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Abstract. Despite recent advances in Large Vision Language Mod-
els (LVLMs), these models still suffer from generating hallucinatory re-
sponses that do not align with the visual input provided. To mitigate
such hallucinations, we introduce Efficient Contrastive Decoding (ECD),
a simple method that leverages probabilistic hallucination detection to
shift the output distribution towards contextually accurate answers at in-
ference time. By contrasting token probabilities and hallucination scores,
ECD subtracts hallucinated concepts from the original distribution, ef-
fectively suppressing hallucinations. Notably, our proposed method can
be applied to any open-source LVLM and does not require additional
LVLM training. We evaluate our method on several benchmark datasets
and across different LVLMs. Our experiments show that ECD effectively
mitigates hallucinations, outperforming state-of-the-art methods with re-
spect to performance on LVLM benchmarks and computation time.

Keywords: Multimodal large language models - Contrastive decoding -
Hallucination mitigation - Hallucination detection - Meta classification.

1 Introduction

By aligning textual and visual features, LVLMs have shown an impressive vision-
language understanding across various multimodal tasks like visual question an-
swering (VQA) or image captioning [3T5I8]. However, inconsistencies between
the generated response and the visual input, a phenomenon called hallucinations
[3528], diminish the applicability of LVLMs in safety-critical applications such
as autonomous driving [I345] or medicine [I8126]. Motivated by recent find-
ings [200I5] that identified overreliance of LVLMs on language priors as one of
the main reasons for hallucinations, new hallucinatory datasets and fine-tuning
strategies have been proposed to mitigate hallucinations [T2ITIIT7]. Contrastive
Decoding (CD) strategies [25/43] emerged as a training-free alternative, address-
ing concerns about computational costs and human effort required for data la-
beling. The idea of CD is to intervene in the decoding process of LVLMs by
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amplifying the language prior through distorted inputs and contrasting the out-
put distribution with the distribution derived from original inputs. While this
approach effectively mitigates hallucinations and computational overhead, it still
increases the inference time by calculating two output distributions.

In this work, we investigate the potential of probabilistic hallucination de-
tection for Efficient Contrastive Decoding (ECD). During the decoding process,
token scores are contrasted with hallucination scores to suppress hallucinations.
We employ the idea of meta classification [6l24] to train a lightweight detector
to estimate hallucination scores based on hallucination features derived from
the model output. By investigating features from intermediate LVLM layers, we
achieve area under precision recall curve values [7] of up to 74.05%. In contrast
to existing CD methods, our approach requires only one forward pass of the
LVLM followed by the lightweight hallucination detection, effectively reducing
the inference time. Moreover, instead of amplifying hallucinations through in-
put uncertainty, we directly learn hallucinated concepts from internal LVLM
calculations, outperforming recent CD methods across several state-of-the-art
LVLMs and benchmarks. In detail, ECD mitigates the hallucination rate by up
to 5.74pp, i.e., 32% in open-ended tasks and improves F1 Scores by 23.02pp, i.e.,
33% in discriminative VQA benchmarks, while adding only minor computational
overhead to the decoding process. Our main contributions are as follows:

— We propose new hallucination features to train a powerful lightweight hal-
lucination detector.

— Based on this detector, we introduce ECD, a lightweight and training-free
decoding method that effectively mitigates hallucinations in LVLMs by pe-
nalizing mendacious tokens through hallucination scores.

— Through extensive experiments, we show the effectiveness of our approach
outperforming state-of-the-art methods on various benchmarks and in com-
putational time.

2 Related Work

2.1 Hallucination Mitigation for LVLMs

The research area of vision-language pre-trained models has made substantial
progress by incorporating Large Language Models (LLMs) building the power-
ful Large Vision Language Models (LVLMs). In general, LVLMs consist of (i) a
vision encoder to extract vision features from the input image, (ii) a cross-modal
alignment module, which aligns the visual and language features, and (iii) an
LLM, which generates the text response. Despite remarkable zero-shot capabil-
ities in multimodal tasks, LVLMs suffer from hallucinations, i.e., they generate
answers that do not align with the input image. Several hallucination mitiga-
tion methods have been proposed comprising new instruction tuning datasets
for LVLM retraining [ITJI2/17], leveraging expert models for post hoc halluci-
nation correction [46/41], or incorporating object grounding features [23/4130].
However, these methods require extensive data collection and annotation, LVLM
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retraining or architecture changes, which can be time-consuming and computa-
tionally costly. To cope with this problem, simple contrastive decoding strategies
have been introduced, which contrast the output distributions with original and
distorted inputs during inference. Based on the observation that hallucinations
often occur due to the overreliance of LVLMs on language priors [35], the au-
thors of Visual Contrastive Decoding (VCD) [25] propose to contrast the origi-
nal output distribution with the distribution derived from noisy input images to
subtract the language bias from the original distribution. Similarly, Instruction
Contrastive Decoding (ICD) [43] adds prefixes to the text input to increase mul-
timodal alignment uncertainty and finally contrasts the resulting distribution
with the original output. Although these methods successfully mitigate halluci-
nations, they increase the inference time by performing one forward pass with
original inputs and one with distorted inputs. Instead, we propose to contrast
the output distribution with hallucination scores derived from internal LVLM
calculations using meta classification, which effectively reduces computational
costs during contrastive decoding.

2.2 Meta Classification for Hallucination Detection

In order to judge the reliability of LVLM responses, different hallucination de-
tection methods have been introduced. These methods either apply a pipeline
of stacked LLMs and LVLMs [19044] to detect hallucinations as a post hoc
method or train L(V)LM-based classifiers [20/12] using hand-crafted halluci-
nation datasets. Since these methods are computationally costly, the authors
of MetaToken [24] introduced a lightweight and simple hallucination detection
method based on meta classification [6]. In general, meta classification refers
to the classification of true and false predictions based on uncertainty features
derived from the model output. This idea has been applied to various fields
like image classification [3], semantic segmentation [32I3619], video instance seg-
mentation [33], and object detection [22I38]. In [24] new input features for the
hallucination detection problem have been proposed that outperform classical
uncertainty-based features and can be derived from internal LVLM calculations.

3 Method

3.1 LVLM Decoding

In general, LVLMs generate text responses in an autoregressive way by predicting
the probability distribution over the dictionary V based on the input image v, the
input query ¢, and the sequence already generated. In generation step ¢, the next
token y; € V is generated by sampling from this distribution. Mathematically,
this process can be formulated as

Y ~ po(Ye|v, 4, y<t), (1)

where 6 denote the LVLM parameters and y<: = (yo,...,y:—1) the generated
sequence up to generation step t — 1. Note that a perfect model should assign
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Fig. 1: Visualization of (a) log probability values and (b) hallucination scores for
true and hallucinated tokens according to the MSCOCO CHAIR evaluation (see

Sec. .

high probabilities to true tokens and low probabilities to hallucinations. During
this decoding mechanism, hallucinations might be generated when tokens with
low probabilities are sampled from py(y:|v, ¢, y<¢+). However, as we can see in
Fig. the phenomenon of hallucinations often occurs, as the model assigns high
probability values to hallucinated tokens. Our approach corrects this undesired
behavior by shifting the final distribution towards true tokens, reducing the
probability assigned to hallucinations.

3.2 Probabilistic Hallucination Detection

As we have seen in the previous section, the probability distribution calculated
during LVLM decoding does not properly distinguish between true and halluci-
nated tokens. The idea of meta classification is to learn this classification from
hallucination features, which are derived from internal LVLM calculations. By
learning from interactions and coherences of these features, the classifier can
successfully distinguish between true tokens and hallucinations (see Fig. |1b]).
To train our classifier, we build on the work of [24] and extend the set of input
features to enhance the hallucination detection capabilities. While the features
from [24] are based on the last LLM layer, we integrate further information from
the preceding layers into our classifier. This idea is motivated by findings from the
LLM literature [A7/I] indicating that the middle layers contain information about
the reliability of the generated response. To this end, let N denote the number
of LLM transformer layers, let vy, ..., v, denote the image tokens derived from
the vision encoder and alignment module, and qq, ..., g,+¢ the textual tokens
representing the input query ¢ and the sequence y.;. The concatenated sequence
of visual and textual tokens is fed into the LLM and successively processed by
each layer i calculating the hidden states {h{, ..., hi+(w+1)+t} withi=1,...,N.
Finally, the vocabulary head ¢(-) predicts the probability distribution for the
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next token as

Po(Ye|v, 4, y<t) = SOftmaX[Qb(hi\:-(w_H)_H)]ytv Yy € V. (2)

In order to extract information from the preceding layers, the early exit method
[42/34)39] applies the language head to the hidden states of the earlier layers:

pé(yth}a q, y<t) = softmax [¢(h2+(w+1)+t)] ye’ (&S {17 R ?N} (3>

For a shorter notation, we write p}. Moreover, let Att;’tg (j) denote the attention
on token j in generation step ¢ for layer ¢ and attention head g withg =1,...,G.
With this notation, we introduce new features based on intermediate layers:

— the negative log-likelihood for all layers

— the Kullback-Leibler (KL) [37] divergence between the preceding layers and
the last layer

N
i p .
K'(y:) = KL(py' |lph) = pp’ 10gpiia i=1,...,N—1 (5)
0

— for each attention head, the entropy of the image attention over the layers

Vk,9

N
1 7 i
Eaer(y,) = -¥ D At (ve) log Attp? (vg), g=1,...,G (6)
i=1

averaged over the image tokens with

1 u
1 T _ 1 T
Egaye (yt) = T s Eviy; (yt) (7)

— for each layer, the entropy of the image attention over the attention heads

G
ERed(y, Z tth9 (vy) log Atth9 (vy), i=1,...,N (8)

averaged over the image tokens with

B = o S R ©

k

We aggregate the features from [24] (see supplementary material A) and our
proposed inputs to train the classifier. Let M denote the set of hallucination
features and m,, the corresponding vector for a generated token y; € V. The
meta classifier can be defined as

fRME 10,11 (10)
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Following [24], we use the CHAIR evaluation [35] to extract true (z; = 0) and
hallucinated (z; = 1) tokens from LVLM responses to build our training and
validation data with standardized inputs m,, and corresponding labels z; as

{(my,,z) | 1=1,...,L}. (11)

Once the classifier is trained, we can detect hallucinations during the LVLM
generation process by computing the proposed features and applying the classi-
fier afterwards as

L pryelv,qoy<e) > 7
f(my,) = o I (12)
0, pryelv,q,y<t) <7

with the estimated probability ps(y:|v,q,y<¢) for tokens to be hallucinated, re-
ferred to as hallucination scores, and the threshold 7 controlling the precision-
recall ratio. Note that the input vector m,, can be calculated in an automated
manner based on internal LVLM calculations only, without any knowledge of the
ground truth data.

3.3 Efficient Contrastive Decoding

By directly learning hallucinated concepts, we suppress the generation of halluci-
nations during the decoding process without an additional LVLM forward pass.
In contrast to existing methods, which model the language bias of LVLMs by gen-
erating a second output distribution with distorted inputs, we apply a lightweight
classifier on the LVLM output to obtain hallucination scores ps(y¢|v,q, y<t),
adding only minor computational overhead to the decoding process. At genera-
tion step t, the contrastive distribution is computed by subtracting the hallucina-
tion scores from the log probabilities log pg (y¢|v, ¢, y<¢) to penalize hallucinations
while maintaining high probabilities for true tokens:

Pecd(yi|v, ¢, y<i) = softmax[(1 + ) log po(y:|v, ¢, y<i)

(13)
— alogpf(yt|v,qu<t)]v

where a controls the magnitude of hallucination correction. Note that for o = 0,
Pecd 18 equal to the initial LVLM distribution. Moreover, our proposed efficient
contrastive decoding can be integrated into various decoding strategies such as
the standard greedy search, beam search [10], and nucleus sampling [14].

3.4 Adaptive Plausibility Constraint

We follow the implementation of VCD [25] and ICD [43] and incorporate an
adaptive plausibility constraint (APC) [27] based on the confidence level of the
LVLM distribution to maintain high probabilities for semantically trivial tokens.
By refining the final contrastive distribution, APC effectively prevents the gen-
eration of implausible tokens, and thus preserves the semantic accuracy of the
response. This leads to the final formulation of our proposed decoding strategy:
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Y ~ pecd(yt|vv q, y<t)7 SubjeCt to

14
Ve € Vhena =1 €V | poltelv,q.9<r) = Broaxpo(wlo.qva)y (Y

with truncation parameter 5 € [0, 1], where 8 = 1 implements the standard
greedy search algorithm.

4 Experimental Setup

4.1 Hallucination Detection

We evaluate the information content of our proposed input features (]JM| = 169)
to learn the differentiation between true and hallucinated answers. First, we
sample 5, 000 images from the MSCOCO [29] validation set and apply the prompt

"Describe all objects in the image."

to generate training and validation data for the probabilistic classifier. This
results in approximately 30.000 data points depending on the number of objects
generated by the respective LVLM (see [24]). As in [24], we employ a logistic
regression (LR) and gradient boosting (GB) classifier, which have shown superior
performance compared to small neural networks in previous studies [33], and use
the features from [24] as our baseline. In detail, we use the LRE| classifier with saga
solver and the GBE| classifier both with max_iter = 1000 and scikit-learn version
1.5.2. The detection results are evaluated in terms of accuracy (ACC), area under
receiver operator characteristic curve (AUROC) and area under precision recall
curve (AUPRC) [7]. We average our results over ten randomly sampled training-
validation splits using a ratio of 80% training data and 20% validation data.

4.2 Datasets and Evaluation Metrics

CHAIR: The Caption Hallucination Assessment with Image Relevance (CHAIR)
[35] metric is widely used in open-ended image captioning tasks and measures
the hallucination and coverage rate of LVLMs by checking extracted objects
from the generated response against MSCOCO ground-truth labels. CHAIR is
defined on the instance level CHAIR,; and sentence level CHAIR, as

[{hallucinated objects}|
|{all objects mentioned}|’

|[{mentioned objects}|
[{labeled objects}|

{captions with hallucinated objects}|
[{all captions}| '

For the evaluation of our proposed contrastive decoding method, we sample
additional 500 images from the MSCOCO validation set, which do not overlap
with the hallucination detection training and validation data.

CHAIR; = Coverage =

and CHAIR, = |

(16)

3 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html

“ https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
HistGradientBoostingClassifier.html
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AMBER: An LLM-free Multi-dimensional Benchmark (AMBER) [21]. Since
our probabilistic classifier was trained on the MSCOCO dataset, which might
lead to biased results in the preceding evaluation, we additionally evaluate our
method on the AMBER dataset, which covers a more diverse range of object
categories. In detail, AMBER covers 337 objects compared to 80 categories for
the MSCOCO dataset. The open-ended image captions are again evaluated using
CHAIR,;, CHAIR,, and Coverage metrics.

POPE: The Polling-based Object Probing Evaluation (POPE) [28] is a discrim-
inative VQA benchmark to assess the quality of LVLMs with respect to object
hallucinations. In detail, POPE uses the template

"Is there a {object} in the image?”

and applies three different sampling strategies to generate negative prompts,
which refer to non-existent objects. The random (rand.) sampling chooses the
probing objects randomly, popular (pop.) samples from high-frequency objects
and adversarial (adv.) samples among objects, which frequently co-occur with
the ground-truth objects. Positive prompts are generated on the basis of ground-
truth data. The POPE benchmark covers three datasets, MSCOCO [29], A-
OKVQA [40], and GQA [I6]. For each dataset, POPE samples 500 images from
the validation sets and formulates 6 probing questions (3 positive and 3 nega-
tive prompts) for each image and sampling strategy, yielding a total of 27,000
question-answer pairs. The results are evaluated in terms of Accuracy and F1
Score.

MME: The Multimodal LLM Evaluation (MME) benchmark [2] is another dis-
criminative VQA benchmark, which measures perception and cognition abilities
of LVLMs on 14 subtasks comprising 1,193 images. For each image, there is one
positive and one negative question. The evaluation metric is a combined score of
the accuracy over all questions and the accuracy+, which is based on each image,
that is, both questions need to be answered correctly. Following [25], we average
the results over five runs. The standard deviations are given in parentheses.

4.3 Baselines and Implementation Details

We evaluate our proposed ECD method on three state-of-the-art LVLMs, LLaVA
1.5 [31], InstructBLIP [5], and MiniGPT-4 [8] with Vicuna-7B LLM decoder, us-
ing nucleus sampling [I4] with top_p = 0.9. The detailed configuration settings
applied in our experiments are summarized in Tab. [T} We compare our approach
against regular decoding (denoted as "regular" in our tables) and the contrastive
decoding methods VCD [25] and ICD [43]. Throughout our experiments, we use
a = 1 unless explicitly stated otherwise. All experiments are performed on a
single A100 GPU.
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Table 1: LVLM Generation Configurations. The generation configurations
applied in our experiments for nucleus sampling [I4] and greedy search.

nucleus  greedy

parameter sampling search
do_sample True False
top_p 0.9 1
temperature 1 1
num_beams 1 1
max_ length 256 256

min_length
repetition penalty
length penalty

—_ =
—_ ==

Table 2: Detection Results. Detection results for the LVLMs LLaVA 1.5 (LV),
InstructBLIP (IB), and MiniGPT-4 (MG) with respective hallucination rates
CHAIR; (C;). The best results in each block are in bold face. The standard
deviations are given in parentheses.

LVLM ACC 1t AUROC 1 AUPRC 1
(C; in %) LR GB LR GB LR CGB
LV [24] 87.1F%2 g7.7(F0:3) [ 89 9F0-H 90 gF0-D [ 68 9(F LD 71 5(F0-9)
(18.61) Ours 87.9302) 88.3(£0:3) | 91 3(20:3) 91 g(*0-4) | 79 1(1.2) 74 1(*1.0)
B 24] 91.8F% D 91.9F02 [90.2ELD 90 4FLD [ 56, 7(F5-D 56 7(34-3)
(10.13) Ours 92.5F%D 92 3(+0.1) | g7 g(F1.0) g1 5(£08) | g1 (44 g 1(£44)
MG [24] 89.6F03 89.7(F03) 88 6(F1-8) g8 8(FLD) [ 56 6(+6-5) 56 6(+F>-9)

(13.05) Ours 90.4*%2 90.5(*0-3) | 90.8(+1-6) 90.9(*12) | 62.5(£88) (2 2(£5-5)

5 Results

5.1 Hallucination Detection Results

In this section, we evaluate the information content of our proposed input fea-
tures (see Sec. for probabilistic hallucination detection. The focus of our
evaluation is on the AUPRC values as we observe highly imbalanced datasets,
i.e., low hallucination rates. The results for the LR and GB classifier are stated
in Tab. [2l Our new input features outperform the baseline features in all settings
by up to 5.89pp in AUPRC values. While the LR and GB classifiers show equal
performance on InstructBLIP and MiniGPT-4, we observe superiority of the GB
model for LLaVA 1.5 with an improvement of 1.96pp in terms of AUPRC. Thus,
we employ the GB model in the following experiments.
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Table 3: Discriminative Results on POPE. Experimental results on the
POPE benchmark in terms of accuracy (Acc.), F1 Score and the average infer-
ence time per question (time). The best results in each block are in bold face.

LLaVA 1.5 InstructBLIP MiniGPT-4
time | Acc. T F11 |[time| Acc.t F11 |time] Acc.tT F17
regular 0.7 87.57 8790 | 0.5 83.90 84.01 1.3 54.77  52.67
"g VCD 1.3 88.10 88.49 1.0 86.00 85.92 2.6 55.63 51.33
€ ICD 1.2 8770 87.79| 0.8 86.67 85.43 | 1.6 57.57 59.60
Ours 0.7 89.00 89.28| 0.7 89.00 88.69| 14 69.07 72.43
8 regular 0.6 83.50 84.57 | 0.5 77.63 79.18 1.3 48.60 49.31
e gl VCD 1.2 85.03 8587 | 1.0 7810 79.46 | 2.6 50.30 48.50
8 a2 ICD 1.2 8593 8646 | 0.8 7947 7893 | 1.6 5270 57.68
= Ours 0.7 86.97 87.60| 0.7 82.57 83.23| 1.4 58.63 66.27
regular 0.6 77.93 80.38 | 0.5 73.90 76.52 | 1.3 47.87 48.96
%' VCD 1.2 7823 80.62| 1.0 7510 7736 | 2.5  48.83 47.77
s ICD 1.3 80.07 81.53 0.8 7T.TT .7 1.7 52.63 57.90
Ours 0.7 79.37 81.58| 0.7 78.33 79.93| 14 57.27 65.54
regular 0.6 84.77 86.22 0.5 82.03 82.98 1.3 49.40 47.40
"g VCD 1.2 84.30 85.92 1.0 82.70 83.42 2.6 52.13 48.49
€ ICD 1.2 8520 86.50 | 0.8 85.57 84.80 | 1.6 54.83 58.14
Ours 0.8 86.50 87.83| 0.7 87.87 88.16| 1.4 65.70 70.42
é regular 0.6 7817 8147 | 0.5 7583 7835 | 1.3 46.37 47.50
; 8; VCD 1.2 7850 81.73| 1.0 76.83 7893 | 2.6 47.00 44.87
o ~ 1ICD 1.2 80.20 82.69 0.8 79.33 79.39 1.6 49.10 55.13
< Ours 0.8 80.03 82.96| 0.7 80.23 82.13| 1.4 58.13 66.11
regular 0.6 68.80 75.25 0.5 70.60 74.87 1.3 43.90 46.11
% VCD 1.1 69.20 75.65 1.0 70.47 74.69 2.6 45.77 45.31
s ICD 1.2 71.63 76.98| 0.8 72.03 7390 | 1.6 45.77 52.74
Ours 0.8 69.07 75.80 0.7 72.40 76.72| 14 53.70 63.57
regular 0.6 84.07 85.74| 0.6 79.97 8095 | 1.3 50.93 50.10
g VCD 1.2 8480 86.36 | 1.0 81.53 8233 | 2.5 53.80 53.58
€ ICD 1.2 86.53 87.65 0.8 83.03 81.84 1.6 55.10 59.05
Ours 0.8 86.43 87.78| 0.7 86.07 86.33| 1.4 64.10 69.70
regular 0.6 74.60 78.99 | 0.6 73.57 76.34 1.3 45.43 47.45
g, & VCD 1.2 73.40 78.16 1.0 74.13 76.88 2.5 49.33 51.28
O & ICD 1.1 75.73 79.72| 0.8 7593 76.22| 1.6 47.83 55.20
Ours 0.8 74.63 79.14 0.7 77.63 79.77| 14 55.50 64.99
regular 0.6 69.10 75.50 | 0.6 68.73 73.18 1.3 43.97 47.42
_é VCD 1.2 69.73 75.94| 1.0 70.57 7443 | 2.6 46.97 49.06
s  ICD 1.1 70.03 75.89 0.8 71.47 72.84 1.6 47.23 5491
Ours 0.8 69.10 75.89 0.7 72.03 76.12| 14 52.80 63.80
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Table 4: Discriminative Results on MME. Experimental results on the MME
benchmark in terms of Perception and Cognition scores [2]. The best results in
each block are in bold face.

LLaVA 1.5 InstructBLIP MiniGPT-4
Perception T Cognition T‘ Perception T Cognition 1 ‘Perception 1 Cognition 1

regular 129113330 317 4F210 11117 5F25:6) 399 1(F33:3)] 409 9F20-2) 143 6(F13-0)
VCD 1288.6(334) 338.9(+16:9) | 1155 9(£29:9) 991 1(*164) | 355 g(£22:2) 140 1(+19.5)
ICD 1314.4(¥273) 318.9(*224) |1258,6(F197) 295 4(F354) |514,2(F294) 137 g(*13.1)
Ours 1400.3(13-9) 346.3(F19-2)| 1105.2(F17-4) 989 3(£13:5) | 509 g(+F17-1) 176, 4(*25-1)

5.2 Discriminative Results

POPE: Tab. 3] summarizes our results on the POPE dataset in terms of accu-
racy (Acc) and F1 Scores. Our proposed ECD method is superior to the baselines
in almost all settings while maintaining low computation costs, improving the F1
Score by up to 23.02pp, i.e., 33%. Note that although the probabilistic hallucina-
tion detection was trained on the MSCOCO dataset, our results demonstrate a
consistent performance improvement across all datasets (MSCOCO, A-OKVQA,
and GQA) underlining the ability of the meta classifier to judge hallucinations on
new data. Furthermore, we observe consistent performance across all sampling
strategies (random, popular, and adversarial) showing that the meta classifier
effectively learned hallucinatory concepts beyond the language bias induced by
the LVLM training [35]. For a detailed analysis of the precision and recall values,
we refer to supplementary material B, unveiling the outstanding ability of our
method to accurately negate negative prompts, which contain hallucinations.

MME: The MME benchmark evaluates hallucinations beyond the object level
and measures general perception and cognition abilities. Tab. [] presents our
results. For LLaVA 1.5 and MiniGPT-4, our method not only improves the per-
ception ability, but also enhances the performance in cognition and reasoning
tasks compared to the baseline methods. Moreover, the detailed evaluation of
the 14 subtasks and computational time in supplementary material B shows that
ECD outperforms the baselines on most of these individual tasks and demon-
strates the superior performance-cost trade-off, that is, ECD outperforms the
baselines with respect to performance and inference time. Note that although
the averaged ECD perception and cognition scores for InstructBLIP are below
the baseline scores, our analysis of the subtasks shows that ECD outperforms
the baselines on individual tasks while maintaining low computational costs.
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Table 5: Generative Results. Experimental results on the CHAIR benchmark
for the open-ended captioning tasks using the MSCOCO and AMBER datasets.
The results are stated in terms of average inference time per image caption
(time), CHAIR; (C;), CHAIR, (C,), and Coverage (Cov.). The best results in
each block are in bold face.

MSCOCO [29]
LLaVA 1.5 InstructBLIP MiniGPT-4
time | C; | Cs | Cov. ftime | C; | Cs | Cov. ttime | C; | Cs | Cov. 1
regular 2.7 17.86 55.00 82.14| 3.5 9.26 30.80 90.74| 10.1 11.60 27.47 88.40
VCD 5.3 16.32 53.80 83.68| 6.3 8.45 30.80 91.55| 18.9 10.58 28.60 89.42
ICD 4.5 14.27 45.40 85.73| 5.8 10.92 37.80 89.08 | 15.4 10.51 28.20 89.49
Ours 3.6 12.1243.40 87.88| 4.6 7.28 26.60 92.72| 12.8 9.25 31.66 90.75

AMBER [21]
LLaVA 1.5 InstructBLIP MiniGPT-4

time | C; | Cs | Cov. f|time | C; | Cs | Cov. ttime | C; | Cs | Cov. 1

regular 2.2 9.99 45.56 51.97| 2.9 8.74 39.38 51.56| 9.4 16.68 61.78 57.71

VCD 4.1 8.16 3842 51.63| 5.4 7.73 34.36 50.50| 17.4 14.18 53.09 58.23

ICD 3.5 8.46 36.87 49.98| 5.3 8.11 35.71 49.02| 15.3 16.83 58.11 55.35

Ours 2.8 7.04 33.20 51.21| 4.2 6.00 26.45 50.39 | 12.4 13.14 61.58 61.03

5.3 Generative Results

MSCOCO: In addition to the discriminative results, we also evaluate our
method on the open-ended captioning task. Note that for MiniGPT-4, we apply
the parameter a = 6 (see Sec. for an ablation study for «). The results are
summarized in Tab. [5] ECD distinctly reduces the hallucination rate both at
the instance and sentence level, while simultaneously increasing the detailedness
of the generated response in terms of Coverage. In all experiments, ECD is su-
perior to the baseline methods VCD and ICD with respect to performance and
computational time. Only in the case of MiniGPT-4, ECD increases the sen-
tence level hallucination rate CHAIR, while still decreasing the total number of
hallucinations CHAIR,; and simultaneously increasing the Coverage. Compared
to regular decoding, ECD reduces the instance level hallucination rate by up to
5.74pp, i.e., 32% while at the same time increasing the Coverage by 5.74pp, i.e.,
7% while maintaining low computational costs.

AMBER: Since the ECD meta classifier was trained on the MSCOCO dataset,
we investigate the potential of our classifier on new concepts. The results in
Tab. |5| underline our findings from the discriminative results (Sec. . Again,
ECD successfully suppresses hallucinations due to the classifier’s ability to judge
hallucinations on new data. More precisely, we reduce the instance level hallu-
cination rate by 2.95pp, i.e., 30% while maintaining the detailedness of the gen-
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Table 6: Ablation: Decoding Configuration. Ablation results on the discrim-
inative POPE benchmark [28] for nucleus sampling [I4] decoding with top_p =1
and greedy decoding. The best results in each block are in bold face.

LLaVA 1.5 InstructBLIP MiniGPT-4
time | Acc. T F171 |time] Acc.t F11 |[time] Acc.t F11
regular 0.6 8247 8355 | 0.5 7453 7597 | 1.3 4537 44.87
I VCD 1.2 84.13 85.13 1.0 7753 79.13 | 2.6  48.33 46.40
s ICD 1.2 85.70 86.22 | 0.8 79.80 79.37 1.7 52,57 57.07
Ours 0.8 86.20 86.85| 0.6 82.07 82.87| 1.4 58.07 66.26
regular 0.6 87.70 88.21 0.5 82.40 83.36 1.3 71.20 73.35
VCD 1.2 87.70 88.21 0.9 81.03 8199 | 2.6 6860 68.11
ICD 1.2 88.10 88.31 0.8 81.87 81.10 1.7 65.80 70.55
Ours 0.8 87.60 88.13 | 0.7 83.27 83.83| 1.4 60.17 69.98

greedy

—e— LLaVA 1.5 ¢ InstructBLIP —v— MiniGPT4

16 :
: . e ‘\/

i ~ I
<121
T v
O 10 5. S e S R
3 —y
8 *
*
1 2 3 4 5 6

Fig.2: Ablation study for hyperparameter a.

erated response and low computational costs. While we see a minor decrease in
Coverage for LLaVA 1.5 and InstructBLIP, ECD effectively reduces the halluci-
nation rate in terms of both, CHAIR,; and CHAIR,. In the case of MiniGPT-4,
we again observe an increase in CHAIR; while effectively improving the instance
level hallucination rate CHAIR,; as well as the Coverage.

5.4 Ablations

LVLM Decoding Configuration: We conduct additional experiments for the
POPE MSCOCO popular setting using nucleus sampling with top_p = 1 and
greedy search decoding. The results are summarized in Tab. [6] While the results
for regular nucleus sampling with top_p = 1 are below the top _p = 0.9 results
from Tab. [3] all contrastive decoding strategies maintain the performance in the
top_p = 1 setting. Again, our method outperforms VCD [25] and ICD [43] with
respect to performance and computational time. Note that for the greedy search
setting, the contrastive decoding methods achieve a minor performance increase
only, where for MiniGPT-4 regular decoding performs best.
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ECD Hyperparameter: Moreover, we investigate the influence of the hy-
perparameter « in our method on the CHAIR open-ended text generation task.
Fig.[2|depicts the results. While for LLaVA 1.5 and InstructBLIP the best results
are achieved applying a = 1, for MiniGPT-4 the best performance is achieved
with a = 6, i.e., a higher magnitude of hallucination correction. However, note
that for MiniGPT-4 different a values result in minor performance changes in
terms of the hallucination rate CHAIR,; only.

6 Limitations

The focus of our paper is on visual hallucinations of LVLMs, where contextual
hallucinations in LLMs might have different origins, which need to be studied
to ensure a successful transfer of our method to the unimodal domain. How-
ever, note that many hallucination features are specifically designed for the
transformer architecture, which can be directly transferred to LLMs, further
broadening the impact of this work. Moreover, recent advances in video LVLMs
motivate the investigation of temporal hallucinations, a problem we will tackle
in future work.

7 Conclusion

In this paper, we investigate the power of probabilistic hallucination detection
for contrastive decoding. We introduce Efficient Contrastive Decoding (ECD),
a lightweight and training-free method, which shifts the LVLM output distribu-
tion towards accurate responses during decoding by penalizing hallucinations.
Extensive experimental results demonstrate the efficacy of our proposed method,
which outperforms state-of-the-art methods on various LVLM baselines. Our ex-
periments show that ECD not only mitigates hallucinations but also enhances
the perception capabilities of LVLMs. Moreover, in contrast to existing meth-
ods, our lightweight approach is computationally efficient, adding only minor
computational overhead to the decoding process.

Ethics Considerations Our work addresses the hallucination issue in state-of-the-art
LVLMs enhancing the reliability and integrity of LVLMs in real-world scenarios, espe-
cially in safety-critical applications such as autonomous driving or medicine. Moreover,
our work does not include any personal data, human subjects or sensitive data.

Disclaimer The results, opinions and conclusions expressed in this publication are
not necessarily those of Volkswagen Aktiengesellschaft.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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