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Abstract. The problem of approximating a matrix by a low-rank one
has been extensively studied. This problem assumes, however, that the
whole matrix has a low-rank structure. This assumption is often false for
real-world matrices. We consider the problem of discovering submatrices
from the given matrix with bounded deviations from their low-rank
approximations. We introduce an effective two-phase method for this
task: first, we use sampling to discover small nearly low-rank submatrices,
and then they are expanded while preserving proximity to a low-rank
approximation. An extensive experimental evaluation confirms that the
method we introduce compares favorably to existing approaches.

Keywords: Low-rank approximation · submatrix detection.

1 Introduction

Low-rank approximation has emerged as a fundamental task in many data-
analysis applications, including machine-learning pipelines [26], large language
models [14], recommender systems [16], image compression and denoising [12].
The goal of low-rank approximation is to represent an input matrix as accurately
as possible using a small number of row and column vectors.

For decades, the singular value decomposition (SVD), with the closely related
principal component analysis (PCA), has remained the gold standard for low-rank
approximation [11]. Despite its success, SVD has certain limitations. Among
others, when applying SVD we aim to find a low-rank approximation for the
entire input matrix. This assumption can be rather restrictive, as in real-world
data it might be that only certain submatrices are well approximated by low-
rank structures. For instance, in ratings data originating in movie recommender
systems, low-rank submatrices occur because subsets of users may share a similar
taste only for a subset of movies. Similar local patterns could be observed in data
coming from other domains, such as market-basket analysis, image processing,
and biology [6]. The SVD can fail to identify local low-rank submatrices.
⋆ The work was done while the author was at Aalto University.
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Fig. 1: Example. A subset of data points (in orange) in the 3-dimensional space
are close to their projection (in red) onto a line in the xy-plane (a) or to a plane
in the 3-dimensional space (b), while other points (in blue) can be further away.

Existing approaches to find local low-rank submatrices. The task of
identifying submatrices that are well described by low-rank structures has been
largely overlooked until recently [6]. Existing work in this direction is based
primarily on the SVD, and does not provide any guarantee on the quality of the
approximation for the identified submatrices.

Our approach. In this work, we adopt a different perspective on discovering local
low-rank patterns, and we address the problem of identifying submatrices that
are guaranteed to be close to a low-rank approximation. Our quality guarantees
hold with respect to an approximation that can be easily interpreted in terms of
the original data, which can be particularly valuable for applications in different
domains. For example, near-rank-1 submatrices can be accurately approximated
by each row in the submatrix being colinear with a single row. Unlike previous
work, our work does not directly rely on the SVD. Nearly-low-rank submatrices
correspond to subsets of points (matrix rows) that approximately lie on a low-
dimensional subspace, for a subset of dimensions (matrix columns). For rank
equal to 1, which is a particularly interesting case, the points approximately lie
on a line through the origin, and for rank equal to 2 the points are close to a
plane through the origin, as in the example of Figure 1, which shows data points
identifying a 15× 2 near-rank-1 submatrix and a 15× 3 near-rank-2 submatrix.

While SVD may fail to reveal dense lines in the data, it is possible to find such
structures by sampling. A naïve approach would be to sample subsets of points
and dimensions until a large set of nearly-collinear points is found. However, this
procedure quickly becomes inefficient. Instead, to identify points approximately
distributed along a line, we introduce a method that only relies on sampling in
an initialization phase to find a minimal structure that can exhibit this property,
i.e., two points in two-dimensions. In a subsequent phase, the 2× 2 submatrix is
expanded deterministically to obtain the entire subset of points and dimensions
associated with the target line. Based on such a two-phase method, we discover
arbitrary submatrices that admit low-rank approximations that can be easily
interpreted in terms of the original submatrix rows or columns, and are supported
by quality guarantees. A real-world example is given in Figure 2.

Our contributions. Our main contributions can be summarized as follows.
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Fig. 2: Hyperspectral dataset. On the left, we show the values of the rows in
a 50× 50 matrix and the nearly-proportional values of the rows in a near-rank-1
11× 44 submatrix discovered by our method. On the right we show the matrix
and, next to it, the discovered submatrix (top) and its accurate approximation
expressing each row as collinear with the row highlighted in red (bottom).

– We formalize the problem of finding submatrices that are provably close to a
low-rank approximation.

– We introduce an effective method for finding submatrices that are provably
close to rank 1. Then, we generalize this method to the rank-k case.

– We analyze the theoretical properties of the method we introduce.
– We demonstrate the advantages of our method over previous work.

Roadmap. The rest of the paper is organized as follows. In Section 2 we discuss
related work. Section 3 introduces the notation used throughout the paper as well
as key preliminary concepts. In Section 4 we present the problem we study and
in Section 5 we illustrate our method to address it. In Section 6 we analyze the
properties of the method, and in Section 7 we assess its empirical performance.
Finally, Section 8 provides conclusions.

2 Related Work

Low-rank matrix approximation. Low-rank approximation techniques are
widely used to decompose a matrix into simpler components, capturing essential
patterns while reducing noise and dimensionality. The SVD and the related PCA
are among the most popular techniques [11]. Nonnegative matrix factorization
techniques [9] have become popular in applications where the goal is to decompose
data in nonnegative components. Boolean matrix decomposition relies on boolean
algebra instead of linear algebra [21]. Column subset selection [3] and the CUR
decomposition [19] have emerged as more interpretable alternatives to the SVD.
In 2019, Gillis and Shitov [10] studied the problem of low-rank approximation
to minimize the maximum entry-wise deviation. More recently, an approach to
low-rank approximation that accounts for multiplicative effects was introduced [4].
Local low-rank matrix approximation. Relatively less research has been
conducted for finding decompositions that do not assume a global low-rank
structure, which is the focus of our paper. The goal here is to find submatrices that
are locally well-approximated by a low-rank structure. A simple heuristic to local
low-rank approximation is obtained by imposing a sparsity constraint on matrix
decomposition, and sparse PCA [20] is a prominent example of such methods.
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Doan and Vavasis proposed the problem of recovering near-rank-1 submatrices
by framing it as a convex-optimization problem [8]. Lee et al. [16] introduced
the LLORMA method to address matrix-completion tasks while relaxing the
assumption that the entire matrix has low rank. LLORMA approximates the
entire input matrix, and thus, it is fundamentally different from our work, which
focuses on detecting local low-rank patterns. On the other hand, the problem we
study finds application in matrix completion, as shown by the work of Ruchansky
et al. [22], which introduces the SVP method to quickly detect low-rank sub-
matrices with the ultimate goal of improving the accuracy in matrix completion.
While SVP cannot discover arbitrary low-rank submatrices, Dang et al. [6]
introduced the RPSP method, which addresses this lack of generality. The core
idea behind RPSP is to sample submatrices and count the number of times that
each entry belongs to a low-rank submatrix. Like RPSP, our method targets
arbitrary near-low-rank submatrices. Unlike previous methods, our method can
in principle identify submatrices that are close to a specific target rank.
Co-clustering, projective clustering, and subspace clustering. Co-cluster-
ing algorithms [7] simultaneously cluster the rows and columns of a matrix.
Although co-clustering algorithms can be used for detecting low-rank subma-
trices, they cannot generally discover such structures, except in specific cases
where the values of the low-rank submatrices deviate significantly from the back-
ground. Projective clustering and subspace clustering are also related problems.
In projective clustering [1], the goal is to partition the data into subsets such that
the points in each subset are close to each other in some subspace. In subspace
clustering [25] the goal is to find a representation of the input data as a union of
different subspaces. In general, clustering problems are fundamentally different
from the problem we study, as they seek a partitioning of the entire data matrix.

3 Preliminaries

Notation and basic definitions. Matrices are denoted by upper-case boldface
letters, and we use D to denote the input data matrix. Di,j indicates the entry
of D in row i and column j, while the i-th row and j-th column of D are denoted
by Di,: and D:,j , respectively. Sets are denoted by upper-case letters and scalars
by lower-case letters. Vectors are denoted by lower-case boldface letters, e.g.,
x = (x1, . . . , xd). We denote the L2 (or Euclidean) norm of a vector x as ∥x∥2
and the inner product between two vectors x and y as xTy. We consider different
matrix norms: the Frobenius norm ∥D∥F = (

∑
i,j |Di,j |2)1/2, the spectral norm

∥D∥2 = sup||x||2≤1 ||Dx||2, and the max norm ∥D∥max = maxi,j |Di,j |. We use
∥D∥∗ with ∗ = {2, F,max} to indicate the above norms. We refer to the total
number of entries of a (sub)matrix D as its size, which is also simply denoted
by |D|, if there is no risk of confusion with the entry-wise absolute value. For
a matrix X, we denote by X̂ a low-rank approximation of X and by EX,X̂ the
difference EX,X̂ = X− X̂.
Orthogonal projections. Given a nonzero vector x and a vector y, the orthog-
onal projection of y onto x is given by Projx y = (yTx)/(xTx)x. Similarly, given
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a matrix B and a matrix A with linearly independent columns, the orthogonal
projection of B onto the column space of A is given by ProjA B = AA+B, where
A+ = (ATA)−1AT is the Moore-Penrose pseudoinverse of A.
Low-rank approximation and SVD. The singular value decomposition (SVD)
of a matrix D ∈ Rn×m is given by D = UΣVT , where U ∈ Rn×n and V ∈ Rm×m

are unitary matrices, and Σ ∈ Rn×m is a diagonal matrix with singular values
{σ1, σ2 . . . σmin{n,m}} as diagonal entries, conventionally sorted in decreasing
order. If the matrix is not clear from the context, we denote as σi(X) the i-th
singular value of X. It is known that the optimal rank-k approximation of D for
the Frobenius and the spectral norm (but not for the max norm) is obtained
from the SVD by retaining the first k singular values, along with the associated
k columns of U and rows of VT . The largest singular value of a matrix equals
its spectral norm, and the number of non-zero singular values indicates the rank.

As real-world data are often noisy, the singular values are seldom exactly
zero. Accordingly, to measure the proximity of a matrix to rank 1, in this work,
we use the low-rankness score [6], which is given by ℓr(X) = σ1(X)2∑min(n,m)

i=1 σi(X)2
. A

matrix whose singular values after the k-th one are close to zero can be accurately
approximated by a rank-k matrix, and is loosely referred to as near-rank-k matrix.

4 Problem Formulation

Next, we formalize the problems we study in this paper. To provide better insight,
we first present a special case, and then introduce the more general problems.
Searching for a near-rank-1 subset of rows or columns. As a warm-up,
we first introduce a simple problem that fixes the matrix columns or rows.

Problem 1 (Largest near-rank-1 subset of rows (LNROSR)). Given a matrix
D ∈ Rn×m with set of rows R and a threshold ϵ ∈ R+, find the largest subset of
rows R′ ⊆ R such that there exist a rank-1 matrix X̂ ∝ xyT , where yT ∈ Rm is
a row of D, satisfying

∥Di,: − X̂i,:∥2 ≤ ϵ, for all i ∈ R′. (1)

Problem 1 asks to find the largest near-rank-1 submatrix defined over a subset
of rows of D and all columns. This problem is computationally tractable.

Proposition 1. The LNROSR problem can be solved in polynomial time.

The proof, via a simple algorithm, is presented in Appendix A of the extended
version of the paper [5].

While Problem 1 asks for a subset of rows, the symmetric problem asking for
a subset of columns can be solved by considering DT in place of D.
Searching for a near-rank-1 submatrix. Next, we discuss the more challenging
problem of finding a near-rank-1 submatrix, without fixing neither the rows nor
the columns of the input matrix.
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Problem 2 (Largest near-rank-1 submatrix (LNROS)). Given a matrix D ∈ Rn×m

and a threshold ϵ ∈ R+, find a submatrix X ∈ Rn′×m′
of maximum size such

that there exist a rank-1 matrix X̂ satisfying

∥EX,X̂∥∗ = ∥X− X̂∥∗ ≤ ϵ, where ∗ can be any of the norms {F, 2,max}. (2)

Unfortunately, due to the interaction between rows and columns, the LNROS
problem is computationally intractable.

Proposition 2. The LNROS problem is NP-hard.

The NP-hardness of LNROS follows from that of the largest rank-1 submatrix
problem [8] by setting ϵ = 0, and highlights the connection with the maximum-
edge biclique problem [18], which is made evident in Section 5.
Searching for a near-rank-k submatrix. We generalize the LNROS problem
to the case of near-rank-k submatrices.

Problem 3 (Largest near-rank-k submatrix (LNRkS)). Given a matrix D ∈ Rn×m

and a threshold ϵ ∈ R+, find a submatrix X ∈ Rn′×m′
of maximum size such

that there exist a rank-k matrix X̂ satisfying

∥X− X̂∥∗ ≤ ϵ, where ∗ can be any of the norms {F, 2,max}. (3)

As LNRkS is a generalization of LNROS, the LNRkS problem is also NP-hard.
Extensions. The problem formulations presented above focus on extracting a
single submatrix. In practice, one may wish to find a representation of the input
matrix as a sum of N local low-rank patterns. Such a problem is a generalization
of both LNROS and LNRkS, and hence, inherits their hardness.

Additionally, it may be of interest to identify submatrices that define affine
subspaces. Extending our problem formulations and method to the case of
affine subspaces (or near-low-rank submatrices up to a particular translation) is
straightforward. The details are deferred to an extended version of this work.

5 Algorithms

In this section, we present SampleAndExpand, our method for discovering
near-low-rank submatrices. We first give an overview of the method, and then
we present the algorithms to detect near-rank-1 and near-rank-k submatrices.

5.1 High-level Overview of the Method

SampleAndExpand is based on a simple two-phase procedure. The first phase
samples small seed submatrices, and the second phase expands those seed sub-
matrices into larger near-low-rank submatrices.

The main idea relies on the simple principle that any submatrix of a rank-k
matrix must also have rank at most k. Thereby, a near-rank-1 submatrix X of
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Algorithm 1 Overview of SampleAndExpand.
1: Input: Matrix D, target rank k, number of initializations Ninit , initial tolerance

δinit , tolerance δ.
2: Output: Near-rank-k submatrix X∗.
3: X∗ ← 0
4: for i = 1 to Ninit do
5: P← Initialization(D, k, δinit) // first phase: initialization (sampling)
6: X← Expansion(P, k, δ) // second phase: expansion
7: if f(X) ≥ f(X∗) then
8: X∗ ← X // select the best submatrix across different initializations
9: end if

10: end for
11: Return X∗

size n′ ×m′ contains a large number of 2× 2 near-rank-1 submatrices. Thus, if
we are looking for a rank-1 submatrix, in the first phase (initialization phase) we
identify a seed, which is a 2× 2 submatrix that can be expanded into a larger
near-rank-1 submatrix. The goal of the second phase (expansion phase) is to
expand the seed into a large near-rank-1 submatrix. Similarly, if we are looking
for a near-rank-k submatrix, in the first phase we identify a seed submatrix of
minimal size that is close to rank k, and then we expand it as much as possible.

The two-phase procedure is repeated Ninit times, to explore different random
initializations. Each repetition outputs a nearly low-rank submatrix X. Sample-
AndExpand accepts a parameter δ that controls the trade-off between proximity
to the target rank and size of the output matrices. Higher values of δ tend to yield
submatrices that are larger but deviate more from their low-rank approximation.

After the last repetition, we return the submatrix X that maximizes the
objective function f(X) = |X| − λ

|X|∥EX,X̂∥2F . By default, in the absence of prior
information, we standardize the error term and the size, and set λ = 1. However,
SampleAndExpand is flexible and supports any objective function.

The pseudocode of the high-level SampleAndExpand method is given
in Algorithm 1. The details of the sampling and expansion phase of the method
for the rank-1 case and for the general rank-k case are described later.

Approximating the discovered submatrices. The discovered submatrices
can be approximated via SVD. Further, SampleAndExpand also naturally leads
to a low-rank approximation that is more interpretable than the SVD since it is
based on the rows (or columns) of X. For the rank-1 case, this approximation is
given by X̂ = xyT , where, either yT is a row or x a column of X. If, e.g., yT is
a row of X, x can be chosen to minimize ∥X− xyT ∥2F . The resulting optimal x
is the vector of coefficients that describe the orthogonal projections of the rows
of X onto yT . An analogous argument also applies to the columns. As discussed
in Section 6, this approximation is supported by approximation guarantees.

Although the rank-1 SVD may be more accurate than the interpretable
alternative, if a matrix is sufficiently close to rank 1, the difference is often
negligible. To gain some intuition for this claim, note that a matrix that has
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exactly rank 1 can be represented with no error not only by the discussed
interpretable approximation, but also by the rescaled outer product αX:,jX

T
i,:

of any of its rows and columns, for some α ∈ R. If instead the matrix deviates
significantly from rank 1, the rank-k interpretable approximation based on
orthogonal projections is often not as accurate as the rank-k SVD.
Discovering multiple submatrices. In practice, we may wish to discover
multiple submatrices within a single matrix D and eventually obtain an approxi-
mation D̂ of the matrix as sum of local low-rank patterns. To achieve this, we
run SampleAndExpand iteratively. In each iteration, the method finds a single
near-rank-k submatrix, and then updates D̂ and the input matrix. This simple
procedure is summarized in Algorithm 2 of the extended version of the paper [5].

5.2 Recovering a Near-rank-1 Submatrix

Here, we present the initialization (sampling) and expansion phases of the algo-
rithm to discover near-rank-1 submatrices. Algorithm 3 in the extended version
of the paper [5] presents the pseudocode.
Initialization. To find the initial 2× 2 near-rank-1 submatrix P, we sample two
distinct row indices {i1, i2} and column indices {j1, j2} of the input matrix D,
and then we compute the determinant of the associated 2× 2 submatrix P′:

det(P′) = Di1,j1Di2,j2 −Di1,j2Di2,j1 .

If |det(P′)| ≤ δinit , for some input δinit ∈ R+, P′ is close to rank 1, and hence it
may be contained into a larger near-rank-1 submatrix. Therefore, P′ is the seed
P that will be expanded. If instead |det(P′)| > δinit , we sample different 2× 2
submatrices P′ until we find a seed to expand. In practice, δinit is initialized to a
small value (10−11 by default) and progressively increased until the seed is found.
Expansion. To extend P into a larger submatrix, we consider one of the entries
(ia, ja) in P, which we call anchor. Then, we divide all rows in D by the ia-th
row, obtaining the row-wise ratio matrix Rr and all columns by the ja-th column,
obtaining the column-wise ratio matrix Rc. If an entry in the ia-th row or ja-th
column of D is zero, we add a small positive constant to prevent division by zero.

The ratios indicate which entries may belong to a near-rank-1 submatrix with
the anchor. As illustrated in Figure 3, if the matrix D contains a submatrix X
of rank 1, the entries corresponding to X in Rr and Rc will be row-wise and
column-wise constant, respectively. More generally, as we explain in Section 6,
bounding the variation across rows of row-wise and columns of column-wise ratios
in a submatrix leads to quality guarantees for its rank-1 approximation. Thus,
the goal of the expansion stage is to identify a submatrix of maximum size with
bounded variation in the rows of the row-wise ratios and in the columns of the
column-wise ratios. To this end, our algorithm examines the rows of Rr to find
subsets of near-constant entries including column ja and the columns of Rc to
find subset of near-constant entries including row ia. More specifically, for an
input parameter δ ∈ R+, we select, for each row of Rr, the ja-th entry and all
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Fig. 3: Example of row-wise (Rr) and column-wise (Rc) ratio matrices associated
with an input matrix (D) containing a rank-1 submatrix (highlighted in red).
Within this rank-1 submatrix, the entries of Rr are constant across rows, and
the entries of Rc are constant across columns.

other entries such that the maximum variation is less than δ in absolute value.
Similarly, for each column of Rc, we select the ia-th entry and all other entries
such that the maximum variation is less than δ in absolute value. Subsets within
each row can be efficiently retrieved by sorting the row elements by their absolute
deviation from the j-th element and similarly for the columns.

Given the identified subsets, we construct two indicator matrices: Ir ∈
{0, 1}n×m, where the entries with value 1 correspond to subsets of near-constant
row-wise ratios; and Ic ∈ {0, 1}n×m, where the entries with value 1 correspond to
subsets of near-constant column-wise ratios. We can then compute the intersection
of the two matrices Ir and Ic to obtain the intersection indicator matrix I of the
same dimension. The problem of extracting a submatrix of maximum size with
all row-wise and column-wise ratios with bounded deviations can then be framed
as the problem of finding the largest possible all-ones submatrix within I. This
problem is equivalent to the extraction of a maximum-edge biclique [18] from the
bipartite graph GI that has I as adjacency matrix. Although this is an NP-hard
problem [18], so that it cannot be solved in polynomial time, we can leverage
recent algorithmic advances that solve the problem quickly in considerably dense
and large bipartite graphs [18]. In addition, to avoid possible scalability issues
that may still arise, we also rely on effective heuristics, as discussed in Section 5.4.

5.3 Recovering a Near-rank-k Submatrix

Next, we illustrate the adaptation of the initialization and expansion phases of
SampleAndExpand to the general case of recovery of near-rank-k submatrices.
The pseudocode is given as Algorithm 4 in the extended version of the paper [5].

Initialization. The goal of the initialization phase is to identify a seed, i.e., a
minimal near-rank-k submatrix to be expanded at a later time. To find the seed,
we sample matrices P′ with k + 1 rows and columns until we find a seed matrix
P that is close to rank k or lower. In order to determine whether a k + 1× k + 1
matrix P′ has rank k or lower, we check whether |det(P′)| ≤ δinit , for a small
δinit ∈ R+, which, as for the algorithm tailored to near-rank-1 submatrices, is
first initialized to a to a small value, and then increased until the seed is found.
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Fig. 4: Example of matrices of orthogonal projections (D̂⊥) and absolute errors
(Eabs) associated with an input matrix (D) containing a rank-k submatrix
(highlighted in red). Within this rank-k submatrix, the entries of D̂⊥ are equal
to those of D, and the entries of Eabs are therefore all identically zero.

Expansion. Given the seed matrix P ∈ Rk+1×k+1, of rank k′ ≤ k, we sample k′

anchor rows from the rows of P. Let CP denote the set of the k+ 1 indices of the
columns in P. Considering only the columns in CP, we compute the coefficients of
the orthogonal projection of each row of D onto the subspace spanned by the k′

anchor rows. We then compute the orthogonal projections D̂⊥ ∈ Rn×m expressing
each row as a linear combination of the anchor rows with weights given by the
orthogonal-projection coefficients. The coefficients are obtained by considering
only the columns in CP identified in the initialization phase. Nevertheless, the
matrix D̂⊥ ∈ Rn×m, similarly to the ratio matrices in the rank-1 case, indicates
which additional columns and rows are close to a rank-k approximation. More
specifically, all entries Di,j that are closely approximated by D̂⊥

i,j lie close to the
k-dimensional subspace identified in the initialization phase.

Therefore, to find a near-k submatrix of maximum size, which is the goal of
the expansion phase, we need to identify the largest submatrix of D̂⊥

i,j where all
entries nearly match the corresponding entries of D. To obtain such a submatrix,
we calculate the matrix of absolute errors Eabs = |D − D̂⊥|, and from it, the
indicator matrix Ir, which takes value 1 for entry (i, j) if Eabs

i,j ≤ δ and 0 otherwise,
for some input δ ∈ R+. Figure 4 presents an example of matrices D̂⊥ and Eabs.

The same procedure followed to determine Ir, but on input DT and PT

yields Ic. The intersection of Ir and Ic gives the matrix I and the associated
bipartite graph GI. As for the case of near-rank-1 submatrix discovery, the desired
output near-rank-k submatrix is then given by a submatrix of I consisting of all
ones, or, equivalently, by a maximum-edge biclique of GI.

5.4 Scalability Considerations

One limitation of SampleAndExpand is its reliance on solving the maximum-
edge biclique problem, which is NP-hard. While the algorithm we use to extract
these bicliques is often efficient in practice [18], scalability issues may still arise.
To address such issues, the algorithm for finding maximum-edge bicliques can be
replaced with a more scalable heuristic. Among many possible different heuristic
approaches, by default, we rely on spectral biclustering [15], which is empirically
found to be particularly effective in quickly identifying a dense submatrix of I.
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Even more efficient and scalable approaches include algorithms to extract dense
bipartite subgraphs, a greedy algorithm removing rows and columns from I, e.g.,
based on the amount of ones, or a randomized algorithm sampling submatrices
from I according to the amount of ones they contain [2]. A comprehensive
evaluation of the performance of various heuristics for approximating maximum-
edge bicliques in SampleAndExpand is left to future work.

6 Analysis

In this section, we explain how the proposed methods yield submatrices with
bounded approximation error. We also provide a brief discussion on the proba-
bilistic aspects and on the computational complexity of the methods.

6.1 Approximation Error Guarantees

In global low-rank approximation, the presence of outliers in the data may lead
to situations where the whole matrix cannot be approximated with a low-rank
structure without compromising the overall approximation quality. However,
as our problem definition lifts the requirement that the whole matrix must be
approximated, it is interesting to control the entry-wise maximum approximation
error in the discovered submatrices. We thus provide approximation-error guaran-
tees in terms of the max norm. A bound on the max norm yields bounds on the
Frobenius and spectral norms, albeit loose. In the case of near-rank-1 submatrix
discovery, we also provide interesting bounds on the spectral and Frobenius norms
that are not a direct consequence of the bound on the max norm.
Near-rank-1 submatrices. As mentioned in Section 5.1, n′×m′ near-rank-1 sub-
matrices contain many near-rank-1 2× 2 submatrices. Building on this intuition,
SampleAndExpand starts by locating a 2 × 2 submatrix P with bounded
determinant, and hence close to rank 1. Then, it computes row-wise and column-
wise ratios dividing all rows (columns) by a single anchor row (column) with index
sampled from those of P, and finds submatrices with rows (columns) of nearly-
constant ratios. Nearly-constant ratios correspond to bounded 2×2 determinants.
For instance, if

∣∣∣Di,j1

xr
j1

− Di,j2

xr
j2

∣∣∣ ≤ δ, then |Di,j1x
r
j2
−Di,j2x

r
j1
| ≤ δ|xr

j1
||xr

j2
| where

the left-hand side is a 2×2 determinant. Bounding the variation of all ratios within
each row and column, and thus the corresponding 2× 2 determinants, Sample-
AndExpand yields submatrices composed of 2 × 2 near-rank-1 submatrices,
which, as formalized in Theorem 1, results in approximation guarantees.

Theorem 1. Let X ∈ Rn′×m′
be a near-rank-1 submatrix output by Sample-

AndExpand with anchor row xr, anchor column xc and input tolerance δ. There
exists a rank-1 approximation X̂ of X such that for EX,X̂ = X− X̂ it holds:

∥EX,X̂∥max ≤ min {δgmax(x
r), δgmax(x

c)} , (4)

and

∥EX,X̂∥2 ≤ ∥EX,X̂∥F ≤ min
{
δ
√
(n− 1)gF (xr), δ

√
(m− 1)gF (xc)

}
, (5)
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where gmax(x) =
maxi |xi|3
2mini x2

i
and gF (x) =

∑
i<j xi

2xj
2

∥x∥2
2

.

Theorem 1 suggests that the low-rank-approximation error incurred by the
near-rank-1 submatrices discovered by SampleAndExpand can be bounded by a
function of the input parameter δ and of the scale of xr or xc. Therefore, given the
anchor row and column, one can set the value of δ to guarantee that the maximum
or the total approximation error is bounded by a user-specified threshold ϵ ∈ R+,
as requested by Problem 2. However, the approximation-error guarantees given in
Theorem 1 only hold if SampleAndExpand extracts a biclique in the last step.
Alternative heuristic approaches that do not extract a biclique can be effective
in practice, but they are not supported by approximation-error guarantees.

Notably, the approximation-error guarantees are achieved by the interpretable
rank-1 approximation discussed in Section 5.1. In addition, for the rank-1 SVD
approximation X̂, Theorem 2 in Appendix B of the extended version of the
paper [5] bounds the spectral norm of the error EX,X̂ = X− X̂.
Near-rank-k submatrices. The algorithm for the more general task of iden-
tifying near-rank-k submatrices does not admit the same analysis as the algo-
rithm for identifying near-rank-1 submatrices. However, the algorithm for the
rank-k case, by design, discovers submatrices X such that EX,X̂ = X− X̂ sat-
isfies ∥EX,X̂∥max ≤ δ. As mentioned, the bound on the max norm leads to a
straightforward bound on the Frobenius and spectral norms, namely ∥EX,X̂∥2 ≤
∥EX,X̂∥F ≤ δ

√
(n− k)(m− k), which can also be used to set the value of δ

based on user-specified error threshold ϵ on the Frobenius or spectral norm.

6.2 Probabilistic Analysis

In this section, we discuss simple probabilistic aspects of our method.
Probability of discovering a near-rank-1 submatrix. Let X be a target near-
rank-1 submatrix of size |X| within D ∈ Rn×m. The probability that Sample-
AndExpand discovers X by one sample is p = |X|

nm
|X|−1
nm−1 . Hence, the probability

of discovering X in Ninit iterations is 1− (1−p)Ninit , and therefore the number of
iterations required to discover X with probability at least αp is Ninit ≥ ln(1−αp)

ln(1−p) .

For instance, if p = 0.1 and αp = 0.9, we need Ninit >
ln(1−0.9)
ln(1−0.1) ≈ 22 iterations.

Basic probability theory implies that, in expectation, the number of iterations
necessary to discover X is 1

p , and we discover it pNinit times in Ninit iterations.
Probability of discovering a near-rank-k submatrix. The simple prob-
abilistic analysis presented above for near-rank-1 submatrices also applies to
near-rank-k submatrices. The only difference is that, in this case, we have
p = |X|

nm
|X|−1
nm . . . |X|−k

nm−k , which can become small as k grows. Yet, larger values
of k tend to be associated with larger values of |X| and, in practice, we are
interested in small values of k.
Probability of occurrence of a 2× 2 near-rank-1 matrix. We conclude
the section by investigating the probability with which SampleAndExpand



Sample and Expand: Discovering Low-rank Submatrices 13

identifies a seed 2× 2 submatrix with near-zero determinant in random matrices.
Let D be a random matrix with i.i.d. entries distributed according to Z, and let
E(Z) = µ and Var(Z) = σ2 be the expectation and variance of Z. To study the
probability of occurrence of 2× 2 submatrices with near-zero determinant, we
consider the random variable W = x1y2 − x2y1, where x1, x2, y1 and y2 are the
entries of a 2× 2 submatrix.

By independence, E(x1y2) = E(x1)E(y2) and Var(x1y2) = Var(x1)Var(y2)+
E(y2)

2Var(x1) +E(x1)
2Var(y2) = σ4 + 2µ2σ2, and similarly for x2y1. Further,

since x2y1 and x2y1 are independent,

E(x1y2 − x2y1) = E(x1y2)− E(x2y1) = 0 and

Var(x1y2 − x2y1) = Var(x1y2) +Var(x2y1) = 2σ4 + 4µ2σ2.

Chebyshev’s inequality [23] then implies that:

P (|W| ≥ δinit) ≤
2σ4 + 4µ2σ2

δ2init
,

giving a bound on the probability that a 2× 2-submatrix deviates significantly
from rank 1. The preliminary experiments presented in Appendix E of the
extended version of the paper [5] additionally provide an empirical investigation
of this probability. Assumptions on Z may lead to tighter bounds, a question
that we leave open for future work.

6.3 Computational Complexity

Finally, we discuss the computational complexity of SampleAndExpand.
Consider a single iteration of the method. The runtime bottleneck is due to

finding a maximum-edge biclique, which, in the worst case can take exponential
time. However, the algorithm introduced by Lyu et al. [18] prunes large portions
of the search space and can be very efficient in practice. As discussed in Sec-
tion 5, to improve scalability, we can use a more scalable heuristic for finding an
approximate maximum-edge biclique. The spectral biclustering algorithm, which
is the heuristic we rely on by default, has computational complexity determined
by the computation of the (truncated) SVD, which is O

(
min(n2m,m2n)

)
. If

an even more scalable heuristic is leveraged, such as a basic linear-time algo-
rithm removing rows and columns of I with less than a given proportion of ones,
SampleAndExpand for the rank-1 case and for the general rank-k case incurs
computational complexity O(n+m) and O(nkm), respectively.

As SampleAndExpand generally explores different initializations, if τ is the
complexity of a single iteration, then O(Ninitτ) is the overall complexity.

7 Experiments

In this section, we evaluate the performance of SampleAndExpand against exist-
ing approaches. We consider both synthetic data and real-world data. More details
on the experimental setup and additional experimental results are presented in
the extended version of the paper [5].
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Table 1: Summary characteristics for real-world datasets. We report the number
of rows, columns, the low-rankness score, the entry-wise maximum squared
deviation from the rank-1 SVD (Max rank-1 deviation) and a reference.

Dataset # Rows # Columns Low-rankness Max rank-1 Reference
score deviation

Hyperspectral 5 554 2 151 0.89 0.23 [17]
MovieLens 943 1682 0.30 1.00 [13]
Cameraman 256 256 0.86 0.56 [24]

7.1 Experimental Setup

Datasets. We conduct experiments on both synthetic and real-world datasets.
The synthetic data are generated by planting near-rank-1 submatrices into

larger matrices. To make the discovery task as challenging as possible, the entries
of the planted submatrices and of the background are generated from the same
distributions. We consider 6 different distributions. The details of the synthetic
datasets are in Appendix D of the extended version of the paper [5].

Additionally, we consider 15 real-world matrices from different applications,
including user ratings, images, and gene expression. We report summary charac-
teristics for three datasets in Table 1, while the same information for the other
datasets is provided in the extended version of the paper [5].
Baselines. We compare SampleAndExpand against baselines discussed in
Section 2. Specifically, we consider a method (CVX) based on convex opti-
mization [8], PCA with sparsity constraints (SparsePCA) [20], SVP [22], and
RPSP [6]. In the experiments with real data, we restrict the comparison to the
most recently introduced methods, SVP and RPSP, which specifically aim at
discovering (possibly multiple) near-low-rank submatrices.
Metrics. In experiments with synthetic data, all methods output matrices D̂ that
contain low-rank approximations of the identified submatrices and zero entries
for all indices that are not part of such submatrices. To measure the ability
of a method in recovering the indices of the planted ground-truth submatrices,
we report the F1 score. Based on the same output, we also report the error
(squared Frobenius norm averaged over the entries) incurred in approximating
the ground-truth submatrices. SampleAndExpand approximates submatrices
through the interpretable approach discussed in Section 5.1 for k = 1 and via
SVD for k > 1. All baselines approximate submatrices via SVD.

In real-world datasets, where no ground truth is available, we report the size
and low-rankness score (introduced in Section 3) of the returned submatrices.

In all cases, we measure runtimes in seconds.
Parameters. The important parameter to set for our method is the tolerance δ
controlling the trade-off between low-rankness and size. As explained in Section 6,
one can set δ to match an input bound ϵ on the allowed low-rank-approximation
error. In our experiments, however, we explore few fixed values of δ. Specifically,
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Fig. 5: Full-rank synthetic 250× 250 matrices generated from a standard normal
distribution with a planted near-rank-1 submatrix. Performance of different
methods in the task of near-rank-1 submatrix discovery. We show the average
(per-entry) reconstruction error (left), the F1 score (center) and the runtime
(right) of different methods as a function of planted submatrix size.

for experiments with synthetic data, we set δ to 0.05 and the number of ini-
tializations Ninit to 25. For experiments with real-world data, we let δ vary in
{10−1, 10−2, 10−3, 10−4}, and we consider Ninit = 25 initializations for each value
of δ. Finally, the initialization parameter δinit is set to 10−11 and is increased by
10 every 10000 samples that do not result in a submatrix to expand.
Implementation. Our Python implementation and datasets are available online4.
Experiments are performed on a computer with 2× 10 core Xeon E5 processor
and 256 GB memory. All reported results are averages over 10 runs.

7.2 Experiment Results

We first present results for synthetic datasets and then for real-world datasets.
Results on synthetic data. Figure 5 presents results for the task of near-
rank-1-submatrix discovery in 250× 250 matrices of entries generated from the
standard normal distribution. Figure 5 in the extended version of the paper [5]
provides analogous results for other 5 distributions. The results show that our
method, unlike the baselines, consistently recovers the ground truth (as indicated
by F1 score close to 1 and reconstruction error close to 0). More specifically,
RPSP tends to recover the ground-truth submatrix as its size increases, but it is
also considerably slower than the other methods. SparsePCA and SVP are the
fastest algorithms, but, like CVX, they often fail in detecting the ground truth.

Figure 6 shows, for data matrices with entries generated from a standard
normal distribution, the same metrics as in Figure 5, but in the setting where
multiple, possibly overlapping, near-rank-1 submatrices are planted and discov-
ered. Figure 6 in the extended version of the paper [5] shows the same results for
matrices generated from other 5 distributions. The results in this more challenging
setting highlight that SampleAndExpand is the only method that consistently
4 https://github.com/maciap/SaE

https://github.com/maciap/SaE
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Fig. 6: Full-rank synthetic 250× 250 matrices generated from a standard normal
distribution with multiple (possibly overlapping) planted near-rank-1 submatrices.
Performance of different methods in discovering planted submatrices. We show
the average (per-entry) reconstruction error (left), the F1 score (center) and the
runtime (right) as a function of the number of planted submatrices.

retrieves the ground-truth submatrices. Among the baselines, SparsePCA stands
out for its accurate reconstruction. However, the estimate D̂ of the input matrix
it generates quickly becomes very dense as more submatrices are discovered, and
hence this approach fails to identify the locations of the ground-truth submatrices.

Finally, Figure 10 in the extended version of the paper [5] (Appendix E)
demonstrates the robustness of our method to the presence of noise.

Results on real-world data. Table 2 reports low-rankness score and size
averaged over the top-5 submatrices retrieved by our method, SVP and RPSP
for three datasets. Similar results for the other 12 datasets considered in our
experiments are given in the extended version of the paper [5]. To determine
the top-5 submatrices returned by each method, we select those that maximize
the minimum between the low-rankness score and the size. Moreover, to offer a
more complete picture, in the extended version of the paper [5] (Figure 11), we
additionally display the low-rankness and size of the individual top-5 patterns.

Finding submatrices with high low-rankness is not an easy task. SVP returns
large submatrices. However, those submatrices usually have smaller low-rankness
compared to those discovered by our method or RPSP, and, in several cases,
compared to the input matrix. SampleAndExpand and RPSP are more likely
than SVP to return submatrices with large low-rankness. Further, Sample-
AndExpand tends to discover submatrices that strike a more desirable balance
between low-rankness and size compared to RPSP. As concerns runtime, Sample-
AndExpand is drastically faster than RPSP in smaller datasets, but it can
become slower in larger datasets. Nonetheless, the runtime of our method could be
significantly reduced by leveraging a more efficient approach to maximum-edge-bi-
clique extraction and by reducing the number of iterations, which, however, could
deteriorate the quality of the results. As mentioned in Section 5.4, future work
will consider efficient heuristic approaches to maximum-edge-biclique extraction.
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Table 2: Performance in real-world data. For the top 5 local low-rank patterns
identified by the methods, we show the average relative percentage increase (L-R)
with respect to the low-rankness score of the input matrix, the size (in percentage
of entries of the input matrix) and the runtime (in seconds) to obtain them.

Dataset SVP RPSP SampleAndExpand

L-R Size Runtime L-R Size Runtime L-R Size Runtime

Hyperspectral 4.05 2.88 47.0 9.84 2.10 590 11.09 21.43 1 697
MovieLens 49.61 8.59 1.0 46.69 2.88 373 116.42 1.06 152
Cameraman 1.69 3.64 0.3 5.67 3.44 102 14.44 24.83 18

Finally, for our method, we also explore the trade-off between size and low-
rankness by varying the value of δ; the results are presented in Appendix E of
the extended version of the paper [5].

8 Conclusion

Low-rank approximation finds applications in many data-analysis tasks. Typically,
methods assume that the entire matrix exhibits low-rank structure, while in
real-world data this is often true only for certain submatrices. In this work, we
study the problem of finding submatrices that are provably close to a rank-k
approximation. We introduce a novel method that finds such submatrices, study
the properties of the method, and, with a thorough experimental evaluation, we
show that our method outperforms strong baselines.

There are several directions for future work. For instance, future work could
study a more robust initialization strategy, develop more efficient and scalable
alternative algorithms, and optimize the selection of the anchor rows and columns.
It would also be valuable to investigate more the probabilistic aspects of our
method. From a practical perspective, it would be interesting to explore further
the benefits of our approach in different applications.
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