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Abstract. Computerized adaptive testing (CAT) allows for assessing
latent traits and abilities of students with fewer items and in less time
due to an individualized item selection algorithm based on previous re-
sponses. Following recent machine learning solutions to CAT, we study
learning both the underlying response model for cognitive diagnosis and
a policy for the item selection algorithm jointly from offline training data.
While the task of the response model is to predict performances on all
unseen items for a user, the goal of the policy is to select the subset of
items which maximizes information for the response model. Since subset
selection is a combinatorial problem, we propose to leverage an iterative
self-improvement approach to policy learning from the field of neural com-
binatorial optimization while accounting for interdependencies between
response model and policy. We specifically focus on the generalization
capabilities of transformer-based models and, in contrast to related work,
do not rely on optimization of local variables during inference. We report
on empirical results.

Keywords: Educational data mining · Computerized adaptive testing ·
Neural combinatorial optimization · Self-improvement.

1 Introduction

Classical test theory [37,26] focuses on estimating latent traits and abilities of
students by observing their responses in tests. In computerized adaptive testing
(CAT), questions are adaptively selected according to a student’s performance
on previously seen items. Due to this personalization, selected questions are on
average better suited to assess latent traits compared to classical test theory,
rendering adaptive tests more accurate and shorter in terms of test length and
time [43,42]. The theoretical foundation of CAT is closely related to item response
theory (IRT) [23,29,19] that introduces a large family of models to estimate latent
traits of students. Traditional CAT approaches use IRT-based models to estimate
latent abilities of students and difficulties of questions to predict future responses
on unseen questions and to guide item selection.

Recent machine learning approaches to CAT proposed to employ learned
policies for question selection [10,51] and have framed CAT as an iterative
* Authors contributed equally to this work.
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subset selection problem [52] while deep learning architectures such as the neural
cognitive diagnosis model (CDM) [45] have been proposed to replace classical
IRT-based response models.

In this paper, we leverage the observation that the CAT setting is related to
problem settings and solutions from the field of neural combinatorial optimization
(NCO), where NCO is concerned with learning policies to obtain generalizable
solutions to combinatorial problems [16]. Specifically, we propose novel response
and policy models that build upon transformer- [40] and NCO-architectures
[41,2], and adapt a self-improvement training approach to policy learning for
NCO [28] for CAT.

The remainder is structured as follows: Section 2 introduces the problem
setting. We present our main contribution in Section 3 and report on experiments
in Section 4. Section 5 briefly reviews related work, and Section 6 concludes.

2 Preliminaries

The goal in computerized adaptive testing (CAT) is to assess latent traits and
abilities of students as accurately as possible by individually selecting questions
for every student. CAT models thus consist of (i) a response model for cognitive
diagnosis to estimate student abilities and (ii) a policy that iteratively adapts the
selection of questions to a given student. In practice, both models are trained on
the outcomes of a calibration pre-study and then applied to test unseen students.

Given a calibration study where N students answered K questions.1 The
calibration study is represented by N sets Qn, 1 ≤ n ≤ N , of cardinality K.
Every element of Qn is a tuple (qnk , r

n
k ), consisting of the k-th question that has

been answered by the n-th student. The binary response variable rnk indicates
whether her answer was correct (rnk = 1) or incorrect (rnk = 0). In the remainder,
Qn is also referred to as the question bank of the n-th student.

Similar to [52], we phrase learning the policy as a subset selection task: For the
n-th student, we iteratively aim to select the subset S ⊂ Qn with |S| = T ≤ K
questions that provides maximal information about her latent ability θntrue. Note
that selecting the subset iteratively is key to the CAT setting as this allows us to
update the response model with observed responses. Initializing the subset at
t = 0 with Sn0 = ∅, we proceed as follows. At time 0 < t ≤ T , we have selected t
questions Snt = {(qn1 , rn1 ), ..., (qnt , rnt )}.2 A straightforward way to learn the latent

1 Without loss of generality, we do not assume that all students answer the same K
questions; every student may actually have answered a different number of questions.
To not clutter notation, we ignore extra indices and write K for all students.

2 The selection of questions induces a partial permutation of elements in Qn forming
the set Snt . As above, we prefer not to clutter notation and refrain from defining a
proper permutation operator and simply enumerate the tuples by their time index
t. That is, we lose a clear identifier and simply consider elements (qj , rj) ∈ Snt and
(qj , rj) ∈ Qn as being different. It should be clear from the context whether we refer
to the numbering in Snt or Qn.
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ability θnt of the n-th student is offered by minimizing

θnt = argmin
θn

∑
(q,r)∈Sn

t

ℓ(r, pψ(q; θ
n)), (1)

where ℓ(· , ·) is an appropriate loss (e.g., binary cross entropy), and pψ(·) a
response model estimating the probability of a correct response, e.g., a neural
cognitive diagnosis [10] or Rasch model [29], with global parameters ψ. In practice,
these parameters are often fixed and, for example, correspond to item difficulties
in IRT [29]. The underlying assumption is that a well-estimated response model
is able to predict student performance accurately, resulting in a small loss on the
subset Snt .

Our approach grounds on the idea that the performance of the n-th student
on question bank Qn serves as a good proxy for her true but unknown latent
abilities θntrue. This can be shown in the limit by assuming a consistent estimator
of latent abilities and a question bank with infinite cardinality [52]. Hence, given
a learnable policy πϕ with parameters ϕ, we formalize our selection algorithm as

qnt+1 ∼ πϕ(θ
n
t ;Qn\Snt , pψ),

and minimize the empirical risk jointly over parameters ϕ and ψ on so far unused
(i.e., not yet contained in Snt ) elements of the question bank Qn. We arrive at
the following optimization problem,

min
ψ,ϕ

1

N

∑
n

∑
(q,r)∈Qn\Sn

t

ℓ(r, pψ(q|θnt )) (2)

s.t. θnt = argmin
θn

∑
(q,r)∈Sn

t

ℓ(r, pψ(q; θ
n)),

where subsets Snt are sampled autoregressively from policy πϕ.
An alternative to learning a policy has been introduced by uncertainty sam-

pling [18,33]. The idea of uncertainty sampling is to select at every time the
question that the response model is most uncertain about. That is, at time t+ 1,
uncertainty sampling chooses the question q for which holds

q = argmin
qm

|pψ(qm|θnt )− 0.5|. (3)

This strategy relies on a well-calibrated response model. Proposition 1 shows
that uncertainty sampling is optimal if the response model is optimal as well.

Proposition 1. A perfectly calibrated response model for which

pψ(q|θnt0) = E [r|q, θntrue]

holds for all (q, r) ∈ Qn and 1 ≤ n ≤ N renders the uncertainty baseline in
Equation (3) an optimal policy given the learning task as introduced above.
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Proof. Assume the response model pψ(q|θnt ) converges after an update t0 ∈
{1, . . . , T} to the optimal model for student n and the remaining items of the
question bank Qn\Snt0 . This directly implies that ∀ (q, r) ∈ Qn : pψ(q|θnt0) =
pψ(q|θnt≥t0) and hence also pψ(q|θnt≥t0) ≡ E [r|q, θntrue]. Thus, for all t ≥ t0, un-
certainty sampling in Equation (3) trivially picks the question that leads to the
largest minimization of the loss in Equation (2) as all other remaining questions
in Qn\Snt≥t0 are closer to the expected response and realize smaller losses in
expectation. In turn, the policy is optimal for Qn\Snt≥t0 . ⊓⊔

Uncertainty sampling is a greedy heuristic and can lead to suboptimal results
in practice. While the proposition above provides a motivation for its application,
in practice the learned response model will hardly be perfect due to noisy data
(e.g., guessing and slip probabilities or miscalibration). Conditioning the response
model on previously seen question-response tuples in Snt should increase the
quality of the model, since asking more questions should lead to an improvement
of predictive accuracies. That is, we have pψ(q|Snt ) ̸= pψ(q|Snt+1) in general.

3 Toward self-improvement training for CAT

We now propose a deep learning approach that relies on strong generalization
properties of modern deep learning architectures to solve the optimization problem
in Equation (2). Specifically, we develop novel response and policy models for
CAT that leverage the encoder-decoder structure of transformers. Further, we
adapt self-improvement training [28] to learn the policy, leveraging similarities
between our subset selection problem and neural combinatorial optimization.

3.1 Amortized student representation

Instead of local variable optimization per student, we consider the student
representation θnt to be an encoded representation of Snt given by

θnt = pencψ (Snt ),

as obtained by a transformer encoder-like self-attention architecture. The encoder
pencψ (Snt ) itself is part of a response model pψ(q|pencψ (Snt )) = pψ(q|Snt ) that oper-
ates on the observed subsets Snt of questions and responses for student n at time
t. We argue as follows: if we can learn the encoder on calibration data such that
it generalizes well on unseen examples, we may discard local parameter optimiza-
tion per student since all relevant individual traits are already captured by the
encoded representations. Additionally, we can also base the policy model on the
encoded student representation, with parameters either optimized independently
or shared with the encoder. Thus, incorporating an encoder-like self-attention
architecture allows us to discard learning the latent abilities via Equation (1)
and simplify the optimization problem in Equation (2) as

min
ψ,ϕ

1

N

∑
n

∑
(q,r)∈Qn\Sn

t

ℓ(r, pψ(q|Snt )), (4)
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Fig. 1: Sketch of our student representation, where ci(q) denote question features

where subsets Snt of questions-response tuples for student n are sampled from
policy πϕ and ψ and ϕ are global parameters as before. Trusting global parameters
and learned representations to be sufficient for generalization resembles the idea
of amortized inference [49] prominent in variational autoencoders [14,30].

In comparison to classical IRT models [29], however, we lose interpretability by
discarding the explicit representation of the latent student traits θntrue. Instead, we
trade interpretability for a better response model. In cases where interpretability
is necessary, we could either train additional response models or apply post-hoc
and model-agnostic strategies [8,31]. We consider both ideas straightforward
additions to our contribution but focus on the predictive performance that is
integral to personalization in CAT at test time.

Another advantage of our approach is the ability to process possibly rich
feature representations of questions and responses. Recall that the input to
the student encoder is the set Snt of question-response tuples which could be
represented in the form of sets of features. The encoder then operates on a set of
sets, given that the features are discretely tokenizable. To showcase the benefit
of this extension, we experimentally include knowledge components that describe
skills that are necessary to solve a particular question as part of a domain model.
Our approach allows to include any number of descriptive features for questions,
responses, and also students.

Since self-attention is position-agnostic, we apply positional encoding (PE)
to link question-response tuples to the tokenized features (here and elsewhere
we apply PE by element-wise addition denoted by ⊕). In addition, we include
learnable start tokens that enable us to learn a student representation for S0.
The encoder architecture follows a stack of standard transformer encoder layers
[40] comprised of multi-head self-attention, residual connections [11], dropout
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Fig. 2: Sketch of proposed response and policy models

[38], layer normalization [1], and feed-forward neural networks. Since attention in
the transformer architecture scales quadratically [15], our student representation
can be computed in O((fq + fr + fn)

2) where f(·) denotes the number of tokens
in question (fq), response (fr), and student representations (fn) up to time t.
Figure 1 visualizes the model for the student representation.

3.2 Response and policy models

The response and policy models are both based on standard transformer encoder-
decoder architectures [40] where only positional encoding, problem specific mask-
ing in self- and cross-attention and classifier architectures are adjusted. We
present both models in the following sections; see Figure 2 for a visualization of
the two architectures.

Response model The task of the response model is to estimate the probability
that a student answers a question correctly. The model is conditioned on all pre-
viously observed question-response tuples, so that, after having asked t questions,
we can estimate the probability r̂ = pψ(q|pencψ (St)), for every unseen question
q ∈ {q|(q, ·) ∈ Q\St}.

To compute these probabilities, we pass the set of features for a desired
question q as well as a learnable query token into a transformer decoder, where
the self-attention layers operate on question features and the query token. The
cross-attention layers attend from the decoder question representation to the
encoded student representation. The response can be predicted by applying a
binary classifier to the transformed representation of the query token.

Different from standard decoder layers of the transformer architecture, there is
no masking involved, as all tokens representing question q are allowed to attend to
the full representation as obtained via pencψ (St). During training and inference we
repeat the encoded student representation pencψ (Snt ) for each question in Qn\Snt
for efficiency. At time t, self-attention in the decoder scales with O

(
f2q

)
, while
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cross-attention scales with O (fSt
× fq), where fSt

extracts the number of tokens
in the subset St; it usually holds that fq < fSt>0

.

Policy model The encoder of the policy model transforms the set of sets
of tokenized features of available questions q ∈ {q|(q, ·) ∈ Q}, where we apply
positional encoding to inform the transformer about the association between
tokens and questions, i.e. we apply the same positional information to tokens
from the same interaction. The student representation as presented in Section 3.1
results from the application of self-attention in the decoder, which operates on
St (⊕ PE). In the cross-attention layers, student representations obtained via
self-attention on St attend to the candidate questions q ∈ {q|(q, ·) ∈ Q\St} as
transformed by the encoder. To obtain a probability distribution over all candidate
questions at timestep t+1, we apply a softmax to the final cross-attention scores.3
To efficiently train the model via teacher forcing, we train on all q ∈ {q|(q, ·) ∈ Q}
and the complete subset ST , which we treat as a sequence of question-response
tuples with appropriate autoregressive block-structured masking applied in the
self-attention (where all tokens from tuple (qt, rt) can only attend to tokens from
S≤t). In the cross-attention, we mask out all question tokens already included
in St. Self-attention in the encoder scales with O(f2|{q|(q,·)∈Q}|), self-attention in
the decoder with O(f2ST

), while cross-attention scales with O(fST
× f{q|(q,·)∈Q}).

Within our approach this renders the policy model the component with the
highest computational and memory complexity.

Since response and policy models operate on either the same or similar tokens,
we experimented with weight sharing within and between both models. We finally
settled on sharing weights in the encoder and decoder for self-attention in both,
response and policy model (cf. [32]) but dropped sharing parameters between
response and policy model for a lack of noticeable improvements.

3.3 Self-improvement training

In this section, we describe a method to train the policy model on previously
recorded calibration data. Instead of applying reinforcement learning, we choose
to adapt a recent self-improvement training approach proposed for neural combi-
natorial optimization [28] and language models [12]. The idea of this strategy is
to train a model on its own output in a supervised fashion.

Given a trained response model, we sample multiple subsets SnT for every
student from a randomly initialized policy model. To induce a learning signal,
we focus for each student on the sampled subset that achieves the lowest average
binary-cross entropy loss after predicting response probabilities for all unseen
questions. The best subsets are now used as target sequences for training the policy
model in a supervised fashion. When the performance of the policy improves (as
measured by the accuracy of the response model with subsets sampled greedily
from the policy), the response model is finetuned on subsets sampled from the

3 We average over attention heads in our implementation.
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Algorithm 1 Self-improvement training for CAT

Require: Offline train and validation data Dtrain = {Qn}Ntrain
n=1 and Dval = {Qn}Nval

n=1

Require: Response model pψ pretrained on random subsets ST
1: Randomly initialize policy πϕ and set πbest ← πϕ
2: for each epoch do
3: for each n ∈ {1, ..., Ntrain} do
4: Sample m subset candidates Sncandidates := {Sn,1T , . . . , Sn,mT } ∼ πbest

5: Set SnT = argminST∈Sn
candidates

∑
(q,r)∈Qn\ST

ℓ(r, pψ(q|ST ))
6: end for
7: for each batch do
8: Sample tuples (Qn, SnT ) of question bank and corresponding subset
9: Update πϕ with gradient optimizing next-step prediction

10: end for
11: if greedy performance of πϕ on Dval better than πbest then
12: πbest ← πϕ
13: Finetune pψ on SnT ∼ πbest

14: end if
15: end for

new policy. We then continue to sample subsets from the best policy to train
both the policy and finetune the response model in an alternating fashion.

Algorithm 1 sketches the complete training loop. In contrast to [28], we do not
have a fixed objective function but alternate between training policy and response
model. This scheme is motivated by policy-induced shifts in the distribution
of subsets ST selected during adaptive testing, which can be accounted for by
finetuning the response model by training on subsets ST selected by the policy.
We alternate between training both models, since finetuning the response model
will in principle affect the optimal policy. The initial response model is trained on
randomly sampled subsets. We use early stopping on validation data for training
and finetuning the response model as well as for training the policy.

Neural combinatorial optimization deals for example with synthetic traveling
salesman instances and millions of training examples [28]. By contrast, calibration
studies in CAT are usually orders of magnitude smaller than that. Thus, we need
to adapt the strategies used in neural combinatorial optimization to cope with
overfitting and small sample sizes. During training on all student question banks,
we sample sequences anew in every epoch while [28] reuse sampled sequences. We
also optimize the policy with respect to the complete subset instead of optimizing
a single timestep as is done in [28], who argue in favor of a more expressive model
that does not support teacher forcing.

4 Experiments

In this section, we empirically evaluate our approach on real world data, support
the design choices in our student representation and response model on a stan-



Self-Improvement for Computerized Adaptive Testing 9

dardized benchmark, and shed light on the interplay between response model,
learned policies and the uncertainty policy on artificially generated data.

4.1 Computerized adaptive testing

We evaluate the performance of our approach on a real CAT problem from the
NeurIPS 2020 Education Challenge [46]. We train, validate and test on all 6148
available students in 5-folds (training on 60% of the students, using different
20% for validation and testing in each fold). Following related work from neural
combinatorial optimization, we restrict the question bank of each student to
contain maximally 100 questions each, covering all 948 questions in the dataset.

In absence of the true latent abilities of the involved students, we need to resort
to a proxy for a quantitative evaluation and compute predictive performances
on unseen test questions instead [10,52]. In our evaluation we resort to calculate
mean accuracy and AUC for N test students who are not present in the training
data using questions given by Qn\SnT . This out-of-sample evaluation directly
addresses the desired goal of having every student answer every question in
her question bank, but in practice being able to ask her only T questions and
estimating the remaining responses as best as possible.

We compare three versions of our model: a random question selection and
an uncertainty sampling policy, both using the learned response model, as well
as the full model trained with self-improvement. We further compare against an
implementation of BECAT [52]4, applied to a standard IRT [23,29] model, as well
as baseline policies based on maximum Fisher and Kullback-Leibler information
[24,3]. Our implementations build upon the code provided by [19]5. The neural
CDM [45] did not achieve comparable performances and stayed significantly
below the results of the IRT model with a random policy. This is most likely
caused by difficulties in optimizing the neural CDM itself. In the experiments
with our approach we relied on standard ancestral sampling to optimize policy
and response models. Further implementation details are provided in our code
repository for this paper.6

Tables 1 and 2 show the resulting accuracies and AUCs for test lengths
of T ∈ {5, 10, 20}, following the experiment protocol in [52].7 Compared to
adaptive question selection with BECAT, our policy model enables significantly
faster inference by a factor of over 20. Accuracy and AUC results show that
methods building upon our student representation and response model generally
outperform the baseline policies with an IRT model. Overall, uncertainty sampling
with our response model performs best. Although self-improvement training
achieves comparable performance on a test length of 5 the uncertainty sampling

4 BECAT’s results are significantly better than other recent CAT approaches [10,51],
especially on longer test lengths, according to [52].

5 Code available at https://github.com/bigdata-ustc/EduCAT.
6 Experiments in this paper can be reproduced with code and hyperparameters provided

at https://github.com/kainbr/cat_self_improvement.
7 Our experiments differ from [52] and results are not directly comparable.

https://github.com/bigdata-ustc/EduCAT
https://github.com/kainbr/cat_self_improvement
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Table 1: Accuracies on the NeurIPS 2020 Education Challenge. Markers ∗, ◦ and
• indicate whether our method with self-improvement is statistically superior,
equal or inferior to baselines, using a paired t-test at the 0.01 significance level.
Metric@Step Accuracy@5 Accuracy@10 Accuracy@20
IRT w/ Random 0.6538 ± 0.0047 ∗ 0.6693 ± 0.0063 ∗ 0.6798 ± 0.0089 ∗
IRT w/ MFI 0.6669 ± 0.0021 ∗ 0.6815 ± 0.0015 ∗ 0.6915 ± 0.0026 ∗
IRT w/ KLI 0.6626 ± 0.0016 ∗ 0.6787 ± 0.0011 ∗ 0.6891 ± 0.0021 ◦
IRT w/ BECAT 0.6533 ± 0.0010 ∗ 0.6727 ± 0.0031 ∗ 0.6885 ± 0.0017 ∗
Our w/ Random 0.6649 ± 0.0023 ∗ 0.6781 ± 0.0047 ◦ 0.6912 ± 0.0019 ∗
Our w/ Uncertainty 0.6758 ± 0.0034 ◦ 0.6959 ± 0.0033 • 0.7239 ± 0.0047 •
Our w/ Self-Improv. 0.6753 ± 0.0030 0.6855 ± 0.0027 0.6967 ± 0.0034

Table 2: AUC results on the NeurIPS 2020 Education Challenge.
Metric@Step AUC@5 AUC@10 AUC@20
IRT w/ Random 0.7128 ± 0.0049 ∗ 0.7304 ± 0.0068 ∗ 0.7403 ± 0.0093 ∗
IRT w/ MFI 0.7273 ± 0.0022 ∗ 0.7466 ± 0.0022 ◦ 0.7615 ± 0.0032 ◦
IRT w/ KLI 0.7235 ± 0.0013 ∗ 0.7443 ± 0.0011 ◦ 0.7597 ± 0.0016 ◦
IRT w/ BECAT 0.7116 ± 0.0017 ∗ 0.7363 ± 0.0030 ∗ 0.7547 ± 0.0028 ◦
Our w/ Random 0.7256 ± 0.0019 ∗ 0.7446 ± 0.0026 ∗ 0.7576 ± 0.0025 ◦
Our w/ Uncertainty 0.7363 ± 0.0039 ◦ 0.7589 ± 0.0037 • 0.7843 ± 0.0043 •
Our w/ Self-Improv. 0.7372 ± 0.0032 0.7490 ± 0.0035 0.7637 ± 0.0041

policy performs better with longer test lengths. Under the assumption that our
response model performs well, the results are in line with the intuition provided
by Proposition 1. We will address this observation again in Section 4.4.

4.2 Performance of the response model

In this section, we focus on the evaluation of the student representation and
response model on a related educational task, namely knowledge tracing (KT, [7]).
The task in KT is to predict binary responses of a student interacting sequentially
with an intelligent tutoring system: After observing t question-response tuples,
we aim to predict the student’s response for question qt+1. A key difference to
CAT is the assumption that the knowledge of a student may change over time.
Nevertheless, knowledge tracing constitutes a sequential prediction task where a
response model is learned on a fixed and fully observable policy.

Differences to the CAT task are for example that question-response tuples in
the student representation are treated as a sequence instead of a set. We thus need
to adapt the handling of positional encoding which should now reflect temporal
relations. To that end, we employ a rotary embedding [39], which is useful
in conveying relational positional information to the transformer architecture.
For efficiency, we employ an encoder only architecture with an autoregressive
mask applied to the student representation, such that tokens corresponding to
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Table 3: Results for the knowledge tracing task on the Ednet dataset. Markers ∗,
◦ and • indicate whether our method is statistically superior, equal or inferior to
baselines, respectively, using a paired t-test at the 0.01 significance level.

AUC Accuracy
simpleKT [20] 0.6593 ± 0.0041 ∗ 0.6565 ± 0.0029 ∗

SAINT [5] 0.6598 ± 0.0023 ∗ 0.6511 ± 0.0039 ∗
AKT [9] 0.6705 ± 0.0024 ∗ 0.6645 ± 0.0035 ∗

DTransformer [48] 0.6719 ± 0.0037 ∗ 0.6656 ± 0.0032 ∗
FoLiBiKT [13] 0.6721 ± 0.0018 ∗ 0.6666 ± 0.0028 ∗

DIMKT [34] 0.6748 ± 0.0030 ∗ 0.6700 ± 0.0038 ∗
HawkesKT [44] 0.6815 ± 0.0041 ∗ 0.6905 ± 0.0025 ∗

qDKT [36] 0.6986 ± 0.0006 ∗ 0.6922 ± 0.0005 ∗
QIKT [4] 0.7260 ± 0.0013 ∗ 0.7077 ± 0.0014 ∗

IEKT [22] 0.7301 ± 0.0012 ∗ 0.7106 ± 0.0018 ◦
LPKT [35] 0.7340 ± 0.0007 ◦ 0.7128 ± 0.0004 ◦

Our 0.7355 ± 0.0006 0.7134 ± 0.0005

features of question qt can only attend to tokens corresponding to q≤t and r<t.
In combination with teacher forcing, these changes enable us to efficiently train
a knowledge tracing model based on our student representation.

We experiment on large-scale student data provided with Ednet [6], which
includes learning data from 784,309 students. The pykt-benchmark [21] enables
standardized comparison against several recent KT models. In Table 3 we provide
an evaluation of our model against the best performing baselines.8 The KT model
based on our student representation achieves significantly better performance
than all but one baselines and is on par with the remaining one. We conjecture
that the excellent performance of our (adapted) response model can be taken as
an indicator of the predictive accuracy of our response model in the CAT setting.

4.3 Uncertainty sampling

Proposition 1 suggests that uncertainty sampling provides a strong baseline
given a good response model. We have observed good performance of uncertainty
sampling in the CAT experiment in Section 4.1 and provided empirical evidence
that our response model architecture is highly competitive on the CAT related
knowledge tracing task in Section 4.2. We now investigate the interplay between
response model, learned policy and uncertainty sampling for CAT tasks with
uncalibrated questions in the question bank.

We generate artificial students as follows: Every student has a question bank
of the same 50 candidate questions that are equally distributed in five groups.
Within a group, a student either answers all questions correctly or incorrectly.
This setting resembles questions belonging to knowledge components that are
either fully understood or completely unknown to the student. Whether a student
8 We report on the eleven baselines achieving the best AUC out of 22 total comparisons.
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Fig. 3: Performance of different policies on artificially generated CAT tasks with
differing proportions of uncalibrated items; error bars indicate standard error.

has mastered a group is determined randomly by a coin flip. In addition, we
include uncalibrated questions that are answered randomly according to a coin
flip as well, but that are not linked to any group and for which the policy
cannot acquire any information. We experiment with different percentages of
these uncalibrated questions in the question bank. We train on 500 students and
validate and test on 1000 students. We report on averages over five repetitions.

Figure 3 shows the results for test length T = 5. As expected, uncertainty
sampling achieves perfect results in the absence of uncalibrated questions, by
picking one question of every group each, thereby reducing the uncertainty of the
response model towards that group. However, as soon as we observe uncalibrated
questions, uncertainty sampling deteriorates and self-improvement dominates in
terms of predictive accuracy.

4.4 Discussion

We conclude that our student representation and response model lead to accurate
predictions and is well suited for question selection algorithms in CAT-based
learning tasks. However, under optimal conditions, a simple uncertainty sampling
based policy is sufficient to achieve perfect results, as we have shown theoretically
in Proposition 1 and experimentally on artificial data. Hence, our response model
together with uncertainty sampling should be sufficient for adaptive testing in
ideal settings. If, however, calibration tests result in a suboptimal question bank
due to non-trivial student guessing and slip probabilities, a learned policy can
improve predictive accuracies. With self-improvement training to jointly learn
deep response and policy models, we provide a strong solution to CAT under
suboptimal conditions.

5 Related Work

Early on, computerized adaptive testing (CAT) allowed for large-scale person-
alized tests [43] and is closely related to item response theory (IRT, [23,29]).
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While CAT can reduce test lengths by assessing students with fewer items and
in shorter time due to an item selection algorithm based on previous responses,
IRT provides the foundation of explicitly modeling latent abilities of students.
Recent approaches to policy learning for CAT include reinforcement learning;
for example [10] propose shallow feed-forward neural networks as their policy
model and [51] employ an attention based neural network architecture, where
optimization is based on the score function estimator [47] and deep Q-learning
[25], respectively. Formulating CAT as a subset selection problem, [52] propose a
greedy algorithm based on the approximation of expected gradient differences.
Response models are either based on IRT, simple feed-forward neural networks
or on a neural cognitive diagnosis model (CDM) as proposed in [45] and account
for explicit modeling of latent student skills. For a more comprehensive survey
on modern CAT approaches see [19].

Without an explicit focus on interpretability, our student representation and
response model are more closely related to recent deep learning approaches to
knowledge tracing (KT, [7]), a related educational field which is concerned with
reasoning about changes in students’ knowledge and enabling the adaptation of
learning materials. Transformer-based KT models include for example [27,5,9,20].
Closely related to our response model is [50], who also consider an alternating
sequence of question and response embedding as model input. Different from our
approach, their sequential model includes question features (such as knowledge
components) only indirectly via optimization of auxiliary prediction tasks.

Besides training with self-improvement [28], the design of our policy model is
further related to recent work in the field of neural combinatorial optimization.
Specifically, [41] introduced classification based on cross-attention scores for
sequential combinatorial problems where the target dictionary size depends on
the input at the current time step. The idea has since successfully been applied
to policy learning for combinatorial optimization via reinforcement learning [16].
Our policy architecture is closely related to the traveling salesman problem (TSP)
transformer [2], which provides a similar architecture to the one proposed in this
paper. However, we operate on sets of sets of tokens rather than only a set of
tokens like the TSP transformer and we allow for different features in encoder and
decoder, corresponding to questions and question-response tuples, respectively.

6 Conclusion

We studied computerized adaptive testing (CAT) as an iterative subset selection
problem, learning both the underlying response model for cognitive diagnosis and
a policy for question selection jointly from offline training data (e.g., a calibration
pre-study). We leveraged the close relation of CAT to neural combinatorial
optimization (NCO), proposed novel response and policy models, and adapted a
recent self-improvement training approach to CAT policy learning, relying on
strong generalization properties of deep learning models.

Our proposed response model empirically outperformed baselines in CAT as
well as in related knowledge tracing tasks. We further provided theoretical and
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empirical evidence that our response model can be combined successfully with
uncertainty sampling-based policies in scenarios where the response model can
be learned (almost) perfectly. Our results also show that scenarios with imperfect
response models (e.g., due to higher guess and slip probabilities) clearly favor
jointly learning both a response and policy model via self-improvement training
as proposed in this paper.

Avenues for future work include (i) exploiting the novel student representation
by introducing more descriptive features to CAT, (ii) exploring more sampling
schemes [17,28] for self-improvement training in CAT, and (iii) combining our
approach with interpretable models or post-hoc interpretability methods [8,31].
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