solver. To keep communication costs similar to OWA and ACOWA, we only ran
one iteration of CSL and DANE. (We found further iterations did not improve
the model significantly, and caused CSL and DANE to take much longer.) For
ProxCoCoA+ we used the Scala implementation from the authors.

For datasets, we used several large-scale real-world datasets with sizes from
approximately 10MB to 250GB. Our aim was to replicate a variety of real-world
usage scenarios. All except EMBER [1] are available on the LIBSVM website [4]
or UCI repository [8]. For EMBER, we compute length-8 n-grams [30] and keep
the most common 100k and 1M to produce ember-100k and ember-1M.

We are interested in two settings: (1) single-node multicore, and (2) fully
distributed. The first setting is relevant in modern environments, as modern
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systems can have very many cores available. In our case, we used a powerful
server with 256 cores and 4TB of RAM for our single-node experiments. Simple
parallelized solvers such as the OpenMP version of LIBLINEAR struggle in this
setting, as they were designed for only a few threads and cannot distribute
large enough work chunks to very large numbers of cores. Applying distributed
algorithms in this context is an effective strategy; the algorithms operate the
same as in the fully distributed setting, but communication costs are lower as
no network latency is incurred. For our fully distributed setting, we use a cluster
with 16 nodes, with 32 cores and 1TB of RAM each.

Approximation Error. In the first set of experiments, we sweep over a
logarithmic grid of λ1 and compute the model’s accuracy on a held-out test set,
with λ2 set to 0. We perform 10 trials with random partitions and random seeds.
Because practitioners often try to tune sparse logistic regression to optimize
accuracy at a certain level of sparsity, we plot the number of nonzeros in the
solution versus accuracy. This gives us a good picture of how each algorithm
behaves at different sparsity levels.

Fig. 4 shows the results of the sweep on smaller datasets in the single-node
multi-core environment. ACOWA (blue) consistently attains higher accuracy,
especially as the solution becomes more sparse (our setting of interest). This is
also true in the fully distributed setting (Fig. 5). We found that CSL and DANE
sometimes struggled to produce sparse solutions; for instance, on the EMBER
datasets, the models produced by CSL and DANE only become competitive
when they are dense (not our setting of interest).

ACOWA, due to the centroid augmentation and feature reweighting, is able
to identify relevant features for the full model. This is especially true for sparser
models, where other methods struggle due to the variance of models produced

Table 1. Runtime results for different techniques. Fail indicates the method took over
two hours or had an out-of-memory issue. Although ACOWA takes longer to converge
than naive averaging and OWA, it provides significantly better performance (see Fig. 4).
This also generally holds when comparing with CSL and DANE.

(a) single-node parallel

dataset n d nnz ProxCoCoA+ Naive Avg. OWA ACOWA

newsgroups 11k 54k 1.5M 40.129s 0.226s 0.242s 2.154s
amazon7 1.3M 262k 133M 531.778s 2.356s 14.933s 31.675s
criteo 45M 1M 1.78B Fail 17.085s 218.092s 264.200s
ember-100k 600k 100k 8.48B Fail 7.811s 13.245s 80.814s

(b) fully distributed

dataset n d nnz CSL DANE Naive Avg. OWA ACOWA

ember-100k 600k 100k 8.48B 28.831s 40.318s 0.863s 1.129s 19.147s
ember-1M 600k 1M 38.0B 81.634s 68.975s 6.176s 5.836s 145.051s
criteo 45M 1M 1.78B 36.069s 65.618s 2.349s 25.885s 150.383s
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by each partition. In the supplementary material, we perform several additional
experiments: an ablation study shows that both centroid augmentation and fea-
ture reweighting are necessary for the improved approximation that ACOWA
gives. Approximation results are similar for λ2 ̸= 0 (the elastic net); in addition,
ACOWA is also robust to the choice of β.

Runtime. In the second set of experiments, we characterize ACOWA’s run-
time. We expect ACOWA to be slower than other one-shot algorithms, as we
chose to increase the amount of communication modestly in exchange for sig-
nificantly improving model performance. We tune λ1 to produce approximately
1000 nonzeros in the final model, and take λ2 = 0. We record the time taken to
learn the model (excluding data loading and unrelated preprocessing).

Results are shown for each dataset in Table 1. These results match expecta-
tions: ACOWA is slower than the other one-shot algorithms, because it involves
an additional round of communication, plus the initial communication of the cen-
troids. ProxCoCoA+ is unable to complete within two hours for many datasets;
we believe this to be a result of high communication overhead. In the distributed
setting, the increased complexity of solving the surrogate loss function for CSL
(and similar for DANE) causes slowdowns. As mentioned earlier, in our exper-
iments we only use one iteration of CSL and DANE. Were we to run those to
convergence, the runtime (and communication costs) would be much higher.
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(a) amazon7, 512 partitions.
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(b) ember-100k, 512 partitions.
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(d) criteo, 512 partitions.

Fig. 5. Number of nonzeros vs. test set accuracy in the multi-node distributed setting.
ACOWA outperforms, again especially for sparser solutions. OWA on the criteo dataset
exhibited significant variance. We were unable to run ProxCoCoA+ in this setting due
to memory usage issues and extremely long runtimes.
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Table 2. Runtime breakdown for ACOWA. Each step is associated with lines in Alg 1.

step ember-100k ember-1M criteo

Centroids (4–5) 1.786s 6.724s 2.021s
All-to-all (6) 7.658s 58.268s 109.464s
Round 1 (7–8) 5.284s 45.376s 8.855s
Model gather 0.167s 1.540s 1.099s
Compute αj (9) 0.134s 1.443s 1.319s
Round 2 (10–11) 4.281s 29.875s 7.068s
Model gather 0.173s 1.274s 0.940s
Round 3 (12–13) 0.310s 0.551s 19.617s
Total 19.793s 145.051s 150.383s

Runtime breakdown. Next we perform a detailed breakdown of the run-
time cost of each step of ACOWA. Again tuning for 1000 nonzeros, we ran
ACOWA in the fully distributed setting for 10 trials, collecting the average run-
time of each step (specifically splitting out communication costs) in Table 2.

We can see that the communication rounds of ACOWA (‘model gather’) take
a negligible fraction of the overall runtime, and because the communication being
performed is only each (sparse) model ŵi, adding more data (but preserving the
sparsity of the solution) does not affect the communication cost. Although the
centroid computation and communication steps are computationally intensive,
they do not scale with the dataset size (only with the number of partitions), and
the computational and communication burdens of this step could be significantly
alleviated by, e.g., the use of sparse centroids or other approximations. We plan
to investigate this improvement in future work. As mentioned by Izbicki and
Shelton [18], the last round of learning on the smaller set (XC ,YC) takes a
negligible amount of time compared to the rest of ACOWA.

Additional studies. Due to space constraints, we are unable to fit all of
our experiments in the main paper; some are described in the appendix:

– Ablation study. Our results indicate that the combination of both centroid
augmentation and a feature reweighted second round are mutually beneficial,
and both improvements are necessary to provide the best accuracy.

– General objective functions. Our general approach can be readily adapted for
other loss functions besides L1 penalized logistic regression. We use ACOWA
to solve Elastic Net logistic regression; ACOWA works successfully in this
setting too, and can be further applied to any linear modeling problem.

– Oracle solution. We compare more thoroughly with the serial full-data solu-
tion provided by LIBLINEAR. We find that ACOWA can often come close
to full-data performance, especially for highly sparse models.

– Effect of β. We investigate the effects of the parameter β, showing that
ACOWA is robust to the choice of β.
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8 Conclusion

We presented a minimally interactive method, ACOWA, for distributed logistic
regression, which substantially improves on prior one- or few-shot distributed
estimators. Our method scales to massive datasets, with better accuracy-to-
sparsity ratio and similar runtimes than other methods, across multi-core and
multi-node experiments, and has favorable theoretical justification.
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